Über die Konvergenz der Orthogonalreihen, III

Von KÁROLY TANDORI (Szeged)

Einleitung

 $M = M(\infty)$ bezeichnet die Klasse derjenigen Folgen $\{a_n\}_{1}^{\infty}$, für die die Orthogonalreihe

$$\sum_{n=1}^{\infty} a_n \varphi_n(x)$$

für jedes in [0,1] orthonormierte System $\{\varphi_n(x)\}_1^\infty$ fast überall konvergiert. Es sei $1 \le p \le 2$ und für eine Folge $\{c_n\}_1^N$ wird

$$I_p(c_1, ..., c_N) = I_p(\infty; c_1, ..., c_N) = \sup_{0} \int_{1 \le i \le j \le N}^{1} (\max_{1 \le i \le j \le N} |c_i \varphi_i(x) + ... + c_j \varphi_j(x)|)^p dx$$

gesetzt, wobei das Supremum über alle, im Intervall [0, 1] orthonormierten Funkti-

onensysteme $\{\varphi_n(x)\}_{1}^{N}$ gebildet wird. In der vorherigen Mitteilung (K. TANDORI [1]) haben wir u. a. die folgenden Behauptungen bewiesen.

 $\{a_n\} \in M$ gilt dann und nur dann, wenn

$$\|\{a_n\}\|_p = \|\{a_n\}; \infty\|_p = \lim_{N \to \infty} I_p^{1/p}(a_1, ..., a_N) < \infty.$$

M ist mit der Norm $\|\{a_n\}\|_p$ ein Banachraum. Es gilt

$$\|\{a_n\}\|_p \le C_1 \left(a_1^2 + \sum_{n=2}^{\infty} a_n^2 \log^2 n\right)^{1/2}$$

und im Falle $|a_n| \ge |a_{n+1}|$ (n=1, 2, ...) besteht

$$\|\{a_n\}\|_p \ge C_2 \left(a_1^2 + \sum_{n=2}^{\infty} a_n^2 \log^2 n\right)^{1/2},$$

wobei C1 und C2 positive, absolute Konstanten bedeuten.

In dieser Mitteilung werden wir die Konvergenz der Reihe (1) mit gewissen Nebenbedingungen über das System $\{\varphi_n(x)\}\$ behandeln. Wir werden nämlich die Analoga der obigen Behauptungen beweisen, wenn das System $\{\varphi_n(x)\}$ beschränkt ist, bzw. wenn die Lebesgueschen Funktionen des Systems $\{\varphi_n(x)\}$ eine gewisse natürliche Beschränktheitsbedingung befriedigen.

§ 1. Konvergenz mit beschränkten orthonormierten Systemen

Es sei $K \ge 1$. M(K) bezeichnet die Klasse derjenigen Folgen $\{a_n\}_1^{\infty}$, für die die Reihe (1) für jedes in [0, 1] orthonormierte System $\{\varphi_n(x)\}_1^{\infty}$ mit

(2)
$$|\varphi_n(x)| \le K \quad (0 \le x \le 1; n = 1, 2, ...)$$

in [0, 1] fast überall konvergiert. Offensichtlich ist M(K) mit den gewöhnlichen vektoriellen Operationen ein linearer Raum und es gilt $M(\infty) \subseteq M(K') \subseteq M(K)$ $(K \subseteq K')$.

Es sei $1 \le p \le 2$. Für eine Folge $\{c_n\}_1^N$ setzen wir

$$I_p(K; c_1, ..., c_N) = \sup_{0} \int_{1 \le i \le j \le N}^{1} (\max_{1 \le i \le j \le N} |c_i \varphi_i(x) + ... + c_j \varphi_j(x)|)^p dx,$$

wobei das Supremum für alle in [0, 1] orthonormierten Systeme $\{\varphi_n(x)\}_{1}^N$ mit (2) gebildet ist. Offensichtlich gilt

(3)
$$I_p(K; c_1, ..., c_N) \leq I_p(K'; c_1, ..., c_N) \leq I_p(\infty; c_1, ..., c_N)$$
 $(K \leq K')$.

