Charakterisierung eines Nachbarpunkt-Schemas durch Stellen

Von MANFRED HERRMANN (Halle)

DEDEKIND und Weber haben für algebraische Funktionen einer Veränderlichen einen Punkt der Riemannschen Fläche als homomorphe Zuordnung zwischen den Elementen α, β des zugehörigen Funktionenkörpers und den Elementen a, b des Körpers der komplexen Zahlen definiert (vgl. [1], S. 236–238). Dabei wird — wie in der Funktionentheorie üblich — der Ausnahmewert ∞ als bestimmte Zahl (Konstante) betrachtet, mit der nach folgenden Regeln zu rechnen ist:

$$a \pm \infty = \infty$$
; $a \cdot \infty = \infty \quad \forall a \neq 0$;
 $\infty \cdot \infty = \infty$; $1/0 = \infty$; $1/\infty = 0$.

Die Ausdrücke $\infty \pm \infty$; $0 \cdot \infty$; 0/0; ∞/∞ werden nicht erklärt. Die erwähnte Zuordt nung $\alpha \rightarrow a$ genügt den Homomorphie-Gesetzen, wenn die rechten Seiten definiersind.

Diese Überlegung hängt mit dem VAN DER WAERDEN'schen Begriff der relationstreuen Spezialisierung [3], angewandt auf unendlich viele algebraische Funktionen, zusammen. VAN DER WAERDEN charakterisiert so einen Punkt des zum Körper gehörenden algebraischen Gebildes, wobei durch seine homogene Betrachtungsweise die Einführung von ∞ vermieden wird.

Benutzt man zur Beschreibung dieses Sachverhaltes konsequent den Homomorphiebegriff, so gelangt man zum Stellenbegriff, wie ihn u. a. LANG ([2]) und — in seiner endlichen Form — Weil ([6]) verwenden.

Es ist das Ziel dieser Note, in Anlehnung an [1] und [3] den Begriff des linearen Zweiges in der komplexen Ebene E_0 -aufgefaßt als ein Schema von Nachbarpunkten $\mathfrak{P}=(P;P_1,P_2,\ldots)^{-1}$) durch den Stellenbegriff auf Ebenen E über beliebigem Grundkörper k zu übertragen. Mit anderen Worten: Der Begriff "Punkt eines algebraischen Gebildes" soll hier entsprechend der Betrachtungsweise aus [1] und [3] zum Begriff des Schemas \mathfrak{P} verallgemeinert werden. Es handelt sich also nicht-wie in [5] — um Fragen der Begründung der Theorie der Nachbarpunkte in E (bzw. auf einer Varietät V), sondern um die Fassung des genannten verallgemeinerten Punktbegriffes durch geeignete Abbildungen eines bestimmeten Funktionenkörpers.

Bezeichnungen: a) Mit $k[\chi_1, ..., \chi_n]$ kennzeichnen wir den Ring der formalen Polynome in n Variablen über k. Sein Quotientenkörper ist $k(\chi_1, ..., \chi_n)$.

¹⁾ Im vorliegenden Fall: Mittelpunkt P des Zweiges und lauter freie, einfache Nachbarpunkte $P_i([4])$, wobei in diesem Schema jeweils die Richtung t_{i+1} , mit der P_{i+1} auf P_i folgt, zu berücksichtigen ist.

b) Seien R ein kommutativer Ring mit Einselement ohne Nullteiler und \mathfrak{p} ein Primideal von R. Dann heißt der Ring $R_{\mathfrak{p}} = \left\{ \frac{a}{z} \middle| \begin{array}{c} a, z \in R \\ z \notin \mathfrak{p} \end{array} \right\}$ der lokale \mathfrak{p} -Ring von R.

