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The generalized Hyers-Ulam stability of a class
of functional equations

By ARTUR GRABIEC (Kraków)

Abstract. In the paper we generalize some results concerning Hyers–Ulam sta-
bility of functional equations. Our intention is to include a possibly most general class
of functional equations, whose proof of stability runs by classical Hyers’ method. The
idea of this generalization comes from G. L. Forti and Z. Kominek.

1. Introduction

Questions concerning the stability of functional equations seem to
have originated with S. M. Ulam and D. H. Hyers in the 1940s (see [20]).
One of the first assertions to be proved in this direction is the following
result, essentially due to Hyers (see [12]), that answered a question of
Ulam. We present its final version devoid of some needless assumptions.

Hyers’ Theorem. Let (X, +) be a commutative semigroup and let

E be a real Banach space. If f : X → E and there exists ε ≥ 0 such

that ‖f(x + y)− f(x)− f(y)‖ ≤ ε for all x, y ∈ X, then the limit g(x) :=
lim( 1

2 )nf(2nx) exists for every x ∈ X and g : X → E is the unique additive

function satisfying the condition ‖f(x)− g(x)‖ ≤ ε for every x ∈ X.

This assertion is usually summarized by saying that the Cauchy func-
tional equation is stable (in the sense of Hyers–Ulam). In [17] Th. M.
Rassias gave the following generalization of Hyers’ Theorem (we omit
here some regularity assumptions strengthening the proposition).
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Rassias’ Theorem. Let E1, E2 be Banach spaces and let f : E1 → E2.
Assume that there exists ε ≥ 0 and p ∈ [0, 1) such that ‖f(x + y)− f(x)−
f(y)‖ ≤ ε(‖x‖p + ‖y‖p) for all x, y ∈ E1. Then there exists a unique
additive mapping T : E1 → E2 such that ‖f(x) − T (x)‖ ≤ 2ε

2−2p ‖x‖p for
x ∈ E1.

The proof presented in [17] also works for p < 0. In [9] Z. Gajda
following a similar approach obtained an analoguos theorem for p > 1.
For p = 1 the similar theorem does not hold (see [9],[18]). Some additional
assumptions, which guarantee stability also in this case were proposed by
R. Ger (see [10],[11]). Further generalizations in this direction initiated
by Th. M. Rassias lead to considering the following inequality

(1.1) ‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y) for all x, y ∈ X,

where f : X → Y , ϕ : X2 → [0, +∞), X is a semigroup and Y is a normed
space. The problem of stability in this case is reduced to proving the
existence of an additive function T : X → Y such that ‖f(x) − T (x)‖ ≤
λ(x) for every x ∈ X, where λ : X → [0, +∞) is independent of the
function f . The stability in this case, by suitable assumptions on ϕ,X, Y ,
was consider among others by R. Ger (see [10],[11]), G. Isac and Th. M.
Rassias (see [13],[14]), Th. M. Rassias and P. Šemrl (see [19]) also G. L.
Forti (see [8]) and Z. Kominek. Ger’s results were based on the method of
invariant means. Proofs of stability theorems included in other papers ran
by classical Hyers’ method. The inspiration of this paper was the following
result obtained by G. L. Forti (see [8]) and Z. Kominek, independently
(Forti deals with the stability of a wider class of functional equations;
however, since the assumptions of this theorem are quite complex we only
present its version for the Cauchy equation).

Forti-Kominek’s Theorem. Assume (X, +) is a commutative semi-
group and E is a Banach space. If the function f : X → E and
ϕ : X2 → [0,+∞) satisfy the inequality (1.1) and for all x, y ∈ X

∞∑
n=0

( 1
2 )nϕ(2nx, 2nx) < ∞ and lim

n→∞
( 1
2 )nϕ(2nx, 2ny) = 0,

then there exists a unique additive function T : X → E such that ‖f(x)−
T (x)‖ ≤ 1

2

∞∑
n=0

(
1
2

)n
ϕ(2nx, 2nx) for every x ∈ X.

In [4] C. Borelli and G. L. Forti proved two general theorems
generalizing many of the well-known results concerning the stability in the
Hyers–Ulam sense.
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2. The main result

We introduce the following notations. Denote by N0 the set of non-
negative integers, by R+ the set of non-negative reals and by K the field
of real or complex numbers. Let N := N0 \ {0} . In the set R+ × R+ we
define an order “≤∗” by: (x1, y1) ≤∗ (x2, y2) if and only if x1 ≤ x2 and
y1 ≤ y2. Let further X be a nonvoid set and Y be a normed space. By the
symbol F(X, Y ) we denote the set of all functions defined on X and taking
values in Y , in which the addition of functions and, in the case F(X, X),
the composition of functions are defined in the usual way. By ‖f‖ we
understand the composition of f and ‖ · ‖. Moreover, for f, g ∈ F(X,R+)
put f ≤ g if and only if f(x) ≤ g(x) for every x ∈ X. The mapping
σ : R+ × R+ → R+ is said to be subadditive if σ(x + y) ≤ σ(x) + σ(y)
for all x, y ∈ R+ × R+. Now let α, β : X → X be fixed functions. For
H : Y 2 → Y we define a sequence of operators Gn

H : F(X,Y ) → F(X,Y )
(and similarly Gn

H : F(X2, Y ) → F(X2, Y )), n ∈ N0, as follows

G0
Hh(x) := h(x),

Gn+1
H h(x) := H(Gn

Hh(α(x)),Gn
Hh(β(x))), h ∈ F(X,Y ), x ∈ X

(or h ∈ F(X2, Y ), x ∈ X2, then for x = (x1, x2) ∈ X2 denote α(x) :=
(α(x1), α(x2)) and β(x) := (β(x1), β(x2))), where for n ∈ N0 the symbol
Gn

Hh(x) stands for the value of the function Gn
H(h) on an element x ∈ X.