Mit in der vorherigen Mitteilung (K. TANDORI [1]) angewandten Methoden können

(4)
$$\left(\sum_{n=1}^{N} c_n^2\right)^{1/2} \le I_2^{1/2}(K; c_1, ..., c_N) \le \sum_{n=1}^{N} |c_n|$$

und

(5)
$$I_p^{1/p}(K; c_1 + d_1, ..., c_N + d_N) \leq I_p^{1/p}(K; c_1, ..., c_N) + I_p^{1/p}(K; d_1, ..., d_N)$$

leicht bewiesen werden. Aus (4) und (5) folgt, daß $I_2(K; c_1, ..., c_N)$ in den Variablen $c_1, ..., c_N$ stetig ist.

Im folgenden benötigen wir einige Hilfssätze.

Hilfssatz I. Ist $1 < K \le K'$, dann gilt

$$I_2(K'; c_1, ..., c_N) \leq \frac{(K')^2}{K(K-1)} I_2(K; c_1, ..., c_N).$$

BEWEIS. Es sei $\varepsilon(>)$ 0 beliebig angegeben. Nach der Definition von I_2 gibt es ein in [0, 1] orthonormiertes System $\{\overline{\varphi}_n(x)\}_1^N$ mit $|\overline{\varphi}_n(x)| \le K'$ $(0 \le x \le 1; n = 1, ..., N)$ und

(6)
$$\int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_i \overline{\varphi}_i(x) + \ldots + c_j \overline{\varphi}_j(x)| \right)^2 dx \ge I_2(K'; c_1, \ldots, c_N) - \varepsilon.$$

Es sei

(7)
$$a = K^{-1}(K-1).$$

Wir setzen

$$\varphi_n(x) = \begin{cases} \frac{K}{K'} \overline{\varphi}_n(a^{-1} x) & (0 \le x \le a), \\ \varrho_n r_n \left(\frac{x - a}{1 - a} \right) & (a < x \le 1) \end{cases}$$

(n=1,...,N), wobei $r_n(x) = \text{sign sin } 2^n \pi x$ die *n*-te Rademachersche Funktion bezeichnet und die Zahlen ϱ_n derart gewählt sind, daß die Funktionen $\varphi_n(x)$ normiert ausfallen. Offensichtlich bilden die Funktionen $\varphi_n(x)$ ein orthogonales System in [0, 1] und es gilt (2) auf Grund von (7). Weiterhin besteht

$$\begin{split} I_2(K;c_1,\ldots,c_N) & \geq \int\limits_0^1 (\max_{1\leq i\leq j\leq N} |c_i\varphi_i(x)+\ldots+c_j\varphi_j(x)|)^2 \; dx \geq \\ & \geq \int\limits_0^a (\max_{0\leq i\leq j\leq N} |c_i\varphi_i(x)+\ldots+c_j\varphi_j(x)|)^2 \; dx = \\ & = \left(\frac{K}{K'}\right)^2 a \int\limits_0^1 (\max_{1\leq i\leq j\leq N} |c_i\overline{\varphi}_i(x)+\ldots+c_j\overline{\varphi}_j(x)|)^2 \; dx \geq \left(\frac{K}{K'}\right)^2 a \big(I_2(K';c_1,\ldots,c_N)-\varepsilon\big) \end{split}$$

nach (6). Da $\varepsilon(>0)$ beliebig ist, ergibt sich daraus die Behauptung.

Hilfssatz II. Es sei K > 1. Es gilt

$$I_2(K; c_1, ..., c_N) \le 2 \frac{K}{K-1} I_2(K; d_1, ..., d_N) \qquad (|c_n| \le |d_n|; n = 1, ..., N).$$

Beweis. Da I_2 offensichtlich nur von den von 0 verschiedenen Koeffizienten abhängt, kann $d_n \neq 0$ (n=1,...,N) vorausgesetzt werden. Es sei $\varepsilon(>0)$ beliebig angegeben. Dann gibt es ein in [0,1] orthonormiertes System $\{\varphi_n(x)\}_1^N$ mit (2) und

(8)
$$\int_{0}^{1} (\max_{1 \le i \le j \le N} |c_i \varphi_i(x) + ... + c_j \varphi_j(x)|)^2 dx \ge I_2(K; c_1, ..., c_N) - \varepsilon.$$

Wir setzen

$$\varphi_n(x) = \begin{cases} \sqrt{2} c_n d_n^{-1} \varphi_n(2x) & (0 \le x \le 1/2), \\ \sqrt{2} (1 - c_n^2 d_n^{-2})^{1/2} \varphi_n(2x - 1) & (1/2 < x \le 1) \end{cases}$$