Wir benutzen hier inhomogene Koordinaten x, y. Um einen Punkt $P = (x_0, y_0) \in E$ zu erfassen, hat man den Homomorphismus

$$k[x, y] \stackrel{\varphi}{\rightarrow} k[x, y]/(x-x_0, y-y_0)$$

zu betrachten; P ist in dieser Hinsicht durch das Primideal $(x-x_0,y-y_0)$ gekennzeichnet. Zur Charakterisierung des Schemas $\mathfrak P$ werden zusätzlich gebrochenrationale Ausdrücke herangezogen; durch eine geeignete Stelle ψ wird dann allen Funktionen aus $K=k_t(x,y)$ entweder ein bestimmtes Element aus einem algebraisch abgeschlossenen Körper Ω oder der "Wert" ∞ zugeordnet. Als k_t bezeichnen wir die unendliche Körpererweiterung $k(t_1,t_2,...)$ mit den Unbestimmten $t_1,t_2,...$. Diese Erweiterung des Grundkörpers k entspricht dem Übergang von der Punktdarstellung durch den Homomorphismus φ zur Zweigdarstellung durch die Stelle ψ . Für die Zuordnung ψ gelten mit den gleichen Einschränkungen wie in [1] die Homomorphiegesetze (vgl. [2]).

Die folgenden Überlegungen behalten ihre Gültigkeit, wenn man die Unbestimmten t_i zu Elementen aus k spezialisiert und die dementsprechenden Abbildungen

hernimmt.

Die Anregung zu dieser Untersuchung verdanke ich Herrn Prof. O. H. KELLER.

Zur Vereinfachung der Darstellung wählen wir $x_0 = y_0 = 0$. In E_0 wird ein linearer Zweig in P durch eine Potenzreihe

$$y = a_1 x + a_2 x^2 + \dots$$

gegeben.

Wir betrachten folgende Ausdrücke:

$$l_1 = \frac{y}{x}, \quad l_2 = \frac{\frac{y}{x} - a_1}{x}, \dots, l_i = \frac{l_{i-1} - a_{i-1}}{x}, \dots$$

Macht man den Grenzübergang $x \rightarrow 0$, so gilt:

$$l_i \rightarrow \frac{1}{i!} y^{(i)}(P).$$

Durch die Ableitungen $y_{(P)}^{(i)}$ ist der Verlauf des betrachteten Zweiges in P eindeutig bestimmt.

Darauf beruht die folgende Stellenkonstruktion über einem beliebigen Körper k. Wir setzen:

$$L_1 = l_1 = \frac{y}{x}, \dots, L_i = \frac{L_{i-1} - t_{i-1}}{x}, \dots$$

Geht man von R = k[x, y] aus, so kann P, wie gesagt, durch

$$k[x, y] \stackrel{\sigma}{\to} k[x, y]/\mathfrak{p}$$
 mit $\mathfrak{p} = (x, y)$

beschrieben werden. (Wir identifizieren dabei k mit seinem φ — Bild, sodaß

 $\varphi(k[x, y]) = k$ gilt.) Die Charakterisierung von \mathfrak{P} erfolgt nun so:

1) Sukzessive Erweiterung der Abbildung φ zu einem Homomorphismus σ^* eines bestimmten Unterringes $R^* \subset K = k_t(x, y)$, der jedem L_i die Unbestimmte t_i zuordnet. Die Abbildung σ^* "ersetzt" den Grenzübergang $x \to 0$ in E_0 .

2) Ausdehnung von σ^* zu einer geeigneten Ω -bewerteten Stelle ψ des Körpers

 K^2): ψ charakterisiert dann das Schema $\mathfrak P$ über $P \in E$.

Zu 1): Zunächst wird φ durch

$$\varphi^*(a/z) = \varphi(a)/\varphi(z)$$

zu einem Homomorphismus φ^* des \mathfrak{p} -Ringes $\mathfrak{v} = R_{\mathfrak{v}}$ von φ fortgesetzt. Der Kern von q* ist das maximale Ideal

$$\mathfrak{m} = \left\{ a/z \middle| \begin{matrix} a \in \mathfrak{p} \\ z \notin \mathfrak{p} \end{matrix} \right\} \subset \mathfrak{v}.$$

Satz. Die Abbildung φ* kann zu einem Homomorphismus σ₁:

$$R_1 = \mathfrak{v}[L_1] \stackrel{\sigma_1}{\to} \Omega$$
 mit $\sigma_1(L_1) = t_1$; d. h.: $\sigma_1(R_1) = k[t_1]$

erweitert werden. Dabei ist $v[L_1]$ der Ring des Polynome in L_1 .