We say that the functions α, β determine the operators Gn
H .

For example, fix elements a, b ∈ K, ab 6= 0 and consider “multiplica-
tions” X 3 x 7→ ax ∈ X, X 3 x 7→ bx ∈ X, such that (st)x = s(tx) for all
s, t ∈ {a, b} and x ∈ X. Let c, d ∈ K, cd 6= 0, and α(x) := ax, β(x) :=
bx, x ∈ X, H(y1, y2) := cy1 + dy2, y1, y2 ∈ Y. Using the well-known com-
binatorial formulas one can prove that the operator Gn

H takes in this case
the following form

Gn
Hh(x) :=

n∑

i=0

(
n

i

)
cn−idih(an−ibix),

for n ∈ N0, h ∈ F(X,Y ) and x ∈ X.

First we show some properties of Gn
H .
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Lemma 1. Let X be a nonvoid set, Y be a normed space over K,
H : Y 2 → Y , let σ : R+ × R+ → R+ be an increasing function and
α, β : X → X be functions determining the operators
Gn

H : F(X, Y ) → F(X, Y ) and Gn
σ : F(X,R+) → F(X,R+). The following

conditions hold

(a) Gn+m
H f = Gm

H (Gn
Hf) for all n,m ∈ N0 and f ∈ F(X,Y ),

(b) if ‖H(x1, y1)−H(x2, y2)‖ ≤ σ(‖x1 − x2‖, ‖y1 − y2‖) for all
x1, x2, y1, y2 ∈ Y , then ‖Gn

Hf(x)− Gn
Hg(x)‖ ≤ Gn

σ‖f − g‖(x)
for every n ∈ N0, f, g ∈ F(X, Y ) and x ∈ X,

(c) Gn
σ is increasing for every n ∈ N0,

(d) if σ is a subadditive function, then Gn
σ is subadditive for every

n ∈ N0.

Proof. The verification of each condition runs by standard induc-
tion. For example we prove the condition (b). Obviously it holds for n = 0.
Let us fix f, g ∈ F(X, Y ) and an x ∈ X. We have

‖G1
Hf(x)− G1

Hg(x)‖ = ‖H(f(α(x)), f(β(x))−H(g(α(x)), g(β(x))‖
≤ σ(‖f(α(x))− g(α(x))‖, ‖f(β(x))− g(β(x))‖) = G1

σ‖f − g‖(x).

Assume now the condition to hold for an n ∈ N0. For fixed f, g ∈ F(X,Y )
and x ∈ X we obtain

‖Gn+1
H f(x)− Gn+1

H g(x)‖
= ‖H(Gn

Hf(α(x)),Gn
Hf(β(x)))−H(Gn

Hg(α(x)),Gn
Hg(β(x)))‖

≤ σ(‖Gn
Hf(α(x))− Gn

Hg(α(x))‖, ‖Gn
Hf(β(x))− Gn

Hg(β(x))‖)
≤ σ(Gn

σ‖f − g‖(α(x)),Gn
σ‖f − g‖(β(x))) = Gn+1

σ ‖f − g‖(x).

This completes the inductive proof of (b).

The following theorem is the main result of the paper.

Theorem A. Let X be a nonvoid set, Y be a Banach space over
K, A,B : X2 → X, ϕ : X2 → R+, ψ : X → R+ and H : Y 2 → Y . Assume
that F : Y 4 → Y is continuous function, σ : R+ × R+ → R+ is subadditive
and increasing, functions α, β : X → X determine the operators
Gn

σ : F(Z,R+) → F(Z,R+), Z ∈ {X, X2}, and the following conditions
hold

(H1) ‖H(x1, y1)−H(x2, y2)‖ ≤ σ(‖x1 − x2‖, ‖y1 − y2‖)
for all x1, x2, y1, y2 ∈ Y,
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(H2) A(α(x), α(y)) = α(A(x, y)), A(β(x), β(y)) = β(A(x, y)),

B(α(x), α(y)) = α(B(x, y)), B(β(x), β(y)) = β(B(x, y))

for all x, y ∈ X,

(H3) ‖F (H(x1, x2),H(x3, x4),H(x5, x6),H(x7, x8))‖
≤ ‖H(F (x1, x3, x5, x7), F (x2, x4, x6, x8))−H(0, 0)‖

for all x1, . . . , x8 ∈ Y,

(H4)
∞∑

n=0

Gn
σψ(x) < ∞ for every x ∈ X,

(H5) lim
n→∞

Gn
σϕ(x, y) = 0 for all x, y ∈ X.

If f : X → Y satisfies the inequalities

‖F (f(A(x, y)), f(B(x, y)), f(x), f(y))‖ ≤ ϕ(x, y)(2.1)

for all x, y ∈ X,

‖H(f(α(x)), f(β(x)))− f(x)‖ ≤ ψ(x) for every x ∈ X(2.2)

then there exists T : X → Y such that

F (T (A(x, y)), T (B(x, y)), T (x), T (y)) = 0 for all x, y ∈ X,(2.3)

‖T (x)− f(x)‖ ≤
∞∑

n=0

Gn
σψ(x) for every x ∈ X(2.4)

and, if H is continuous,

(2.5) H(T (α(x)), T (β(x))) = T (x) for every x ∈ X.