(n=1,...,N). Offensichtlich bilden diese Funktionen ein orthonormiertes System in [0, 1] und es gilt $|\varphi_n(x)| \le \sqrt{2}K$ $(0 \le x \le 1; n=1,...,N)$. Durch eine einfache

Rechnung erhalten wir aus (8)

$$\begin{split} I_2\big(\sqrt[]{2}K;d_1,\ldots,d_N\big) & \geq \int\limits_0^1 \big(\max_{1 \leq i \leq j \leq N} |d_i\overline{\varphi}_i(x)+\ldots+d_j\overline{\varphi}_j(x)|\big)^2\,dx \geq \\ & \geq 2\int\limits_0^{1/2} \big(\max_{1 \leq i \leq j \leq N} |c_i\varphi_i(2x)+\ldots+c_j\varphi_j(2x)|\big)^2\,dx = \\ & = \int\limits_0^1 \big(\max_{1 \leq i \leq j \leq N} |c_i\varphi_i(x)+\ldots+c_j\varphi_j(x)|\big)^2\,dx \geq I_2(K;c_1,\ldots,c_N) - \varepsilon. \end{split}$$

Da $\varepsilon(>0)$ beliebig ist, ergibt sich $I_2(\sqrt{2}K; d_1, ..., d_N) \ge I_2(K; c_1, ..., c_N)$. Mit Anwendung des Hilfssatzes I folgt daraus die Behauptung.

Hilfssatz III. Es sei K > 1. Ist $I_2(K; c_1, ..., c_N) \ge 3$, dann gibt es ein in [0, 1] orthonormiertes System von Treppenfunktionen $\{\varphi_n(x)\}_1^N$ mit (2) derart, daß

$$\max_{1 \le i \le j \le N} |c_i \varphi_i(x) + \dots + c_j \varphi_j(x)| \ge 1$$

in einer einfachen Menge $E(\subseteq [0, 1])$ mit $mes(E) \supseteq \varrho(K)$ erfüllt ist, wobei $\varrho(K)$ eine positive, nur von K abhängige Konstante bedeutet.

Beweis. Ohne Beschränkung der Allgemeinheit kann $I_2(K; c_1, ..., c_N) = 3$ vorausgesetzt werden. Es sei a nach (7) gewählt. Auf Grund der Definition von I_2 gibt es ein in [0, 1] orthonormiertes System $\{\psi_n(x)\}_1^N$ mit $|\psi_n(x)| \le K$ $(0 \le x \le 1; n = 1, ..., N)$ und

(9)
$$3 \ge \int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_i \psi_i(x) + \dots + c_j \psi_j(x)| \right)^2 dx \ge 2.5.$$

Für $\eta > 0$ wählen wir Treppenfunktionen $\{\chi_n(x)\}_{1}^{N}$ mit

(10)
$$|\chi_n(x)| \leq K$$
 $(0 \leq x \leq 1; n = 1, ..., N)$

und

$$\int_{0}^{1} (\psi_{n}(x) - \chi_{n}(x))^{2} dx \leq \eta \qquad (n = 1, ..., N).$$

Es sei

$$\alpha_{i,j} = \int_{0}^{1} \chi_{i}(x) \chi_{j}(x) dx$$
 $(i, j = 1, ..., N).$

Ist η genügend klein, dann gelten

(11)
$$4 \ge \int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_{i} \chi_{i}(x) + \dots + c_{j} \chi_{j}(x)| \right)^{2} dx \ge 2,$$

und

(13)
$$(3a^{-1}N(N-1)|\alpha_{i,j}|)^{1/2} \le K (i,j=1,...,N; i \ne j)$$

auf Grund der Orthonormalität des Systems $\{\psi_n(x)\}_1^N$ und auf Grund von (9). Wir definieren die Treppenfunktionen $\overline{\psi}_n(x)$ folgenderweise. Wir teilen das Intervall (5. 6⁻¹ a, a] in N(N-1) gleiche Teilintervalle $I_{i,j}$ $(i,j=1,...,N;i\neq j)$ ein. Es sei

$$\overline{\varphi}_{i}(x) = \begin{cases}
 \chi_{i}(6a^{-1}x) & (x \in [0, 6^{-1}a]), \\
 (3a^{-1}N(N-1)|\alpha_{i,j}|)^{1/2} & (x \in I_{i,j}; j = 1, ..., N; i \neq j), \\
 -(3a^{-1}N(N-1)|\alpha_{i,j}|)^{1/2} \operatorname{sign} \alpha_{i,j} & (x \in I_{j,i}; j = 1, ..., N; i \neq j), \\
 \varrho_{i}r_{i}((1-a)^{-1}(x-a)) & (x \in (a, 1]), \\
 0 & \operatorname{sonst}
 \end{cases}$$