BEWEIS. Die Abbildung

$$\sigma_1(A_1) = \sigma_1 \left(\sum_{i=1}^n q_i L_1^i \right) = \sum_{i=1}^n \varphi^*(q_i) \cdot t_1^i$$

genügt 3) den Homorphiegesetzten. Zu zeigen ist die Eindeutigkeit von σ_1 , also die Richtigkeit der Aussage: Aus $A_1 = 0 \Rightarrow \sigma_1(A_1) = 0$.

$$A_1 = \sum_{i=1}^{n} \frac{f_i(x, y)}{c_i + p_i(x, y)} \cdot \left(\frac{y}{x}\right)^i = 0$$

bedeutet in unserem Fall eine Identität in x und y. Setzt man $y = x t_1$, so erhält man hieraus eine Identität in x und t_1 :

$$\tilde{A}_1 = \sum_{1}^{n} \frac{f_i(x, xt_1)}{c_i + p_i(x, xt_1)} \cdot t_1^i \equiv 0.$$

Man kann nämlich den "Ersetzungs"-Homomorphismus $k[x, y] \stackrel{\tau_1}{\to} k[x, t_1]$ mit $\tau_1(x) = x$, $\tau_1(y) = x \cdot t_1$ und damit Kern $(\tau_1) = 0$ zu einem Isomorphismus τ_1^* des Quotientenkörpers k(x, y) in $k(x, t_1)$ fortsetzen (vgl. [2], I).

Insbesondere gilt für x = 0:

$$\tilde{A}_1(x=0) = \sum_{i=1}^{n} \frac{f_i(0,0)}{c_i + p_i(0,0)} \cdot t_1^i \equiv 0 \text{ in } t_1;$$

²) Ω ist ein algebraisch abgeschlossener Körper, der k_t enthält.

³⁾ $q_i = \frac{f_i(x, y)}{c_i + p_i(x, y)} \in v \text{ mit } f_i \in R, p_i \in v \text{ und } c_i \in k \ (c_i \neq 0).$

 $\bar{A}_1(x=0)$ ist aber gerade das Bild von A_1 bei der Abbildung σ_1 ; also gilt:

$$\bar{A}_1(x=0) = \sigma_1(A_1) = 0.$$

Nun wird σ_1 genau wie φ zu einem Homomorphismus σ_1^* des \mathfrak{p}_1 -Ringes $\mathfrak{v}_1 = R_{1\mathfrak{p}_1}$ von σ_1 ausgedehnt ⁴). Diese Abbildung σ_1^* erweitern wir zu σ_2 :

$$R_2 = \mathfrak{v}_1[L_2] \stackrel{\sigma_2}{\to} \Omega$$
 mit $\sigma_2(L_2) = t_2$; d. h.: $\sigma_2(R_2) \subseteq k(t_1)[t_2]$.

Satz. σ_2 ist ein Homomorphismus.

BEWEIS. Die Eindeutigkeit von σ_2 wird ähnlich wie oben gezeigt: In der Identität (in x, y und t_1)

$$A_{2} = \sum_{\mu} \frac{\sum_{i} \frac{f_{i\mu}(x, y)}{c_{i\mu} + p_{i\mu}(x, y)} L_{1}^{i}}{\sum_{v} \frac{g_{v\mu}(x, y)}{d_{v\mu} + q_{v\mu}(x, y)} L_{1}^{v}} \cdot L_{2}^{\mu} \equiv 0$$

setze man nun: $y = x^2 t_2 + xt_1$. Schreibt man A_2 in der Form 5)

$$A_{2} = \sum_{\mu} \frac{\frac{Z_{1\mu}}{N_{1\mu}}}{\frac{Z_{2\mu}}{N_{2\mu}}} \cdot \frac{(L_{1} - t_{1})^{\mu}}{x^{\mu}} = \sum_{\mu} \frac{N_{2\mu} \cdot Z_{1\mu} (y - xt_{1})^{\mu}}{N_{1\mu} \cdot Z_{2\mu} x^{2\mu}} = \frac{\chi}{\Delta},$$

so wird $\Delta = \Delta(x, y, t_1) \not\equiv 0$ für $y = x^2t_2 + xt_1$. Anderenfalls wäre für mindestens ein μ insbesondere $N_{1\mu}(0, 0, t_1) = 0$ oder $Z_{2\mu}(0, 0, t_1) = 0$ im Widerspruch zu unseren Festsetzungen, wonach alle in \sum_{μ} auftretenden Nenner $\sum_{\nu} \frac{g_{\nu\mu}(x, y)}{d_{\nu\mu} + q_{\nu\mu}(x, y)} L_1^{\nu} \notin \mathfrak{p}_1$. Also liegt Δ nicht im Kern \mathfrak{q}_2 des "Ersetzungs"-Homomorphismus τ_2 :

$$S = k[x, y, t_1] \xrightarrow{\tau_2} k[x, t_1, t_2] \quad \text{mit} \quad \tau_2(x) = x; \ \tau_2(t_1) = t_1; \ \tau_2(y) = x^2 t_2 + x t_1.$$