Let, additionally, σ be continuous at zero, σ(0, 0) = 0 and λ : X → R+ be

a function such that lim
n→∞

Gn
σλ(x) = 0 for every x ∈ X. If S : X → Y is a

solution of (2.3) and (2.5) such that ‖S(x)− f(x)‖≤ λ(x) for every x ∈ X,

then S = T .

First prove an auxiliary lemma.

Lemma 2. Let X be a nonvoid set, Y be a normed space over K,

H : Y 2 → Y , ψ : X → R+, let σ : R+ × R+ → R+ be a subadditive and

increasing function, α, β : X → X be functions determining the operators
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Gn
H : F(X, Y ) → F(X, Y ) and Gn

σ : F(X,R+) → F(X,R+) and let (H1)
holds. If f : X → Y satisfies (2.2), then for every n ∈ N

(2.6) ‖Gn
Hf(x)− f(x)‖ ≤

n−1∑

i=0

Gi
σψ(x) for every x ∈ X.

Proof. Obviously (2.6) holds for n = 1. Assume now (2.6) to hold
for an n ∈ N and fix an x ∈ X. From (H1), (2.2), the monotonicity and
the subadditivity of σ we get

‖Gn+1
H f(x)− f(x)‖ = ‖H(Gn

Hf(α(x)),Gn
Hf(β(x)))− f(x)‖

≤ ‖H(Gn
Hf(α(x)),Gn

Hf(β(x)))−H(f(α(x)), f(β(x)))‖
+ ‖H(f(α(x)), f(β(x)))− f(x)‖

≤ σ(‖Gn
Hf(α(x))− f(α(x))‖, ‖Gn

Hf(β(x))− f(β(x))‖) + ψ(x)

≤ σ

(n−1∑

i=0

Gi
σψ(α(x)),

n−1∑

i=0

Gi
σψ(β(x))

)
+ ψ(x)

≤
n−1∑

i=0

σ(Gi
σψ(α(x)),Gi

σψ(β(x))) + ψ(x) =
n∑

i=0

Gi
σψ(x),

which completes the inductive proof of (2.6).

Proof of Theorem A. First we show that for every x ∈ X the se-
quence Gn

Hf(x) fulfils Cauchy’s condition. Namely, applying the asser-
tions (a),(b),(c),(d) of Lemma 1 one by one and (2.6) we have, for all
n,m ∈ N, n > m and x ∈ X,

‖Gn
Hf(x)−Gm

H f(x)‖ = ‖Gm
H (Gn−m

H f)(x)−Gm
H f(x)‖ ≤ Gm

σ ‖Gn−m
H f−f‖(x)

≤ Gm
σ

(n−m−1∑

i=0

Gi
σψ

)
(x) ≤

n−m−1∑

i=0

Gm
σ (Gi

σψ)(x)

=
n−m−1∑

i=0

Gi+m
σ ψ(x) =

n−1∑

i=m

Gi
σψ(x),

which with (H4) means that the sequence Gn
Hf(x) satisfies Cauchy’s con-

dition. Since Y is a complete space, we may define a function T by

T (x) := lim
n→∞

Gn
Hf(x), x ∈ X.
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We will show that T fulfils the equation (2.3). First we prove that

‖F (Gn
Hf(A(x, y)),Gn

Hf(B(x, y)),Gn
Hf(x),Gn

Hf(y))‖ ≤ Gn
σϕ(x, y)(2.7)

for all x, y ∈ X, n ∈ N.

Fix x, y ∈ X and denote x1 := α(A(x, y)), x2 := β(A(x, y)), x3 :=
α(B(x, y)), x4 := β(B(x, y)), x5 := α(x), x6 := β(x), x7 := α(y), x8 :=
β(y). From (H3), (H1), (H2) and (2.1) we obtain

‖F (G1
Hf(A(x, y)),G1

Hf(B(x, y)),G1
Hf(x),G1

Hf(y))‖
= ‖F (H(f(x1), f(x2)), H(f(x3), f(x4)),

H(f(x5), f(x6)), H(f(x7), f(x8)))‖
≤ ‖H(F (f(x1), f(x3), f(x5), f(x7)),

F (f(x2), f(x4), f(x6), f(x8)))−H(0, 0)‖
≤ σ(‖F (f(x1), f(x3), f(x5), f(x7))‖, ‖F (f(x2), f(x4), f(x6), f(x8))‖)

≤ σ(ϕ(α(x), α(y)), ϕ(β(x), β(y))) = G1
σϕ(x, y).