(i=1,...,N), wobei die Zahlen ϱ_n derart bestimmt sind, daß die Funktionen $\overline{\varphi}_n(x)$ normiert ausfallen. (Auf Grund von (12) können die ϱ_n auf diese Weise gewählt werden.) Nach (7) und (13) ist $|\overline{\varphi}_n(x)| \leq K$ $(0 \leq x \leq 1; n=1,...,N)$ und offensichtlich bilden diese Funktionen ein orthogonales System in [0,1].

Es sei

$$F(x) = \max_{1 \le i \le j \le N} |c_i \overline{\varphi}_i(x) + \dots + c_j \overline{\varphi}_j(x)|.$$

Aus (11) folgt wegen

$$\int_{0}^{a/6} \left(\max_{1 \le i \le j \le N} |c_i \overline{\varphi}_i(x) + \dots + c_j \overline{\varphi}_j(x)| \right)^2 dx =$$

$$= \frac{a}{6} \int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_i \chi_i(x) + \dots + c_j \chi_j(x)| \right)^2 dx$$

die Beziehung

(14)
$$\frac{a}{3} \le \int_{0}^{a/6} F^{2}(x) dx \le \frac{2}{3} a.$$

Da die $\overline{\varphi}_n(x)$ Treppenfunktionen sind, gibt es eine Zerlegung von $[0, 6^{-1}a]$ in Teil-intervalle $I_r = (a_r, b_r)$ $(r = 1, ..., \varrho)$ derart, daß jede Funktion $\overline{\varphi}_n(x)$ in jedem I_r konstant ist. Die Werte von F(x) in I_r bezeichnen wir mit w_r . Aus (14) folgt

(15)
$$\frac{a}{3} \leq \sum_{r=1}^{q} w_r^2 \operatorname{mes}(I_r) \leq \frac{2}{3} a.$$

Es seien $1 \le r_1 < ... < r_s \le \varrho$ die Indizes r, für die $w_r \ge 1$ ist. Wegen (15) gilt

(16)
$$\sum_{i=1}^{s} w_{r_i}^2 \operatorname{mes}(I_{r_i}) \ge \frac{a}{6}.$$

Wir setzen $v_r = w_r$ für $r = r_i$ (i = 1, ..., s), $v_r = 1$ sonst, und

$$\alpha_l = \sum_{i=1}^{l} v_i^2 \operatorname{mes}(I_i)$$
 $(l = 0, ..., \varrho).$

Nach (15) ist

(17)

$$\alpha_0 \leq 5.6^{-1}a$$
.

Es sei

$$\varphi_n(x) = \begin{cases} \overline{\varphi}_n(x) & (x \in (5.6^{-1}a, 1]), \\ \frac{1}{v_r} \overline{\varphi}_n \left(\frac{x - \alpha_{r-1}}{v_r^2} + a_r \right) & (x \in (\alpha_{r-1}, \alpha_r); r = 1, \dots, \varrho), \\ 0 & \text{sonst} \end{cases}$$

(n=1, ..., N). (Nach (17) ist diese Definition richtig.) Die Treppenfunktionen $\varphi_n(x)$ bilden offensichtlich ein orthonormiertes System in [0, 1]. Nach der Definition von v_r gilt (2). Es sei

$$E=\bigcup_{i=1}^s(\alpha_{r_i-1},\alpha_{r_i}).$$

Auf Grund von (16) ist mes $(E) \ge 6^{-1}a$. Es sei $x \in E$. Dann gibt es ein i_0 $(1 \le i_0 \le s)$ mit $x \in (\alpha_{r_{i_0}-1}, \alpha_{r_{i_0}})$. Da $t = v_{r_{i_0}}^{-2}(x - \alpha_{r_{i_0}-1}) + a_{r_{i_0}} \in I_{r_{i_0}}$ besteht, gilt

$$\max_{1 \le i \le j \le N} |c_i \varphi_i(x) + \dots + c_j \varphi_j(x)| =$$

$$= w_{r_{i_0}}^{-1} \max_{1 \le i \le j \le N} |c_i \overline{\varphi}_i(t) + \dots + c_j \overline{\varphi}_j(t)| = w_{r_{i_0}}^{-1} F(t) = 1.$$

Die Menge E und die Funktionen $\varphi_n(x)$ befriedigen also alle Bedingungen des Hilfssatzes III.