Erweitert man τ_2 zu einem Homomorphismus τ_2^* des lokalen \mathfrak{q}_2 -Ringes $S\mathfrak{q}_2$ in den Körper $k(x, t_1, t_2)$, so geht bei τ_2^* die gegebene Identität in (x, y, t_1) in eine Identität mit x, t_1, t_2 über.

Dann gilt:

$$\tilde{A}_{2}(x=0) = \sum_{\mu} \frac{\sum_{i} \frac{f_{i\mu}(0,0)}{c_{i\mu} + p_{i\mu}(0,0)} t_{1}^{i}}{\sum_{\nu} \frac{g_{\nu\mu}(0,0)}{d_{\nu\mu} + g_{\nu\mu}(0,0)} t_{1}^{\nu}} . t_{2}^{\mu} \equiv 0 \text{ in } t_{1}, t_{2};$$

und dabei ist

$$0 = \tilde{A}_2(x = 0) = \sigma_2(A_2).$$

⁴⁾ \mathfrak{p}_1 ist als Kern des Homomorphismus σ_1 von R_1 in den Körper Ω ein Primideal.

⁵⁾ $\Delta = \prod_{\mu} N_{1\mu} Z_{2\mu} x^{2\mu}$.

In dieser Weise können wir fortfahren. Beim *i*-ten Schritt wäre entsprechend in $A_i = 0$ (Identität in x, y und $t_1, ..., t_{i-1}$):

$$y = x^{i}t_{2} + ... + xt_{1}$$

und anschließend x=0 zu setzen, um die Eindeutigkeit von: $R_i=v_{i-1}[L_i]\stackrel{\sigma_i}{\to} \Omega$ mit $\sigma_i(L_i)=t_i$ zu zeigen. Es ist: $\sigma_i(t_{i-1})=t_{i-1}\in R_i$ 6); aus

$$\sigma_i(L_{i-1}-t_{i-1})=\sigma_i(x\cdot L_i)=0$$

folgt nämlich:

$$\sigma_i(t_{i-1}) = \sigma_i(L_{i-1}) = \sigma_{i-1}(L_{i-1}) = t_{i-1}.$$

Wir gewinnen so eine Kette von Unterringen aus $K = k_t(x, y)$:

$$(*)$$
 $R \subset R_1 \subset R_2 \subset \dots;$

und zu jedem R_i gehört ein Homomorphismus σ_i mit den Eigenschaften:

$$\sigma_i(R_v) = \sigma_v(R_v) \forall_v \leq i$$
, insbesondere $\sigma_i(R) = \varphi(R)$;

$$\sigma_i(R_i) \subset k(t_1, ..., t_i) \subset \Omega$$
, wobei $\sigma_i(L_i) = t_i$ und $\sigma_i(t_i) = \sigma_{i+1}(t_i) = t_i$ für $1 \le j \le i-1$.

Die Kette (*) besitzt bezüglich der beiden Eigenschaften eine obere Schranke (R^* mit σ^*):

$$R^* = \bigcup_i R_i$$
 und $\sigma^*(R_i) = \sigma_i$.

Der Homomorphismus $\sigma^*: R^* \to \Omega$ ordnet damit jedem L_i die Unbestimmte t_i zu; und es ist: $\sigma^*(t_i) = t_i \forall i$.

Satz. R^* ist ein lokaler Ring und σ^* der zum maximalen Ideal von R^* gehörige Homomorphismus.

BEWEIS. $\mathfrak{q} \stackrel{\text{def}}{=} \operatorname{Kern}(\sigma^*)$ und $\mathfrak{p}^* \stackrel{\text{def}}{=} \bigcup_i \mathfrak{p}_i$ mit $\mathfrak{p}_i = \operatorname{Kern}(\sigma_i)$. Aus $a \in \mathfrak{q}$ folgt

$$\exists i: a \in R_i$$
, d. h.: $0 = \sigma^*(a) = \sigma_i(a)$;

danach ist

$$a \in \mathfrak{p}_i \subset \mathfrak{p}^*$$
.