Assume now (2.7) to hold for an n ∈ N. Fix x, y ∈ X and define x1, . . . , x8

in the same way. As for n = 1 we get

‖F (Gn+1
H f(A(x, y)),Gn+1

H f(B(x, y)),Gn+1
H f(x),Gn+1

H f(y))‖
= ‖F (H(Gn

Hf(x1),Gn
Hf(x2)),H(Gn

Hf(x3),Gn
Hf(x4)),

H(Gn
Hf(x5),Gn

Hf(x6)),H(Gn
Hf(x7),Gn

Hf(x8)))‖
≤ ‖H(F (Gn

Hf(x1),Gn
Hf(x3),Gn

Hf(x5),Gn
Hf(x7)),

F (Gn
Hf(x2),Gn

Hf(x4),Gn
Hf(x6),Gn

Hf(x8)))−H(0, 0)‖
≤ σ(‖F (Gn

Hf(x1),Gn
Hf(x3),Gn

Hf(x5),Gn
Hf(x7))‖,

‖F (Gn
Hf(x2),Gn

Hf(x4),Gn
Hf(x6),Gn

Hf(x8))‖)
≤ σ(Gn

σϕ(α(x), α(y)),Gn
σϕ(β(x), β(y))) = Gn+1

σ ϕ(x, y).

Letting n increase to ∞ in (2.7) and taking into account the continuity of
F and (H5) we obtain immediately (2.3). Moreover, T satisfies (2.4) which
results on letting n → ∞ in (2.6). Next observe that for any n ∈ N and
x ∈ X we have

‖H(Gn
Hf(α(x)),Gn

Hf(β(x)))− Gn
Hf(x)‖ = ‖Gn+1

H f(x)− Gn
Hf(x)‖.

Since the right-hand of this equality tends to zero as n → ∞, it becomes
apparent that if H is continuous, then T satisfies (2.5).
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Now assume that σ is continuous at zero, σ(0, 0) = 0 and λ : X → R+

is a function such that lim
n→∞

Gn
σλ(x) = 0 for every x ∈ X. Let S : X → Y

be a solution of (2.3) and (2.5) such that ‖S(x)− f(x)‖≤ λ(x) for every
x ∈ X. First we will show that for every n ∈ N

(2.8) Gn
σ

( ∞∑

i=0

Gi
σψ

)
(x) ≤

∞∑

i=n

Gi
σψ(x) for every x ∈ X.

Fix an x ∈ X and ε > 0. By (H4) there exist N ∈ N such that for every
k ≥ N

∞∑

i=0

Gi
σψ(α(x)) ≤ ε +

k∑

i=0

Gi
σψ(α(x)) and

∞∑

i=0

Gi
σψ(β(x)) ≤ ε +

k∑

i=0

Gi
σψ(β(x)).

Using the above inequalities, the monotonicity and the subadditivity of σ

we obtain

G1
σ

( ∞∑

i=0

Gi
σψ

)
(x) = σ

( ∞∑

i=0

Gi
σψ(α(x)),

∞∑

i=0

Gi
σψ(β(x))

)

≤ σ

(
ε +

N∑

i=0

Gi
σψ(α(x)), ε +

N∑

i=0

Gi
σψ(β(x))

)

≤ σ(ε, ε) + σ

( N∑

i=0

Gi
σψ(α(x)),

N∑

i=0

Gi
σψ(β(x))

)

≤ σ(ε, ε) +
N∑

i=0

σ(Gi
σψ(α(x)),Gi

σψ(β(x)))

≤ σ(ε, ε) +
∞∑

i=0

σ(Gi
σψ(α(x)),Gi

σψ(β(x)))

= σ(ε, ε) +
∞∑

i=1

Gi
σψ(x).

Since σ is continuous at zero and σ(0, 0) = 0, we can make the expression
σ(ε, ε) arbitrarily small, which implies (2.8) to hold for n = 1. Claim
further that (2.8) holds for an n ∈ N. Fix an x ∈ X and ε > 0. Take
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N ∈ N such that for every k ≥ N

∞∑

i=n

Gi
σψ(α(x)) ≤ ε +

k∑

i=n

Gi
σψ(α(x)) and

∞∑

i=n

Gi
σψ(β(x)) ≤ ε +

k∑

i=n

Gi
σψ(β(x)).

We get

Gn+1
σ

( ∞∑

i=0

Gi
σψ

)
(x) = σ

(
Gn

σ

( ∞∑

i=0

Gi
σψ

)
(α(x)),Gn

σ

( ∞∑

i=0

Gi
σψ

)
(β(x))

)

≤ σ

( ∞∑

i=n

Gi
σψ(α(x)),

∞∑

i=n

Gi
σψ(β(x))

)

≤ σ

(
ε +

N∑

i=n

Gi
σψ(α(x)), ε +

N∑

i=n

Gi
σψ(β(x))

)

≤ σ(ε, ε) +
N∑

i=n

σ(Gi
σψ(α(x)),Gi

σψ(β(x))) ≤ σ(ε, ε) +
∞∑

i=n+1

Gi
σψ(x).

Seeing that σ is continuous at zero, σ(0, 0) = 0 and x, ε are arbitrarily
fixed, the condition (2.8) is true for n + 1.

Let us observe now that if a function h : X → Y satisfies (2.5), then
it satisfies (2.2) with ψ0 ≡ 0, too. Since σ(0, 0) = 0, we have Gn

σψ0 ≡ 0 for
every n ∈ N0. Hence, in virtue of Lemma 2, we obtain, for every x ∈ X

and n ∈ N, ‖Gn
Hh(x)− h(x)‖ ≤

n−1∑
i=0

Gi
σψ0(x) = 0, whence Gn

Hh = h for

every n ∈ N. Applying this equality to T and S and using the assertions
(b),(c),(d) of Lemma 1 one by one and (2.8), for every x ∈ X, we get

‖T (x)− S(x)‖ = ‖Gn
HT (x)− Gn

HS(x)‖ ≤ Gn
σ‖T − S‖(x)

≤ Gn
σ (‖T − f‖+ ‖f − S‖)(x) ≤ Gn

σ

( ∞∑

i=0

Gi
σψ + λ

)
(x)

≤ Gn
σ

( ∞∑

i=0

Gi
σψ

)
(x) + Gn

σλ(x) ≤
∞∑

i=n

Gi
σψ(x) + Gn

σλ(x).

From (H4) and the fact that lim
n→∞

Gn
σλ(x) = 0 for an x ∈ X the right-hand

side of the above inequality becomes arbitrarily small as n → ∞, which
means that T = S. This proves the theorem.
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Remark 1. If F is a linear function, a, b ∈ K and H(y1, y2) := ay1 +
by2 for y1, y2 ∈ Y , then (H3) holds.

Remark 2. If σ is continuous at zero and σ(0, 0) = 0, then, by (H1),
H is continuous.

Remark 3. It is easy to verify that if X is a topological space and the
functions f,H, α and β are continuous, then the operators Gn

Hf are con-

tinuous for every n ∈ N. Thus if the series
∞∑

i=0

Gi
σψ(x) coverges uniformly

on X, then, by the inequality

‖Gn
Hf(x)− Gm

H f(x)‖ ≤
n−1∑

i=m

Gi
σψ(x),

the function T is continuous.

Remark 4. If F does not depend on the first variable (on the second
variable, respectively), then we may omit in (H2) the equalities concerning
A (B, resp.).

3. Some applications of the main result

3.1. The stability of some case of the general linear functional equation

Let X be a linear space over K and Y a Banach space over K.
Consider the equation

(3.1) f(ax + by) = cf(x) + df(y) for all x, y ∈ X,

where f : X → Y , a, b, c, d ∈ K, abcd 6= 0, which is a particular case of
the general linear functional equation (see p. 66 in [1], also p. 339 in [15]).
Notice that if for ϕ : X → R+ and f : X → Y the following inequality holds

(3.2) ‖f(ax + by)− cf(x)− df(y)‖ ≤ ϕ(x, y) for all x, y ∈ X,

then

(L1)
∥∥∥∥

1
c + d

f((a + b)x)− f(x)
∥∥∥∥ ≤

1
|c + d|ϕ(x, x)

for every x ∈ X, if c + d 6= 0,

(L2)
∥∥∥∥(c + d)f

(
x

a + b

)
− f(x)

∥∥∥∥ ≤ ϕ

(
x

a + b
,

x

a + b

)

for every x ∈ X, if a + b 6= 0,
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(L3)
∥∥∥∥

1
c
f(ax)− f(x)

∥∥∥∥ ≤
1
|c|ϕ(x, 0) +

∣∣∣∣
d

c

∣∣∣∣ ‖f(0)‖
for every x ∈ X,

(L4)
∥∥∥∥cf

(
x

a

)
− f(x)

∥∥∥∥ ≤ ϕ

(
x

a
, 0

)
+ |d| ‖f(0)‖

for every x ∈ X,

(L5)
∥∥∥∥

1
d
f(bx)− f(x)

∥∥∥∥ ≤
1
|d|ϕ(0, x) +

∣∣∣ c
d

∣∣∣ ‖f(0)‖
for every x ∈ X,

(L6)
∥∥∥∥df

(
x

b

)
− f(x)

∥∥∥∥ ≤ ϕ(0,
x

b
) + |c| ‖f(0)‖

for every x ∈ X.

In compliance with (L1)–(L6) define a function δ : X → R+, constants
s, t, z ∈ K and x0 ∈ X as follows

(P1) s :=
1

c + d
, t := a + b, z := 0,

x0 at will, δ(x) := |s|ϕ(x, x), x ∈ X,

(P2) s := c + d, t :=
1

a + b
, z := 0,

x0 at will, δ(x) := ϕ(tx, tx), x ∈ X,

(P3) s :=
1
c
, t := a, z := −d

c
,

x0 = 0, δ(x) := |s|ϕ(x, 0), x ∈ X,

(P4) s := c, t :=
1
a
, z := d,

x0 = 0, δ(x) := ϕ(tx, 0), x ∈ X,

(P5) s :=
1
d
, t := b, z := − c

d
,

x0 = 0, δ(x) := |s|ϕ(0, x), x ∈ X,

(P6) s := d, t :=
1
b
, z := c,

x0 = 0, δ(x) := ϕ(0, tx), x ∈ X.

From the main theorem we obtain the following corollary concerning the
stability of the equation (3.1).
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Corollary 1. Suppose that X is a linear space over K, Y a Banach
space over K, ϕ : X2 → R+, a, b, c, d ∈ K and abcd 6= 0. Assume that
s, t, z ∈ K, x0 ∈ X and δ : X → R+ are defined as in one of the conditions
(P1)–(P6),

∞∑
n=0

|s|nδ(tnx) < ∞ for every x ∈ X,(3.3)

lim
n→∞

|s|nϕ(tnx, tny) = 0 for all x, y ∈ X,(3.4)

and zf(x0) = 0 or c + d = 1 or |s| < 1.
If f : X → Y satisfies (3.2), then there exists a solution T : X → Y

of the equation (3.1) such that ‖T (x) − f(x)‖ ≤
∞∑

n=0
|s|nδ(tnx) + ‖zf(x0)‖

1−|s|
for every x ∈ X. If, additionally, λ : X → R+ is a function such that
lim

n→∞
|s|nλ(tnx) = 0 for every x ∈ X, S : X → Y is a solution of (3.1)

fulfilling the inequality ‖S(x) − f(x)‖ ≤ λ(x) for every x ∈ X and z = 0
or S(x0) = T (x0), then S = T .