Umgekehrt folgt aus $a \in \mathfrak{p}^*$:

$$\exists i: a \in \mathfrak{v}_i \subset R_i; d. h.: \sigma_i(a) = 0;$$

somit gilt:

$$\sigma^*(a) = \sigma_i(a) = 0$$
 und daher: $a \in \mathfrak{g}$.

Es ist demnach:

$$q = p^*$$
.

Es bleibt zu zeigen, daß p^* das einzige maximale Ideal in R^* ist. Dafür ist die Kette der "Zwischenglieder" aus (*) entscheidend:

$$R_{\mathfrak{v}} \subset R_{1\mathfrak{v}_1} \subset R_{2\mathfrak{v}_2} \subset \dots$$

⁶⁾ Aus $L_i \in R_i$ folgt: $t_{i-1} \in R_i$; z. B. ist: $t_1 = -y \cdot (L_2)^1 + L_1(L_2)^0 \in R_2$.

(Kette von lokalen Ringen): Sei v eine Nichteinheit (NE) aus R^* . Dann $\exists j: v \in R_{jv_j}$; v ist (wegen $v^{-1} \in R^*$) auch NE in R_{jv_i} . Daher gilt 7):

$$v \in \mathfrak{m}_i \subset \mathfrak{p}_{i+1} \subset \mathfrak{p}^*$$

Hieraus folgt:

$$\mathfrak{p}^* = \{ NE \in R^* \};$$

d. h.: p^* ist das einzige maximale Ideal in R^* .

Durch R* und den zugehörigen Homomorphismus σ* sind nunmehr sämtliche Nachbarpunkte Pi des Schemas \$\P\$ erfa\beta\$t.

Zu 2): Die Abbildung σ^* erweitern wir zu einer Ω -bewerteten Stelle ψ von K. Dazu wählen wir nach [2] aus der Menge aller Elemente $(R_i^*, \sigma_i^*)^8$) mit

$$R_j^* \supset R^*$$
 und $\sigma_j^*(R^*) = \sigma^*$

auf Grund der Ordnungsrelation

$$(R_{j_1}^*, \sigma_{j_1}^*) \leq (R_{j_2}^*, \sigma_{j_2}^*) \Leftrightarrow R_{j_1}^* \subset R_{j_2}^* \text{ und } \sigma_{j_2}^*(R_{j_1}^*) = \sigma_{j_1}^*$$

ein maximales Element (R_L, ψ_L) aus, wobei ψ_L der zentrale Homomorphismus des lokalen Ringes R_L (d. h. der Homomorphismus mit dem maximalen Ideal von R_L als Kern) ist. R_L ist ein Bewertungsring. Dann ist die Abbildung ψ :

$$\psi(R_L) \stackrel{\mathrm{def}}{=} \psi_L$$

$$\psi(a) \stackrel{\text{def}}{=} \infty \, \forall \, a \in K : a \in R_L$$

im Sinne von Lang eine Stelle.

Jede solche Stelle charakterisiert in diesem lokalen Sinn das Schema B mit dem Träger $P \in E$ und den Richtungen $t_1, t_2, ...$

Literatur

[1] R. DEDEKIND, -H. WEBER. Theorie der algebraischen Funktionen einer Veränderlichen. J. Reine Angew. Math. 92 (1882), 181-290.

[2] S. Lang, Introduction to algebraic geometry. New York, 1958.
[3] B. L. Waerden, Der Multiplizitätsbegriff in der algebraischen Geometrie, Math. Ann. 97 (1927),

[4] B. L. Waerden, Einführung in die algebraische Geometrie, Berlin, 1939.

[5] B. L. WAERDEN, Infinitely Near Points, Proc. Sect. Sci. 12 (1950), 1136—1145.

[6] A.Weil, Foundations of algebraic geometry, New York, 1962.

(Eingegangen am 15. Januar 1964.)

⁷⁾ $\mathfrak{m}_{j} = \text{maximales Ideal von } R_{j\mathfrak{v}_{j}}.$ 8) R_{j}^{*} ist Unterring $\subseteq K$; σ_{j}^{*} ist ein Homomorphismus: $R_{j}^{*} \rightarrow \Omega$.