Proof. Put F (x1, x2, x3, x4) := x1 − cx3 − dx4, x1, x2, x3, x4 ∈ Y ,
H(x, y) := sx, x, y ∈ Y , A(x, y) := ax + by, x, y ∈ X, α(x) := tx,
β(x) := x, x ∈ X, σ(u, v) := |s|u, u, v ∈ R+ and ψ(x) := δ(x) + ‖zf(x0)‖,
x ∈ X. It is easy to observe that the functions defined this way satisfy
(H1), (H2), (H3).

I. First suppose that c+d 6= 1. Assume that s, t, z, x0 and δ are defined
by (Pi), i ∈ {1, . . . , 6}. In view of (3.3), (3.4) and fact that zf(x0) = 0 or
|s| < 1, for all x, y ∈ X, we have

∞∑
n=0

Gn
σψ(x) =

∞∑
n=0

|s|nψ(tnx) =
∞∑

n=0

|s|nδ(tnx) +
‖zf(x0)‖
1− |s| < ∞ and

lim
n→∞

Gn
σϕ(x, y) = lim

n→∞
|s|nϕ(tnx, tny) = 0.

If f fulfils (3.2), then also it fulfils (Li). From the main theorem there

exists a solution T : X → Y of (3.1) such that ‖T (x)− f(x)‖ ≤
∞∑

n=0
|s|n

δ(tnx) +‖zf(x0)‖
1−|s| for every x ∈ X. Additionally, T satisfies (2.5), thus

sT (tx) = T (x) for every x ∈ X. Next notice that if h : X → Y is a
solution of (3.1), then

(3.5) sh(tx) + zh(x0) = h(x) for every x ∈ X,
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which with (2.5) gives zT (x0) = 0.
Assume that λ : X → R+ is a function such that lim

n→∞
|s|nλ(tnx) = 0

for every x ∈ X, S : X → Y is a solution of (3.1) fulfilling the inequality
‖S(x)− f(x)‖ ≤ λ(x) for every x ∈ X and z = 0 or S(x0) = T (x0). Since
S fulfils (3.5), for any x ∈ X, we obtain

H(S(α(x)), S(β(x))) = sS(tx) = sS(tx)+zT (x0)=sS(tx)+zS(x0)=S(x),

thus S satisfies (2.5). As σ is continuous at zero and σ(0, 0) = 0, from
Theorem A we get immediately S = T .

II. Now suppose that c + d = 1. Put g(x) := f(x) − f(x0), x ∈ X.
Obviously g fulfils (3.2) and g(x0) = 0. The first part of the proof implies
that there exists a solution T ∗ : X → Y of (3.1), such that ‖T ∗(x)−g(x)‖ ≤
∞∑

n=0
|s|nδ(tnx) for every x ∈ X and zT ∗(x0) = 0. Let further T (x) :=

T ∗(x) + f(x0), x ∈ X. T satisfies (3.1) and for every x ∈ X

‖T (x)−f(x)‖ = ‖T ∗(x)+f(x0)−f(x)‖ = ‖T ∗(x)−g(x)‖ ≤
∞∑

n=0

|s|nδ(tnx).

Next assume that λ : X → R+ is a function such that lim
n→∞

|s|nλ(tnx) = 0

for every x ∈ X, S : X → Y is a solution of (3.1) fulfilling the inequality
‖S(x)−f(x)‖ ≤ λ(x) for every x ∈ X and z = 0 or S(x0) = T (x0). Notice
that the function S(x) − f(x0) is a solution of (3.1). Moreover, for every
x ∈ X, we have

‖S(x)− f(x0)− g(x)‖ = ‖S(x)− f(x0) + f(x0)− f(x)‖
= ‖S(x)− f(x)‖ ≤ λ(x).

Since z = 0 or S(x0) = T (x0) and zT ∗(x0) = 0, we get

z(S(x0)− f(x0)) = z(T (x0)− f(x0)) = zT ∗(x0) = 0.

Hence and by (3.5), for every x ∈ X, we obtain

H(S(α(x))− f(x0), S(β(x))− f(x0)) = s[S(tx)− f(x0)]

= S(x)− f(x0)− z[S(x0)− f(x0)] = S(x)− f(x0),

which means that S(x) − f(x0) satisfies (2.5). From the first part of the
proof we get T ∗ = S − f(x0) and consequently T = T ∗ + f(x0) = S. This
proves the corollary.
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Remark 5. The assumption that X is a linear space was made to
simplify Corollary 1. In fact, it is sufficient to assume that (X, +) is
a groupoid, in which “multiplications” by some constants from K with
suitable assumptions are defined. In further considerations we will make
the structure of X as weak as possible.

Remark 6. If a = b = c = d = 1 and (X, +) is a commutative semi-
group (uniquely divisible by 2, respectively), then defining constants s, t, z
and x0, δ as in (P1) ((P2), resp.) we infer the generalized stability of
the Cauchy functional equation. In the case corresponding with (P1) we
get exactly Forti–Kominek’s Theorem. This results generalize well-known
theorems concerning the stability of the Cauchy equation (we omit here
some regularity assumptions, which guarantee the real homogeneity of a
solution T ), namely, Theorem 1 and Theorem 2 from [13], Theorem 1 from
[14] and Theorem 1 from [19]. In particular it also implies the stability of
the following functional equation (considered e.g. in [1])

f
(

k
√

xk + yk
)

= f(x) + f(y),

where k ∈ N and f : R→ R (or f : R+ → R)

f
(√

x2 + y2 + 1
)

= f(x) + f(y),

where f : R→ R (or f : R+ → R).

Indeed, if we put x ∗ y := k
√

xk + yk, x ? y :=
√

x2 + y2 + 1, x, y ∈ R
( or x, y ∈ R+) and X = R (or X = R+), then (X, ∗) and (X, ?) are
commutative semigroups. If X = R+, then (X, ∗) is also uniquely divisible
by 2.

Remark 7. If a = b = c = d = 1
2 , f : D → Y , where D is a Jensen

convex subset of a uniquely divisible by 2 commutative semigroup X with
a neutral element 0 and 0 ∈ D, then defining constants s, t, z and x0, δ
as in (P4) or (P6) ((P3) or (P5), respectively) we infer the generalized
stability of the Jensen functional equation.

Remark 8. We can apply Corollary 1 to considerations of the Pexider
equation f(x+y) = h(x)+g(y), where f, g, h : X → Y and X is a commu-
tative semigroup with an neutral element 0 (uniquely divisible by 2, respec-
tively). It is sufficient to observe that if a function ϕ : X2 → R+ satisfies
the inequality

(3.6) ‖f(x + y)− g(x)− h(y)‖ ≤ ϕ(x, y) for all x, y ∈ X,
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then putting in (3.6) y = 0 then x = 0 and taking into account (3.6), for
x, y ∈ X, we obtain

‖[f(x + y)− g(0)− h(0)]− [f(x)− g(0)− h(0)]− [f(y)− g(0)− h(0)]‖
≤ ϕ(x, y) + ϕ(x, 0) + ϕ(0, y).

Thus the functions f∗(x) := f(x) − g(0) − h(0), x ∈ X and ϕ∗(x, y) :=
ϕ(x, y) + ϕ(x, 0) + ϕ(0, y), x, y ∈ X satisfy the inequality ‖f∗(x + y)−
f∗(x) − f∗(y)‖ ≤ ϕ∗(x, y) for all x, y ∈ X. Under suitable assumptions
on ϕ∗, in view of the corollary referring to the stability of the Cauchy
equation, there exists an additive function T : X → Y “near” the function

f∗. Putting f̃ := T + g(0) + h(0), g̃ := T + g(0), h̃ := T + h(0) we obtain
a solution of the Pexider equation “near” the functions f, g, h.

Remark 9. Let us observe that if a function f : X → Y fulfils the in-
equality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) for all x, y ∈ X,

where X is a normed space over K, Y is a Banach space over K, ε ≥ 0
and p ∈ [0, 1), then, for every k ∈ N \ {1}, we have

‖f(kx)− kf(x)‖ ≤ ε‖x‖p
k−1∑
ν=1

(νp + 1) for all x, y ∈ X.

Hence, as a corollary from Theorem A, we obtain Theorem 2 in [16].

3.2. The stability of the quadratic functional equation

Let X be an abelian group and Y a Banach space over K. For
f : X → Y consider the equation

(3.7) f(x + y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ X,

called the quadratic functional equation. It is easy to observe that if for a
function ϕ : X2 → R+ the following inequality holds

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ ϕ(x, y) for all x, y ∈ X,

then, putting in (3.8) x = y = 0 and then x = y, we get ‖f(0)‖ ≤ 1
2ϕ(0, 0)

and ‖ 1
4f(2x)− f(x)‖ ≤ 1

4ϕ(x, x) + 1
4‖f(0)‖ for every x ∈ X. Hence

(3.9) ‖14f(2x)− f(x)‖ ≤ 1
4ϕ(x, x) + 1

8ϕ(0, 0) for every x ∈ X.
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Next, if X is uniquely divisible by 2, putting in (3.9) x
2 in place of x we

have

(3.10) ‖4f(x
2 )− f(x)‖ ≤ ϕ(x

2 , x
2 ) + 1

2ϕ(0, 0) for every x ∈ X.

Notice also that if T : X → Y satisfies (3.7), then T (0) = 0. Define func-
tions F, H, σ,A,B, α, β and ψ in compliance with the conditions (3.8) and
(3.9) ((3.8) and (3.10), resp.) as follows

F (x1, x2, x3, x4) := x1 + x2 − 2x3 − 2x4, x1, x2, x3, x4 ∈ Y,

H(x, y) := 1
4x (H(x, y) := 4x), x, y ∈ Y,

σ(u, v) := 1
4u (σ(u, v) := 4u), u, v ∈ R+,

A(x, y) := x + y, B(x, y) := x− y, x, y ∈ X,

α(x) := 2x, (α(x) := x
2 ), β(x) := x, x ∈ X,

ψ(x) := 1
4ϕ(x, x) + 1

8ϕ(0, 0),

(ψ(x) := ϕ(x
2 , x

2 ) + 1
2ϕ(0, 0)), x ∈ R+.

Applying the main theorem we obtain the following corollary, which gene-
ralizes some results given in [5], [6] and [7].

Corollarry 2. Let X be an abelian group (uniformly divisible by 2,
respectively), Y a Banach space over K, ϕ : X2 → R+ and

∞∑
n=0

( 1
4 )n

ϕ(2nx, 2nx) < ∞(3.11)

( ∞∑
n=1

4nϕ( x
2n , x

2n ) < ∞ and ϕ(0, 0) = 0
)

for every x ∈ X,

lim
n→∞

( 1
4 )n

ϕ(2nx, 2ny) = 0(3.12)
(

lim
n→∞

4nϕ( x
2n , x

2n ) = 0
)

for all x, y ∈ X.

If f : X → Y satisfies (3.8), then there exists a solution T : X → Y of the
equation (3.7) such that

‖T (x)−f(x)‖≤ 1
4

∞∑
n=0

( 1
4 )ϕ(2nx, 2nx)

(
‖T (x)−f(x)‖≤ 1

4

∞∑
n=1

4nϕ( x
2n , x

2n )
)

for every x ∈ X. If, additionally, λ : X → R+ is a function such that
lim

n→∞
( 1
4 )nλ(2nx) = 0 ( lim

n→∞
4nλ( x

2n ) = 0) for every x ∈ X and S : X → Y
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is a solution of (3.7) such that ‖S(x)−f(x)‖ ≤ λ(x) for every x ∈ X, then

S = T .

Remark 10. In the analogous way as for the quadratic functional equa-
tion we can obtain similar stability results for the following well-known
equations

f(x + y)− f(x− y) = 2f(y) and f(x + y) + f(x− y) = 2f(x).

3.3. The stability of an another type of functional equations

Consider the equation (see e.g. [2])

(3.13) f( x+y
2 −√xy ) + f( x+y

2 +
√

xy ) = f(x) + f(y) for all x, y ∈ R+,

where f : R+ → R. Applying the main theorem we get the following corol-
lary concerning the stability of this equation.

Corollary 3. Let ϕ : R2
+ → R+, ∅ 6= I ⊂ {1, 2, 3},

∞∑
n=0

( 1
2 )n min

i∈I
ψi(2nx) < ∞

( ∞∑
n=1

2n min
i∈I

ψi( x
2n ) < ∞, resp.

)
for every x ∈ X,

where ψ1(x) := 1
2ϕ(x, x), ψ2(x) := 1

2ϕ(2x, 0), ψ3(x) := 1
2ϕ(0, 2x), x ∈ R+,

and

lim
n→∞

( 1
2 )n

ϕ(2nx, 2ny) = 0 ( lim
n→∞

2nϕ( x
2n , x

2n ) = 0, resp.) for all x, y ∈ R+.

If f : R+ → R satisfies the inequality

|f( x+y
2 −√xy ) + f( x+y

2 +
√

xy )− f(x)− f(y)| ≤ ϕ(x, y)(3.14)

for all x, y ∈ R+,

then there exists a solution T : R+ → R of the equation (3.13) such that

‖T (x)−f(x)‖ ≤
∞∑

n=0
( 1
2 )n min

i∈I
ψi(2nx) ( ‖T (x)−f(x)‖ ≤

∞∑
n=1

2n min
i∈I

ψi( x
2n ),

resp.) for every x ∈ R+. If, additionally, λ : R+ → R+ is a function such

that lim
n→∞

( 1
2 )nλ(2nx) = 0 ( lim

n→∞
2nλ( x

2n ) = 0) for every x ∈ X, S : R+ → R
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is a solution of (3.13) such that ‖S(x)− f(x)‖ ≤ λ(x) for every x ∈ X and
S(0) = T (0), then S = T .

Proof. Notice that if f : R+ → R satisfies (3.14), then, for every
x ∈ R+, we have

| 1
2f(2x) + 1

2f(0)− f(x)| ≤ min
i∈{1,2,3}

ψi(x) and

|2f( x
2n )− f(0)− f(x)| ≤ min

i∈{1,2,3}
2ψi

(x

2

)
.

If f(0) = 0, then the existence and uniqueness assertion of a solution T
results directly from the application of Theorem A. If f(0) 6= 0,then we
follow as in the second part of the proof of Corollary 1.

The main theorem can also determine the stability of an equation in
a single variable. For example take the equation

(3.15) af(α(x)) = f(x) for every x ∈ X,

where f : X → Y , α : X → X, a ∈ K, X is a nonvoid set and Y is a
Banach space over K. The classical Hyers–Ulam stability of this equation
was consider in [3]. In Theorem A put F (x1, x2, x3, x4) := ax1 − x3,
x1, x2, x3, x4 ∈ Y , A(x, y) := α(x), x ∈ X, H(x, y) := ax, x, y ∈ Y ,
ϕ(x, y) := ψ(x), x, y ∈ X, where ψ : X → R+. Let αn stands for an n-th
iterate of α. Easily we obtain the following corollary.

Corollary 4. If ‖af(α(x))−f(x)‖ ≤ ψ(x) and
∞∑

n=0
|a|nψ(αn(x))<∞

for every x ∈ X, then there exists a solution T : X → Y of (3.15) such

that ‖T (x)− f(x)‖ ≤
∞∑

n=0
|a|nψ(αn(x)) for every x ∈ X. If, additionally,

λ : X → R+ is a function such that lim
n→∞

|a|nλ(αn(x)) = 0 for every x ∈ X

and S : X → Y is a solution of (3.15) such that ‖S(x)− f(x)‖ ≤ λ(x) for
every x ∈ X, then S = T .
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