Hilfssatz IV. Es sei K>1. Ist für eine Indexfolge $(0=)n_0<...< n_k<...$ $I_2(K; a_{n_k+1},...,a_{n_{k+1}}) \ge 3$ (k=0,1,...), dann gibt es ein in [0,1] orthonormiertes System von Treppenfunktionen $\varphi_n(x)$ (n=1,2,...) mit (2) derart, daß die Reihe (1) in [0,1] fast überall divergiert.

Die Behauptung ergibt sich auf Grund des Hilfssatzes III, durch Anwendung einer in einer vorherigen Mitteilung (K. TANDORI [2]) verwendeten Methode.

Hilfssatz V. Es sei $p(\ge 2)$ eine natürliche Zahl und $1 \le c \le 4^{-1}p$. Dann existiert ein im Intervall $[-1, \beta]$ orthonormiertes System von Treppenfunktionen $g_l(c, p; x)$ $(l=1, ..., p^2)$ mit $|g_l(c, p, x)| \le M$ $(-1 \le x \le \beta; l=1, ..., p^2)$ (wobei β und M positive, von c und p unabhängige Konstanten sind), für welches die folgende Bedingung erfüllt ist: für jeden Punkt $x \in [(2c)^{-1}, c^{-1}]$ gibt es eine von x abhängige natürliche Zahl $m(x)(< p^2)$ derart, da β die Funktionswerte $g_l(c, p; x)$ (l=1, ..., m(x)) nichtnegativ sind und

$$\sum_{l=1}^{m(x)} g_l(c, p; x) \ge C \sqrt{c} p \log p$$

mit einer positiven, von c, p und x unabhängigen Konstante C besteht.

Dieser Hilfssatz ist bekannt. (Siehe z. B. K. TANDORI [2].)

Hilfssatz VI. Es sei K>1, $p(\ge 2)$ eine natürliche Zahl und $1 \le c \le 4^{-1}p$. Dann gibt es ein in [0,1] orthonormiertes System von Treppenfunktionen $h_l(c,p;x)$ $(l=1,...,p^2)$ mit folgenden Eigenschaften: es gilt $|h_l(c,p;x)| \le K (0 \le x \le 1; l=1,...,p^2)$; es gibt ein Intervall E mit mes $(E) \ge \omega c^{-1}$ (wobei ω eine positive, nur von K abhängige Konstante bedeutet) derart, daß für $x \in E$ ein Index $m(x)(< p^2)$ mit $h_l(c,p;x) \ge 0$ (l=1,...,m(x)) und

$$\sum_{l=1}^{m(x)} h_l(c, p; x) \ge D\sqrt{c} p \log p$$

existiert, wo D eine positive, nur von K abhängige Konstante ist.

Beweis. Dieser Hilfssatz folgt leicht aus dem Hilfssatz V. Es sei a nach (7) gewählt. Wir setzen

$$h_l(c, p; x) = \begin{cases} \frac{K}{M + K} g_l \left(c, p; \frac{1 + \beta}{a} x - 1 \right) & (0 \le x \le a), \\ \varrho_l r_l \left(\frac{x - a}{1 - a} \right) & (a < x \le 1) \end{cases}$$

 $(l=1,...,p^2)$, wobei die ϱ_t derart angewählt sind, daß die Funktionen $h_l(c,p;x)$ normiert ausfallen. Es sei E die Bildmenge des Intervalls $[(2c)^{-1},c^{-1}]$ bei der Transformation $y=(1+\beta)^{-1}(x+1)$. Die Funktion h(c,p;x) und die Menge E befriedigen alle Forderungen des Hilfssatzes VI.

Hilfssatz VII. Es sei K>1. Ist $|a_n| \ge |a_{n+1}|$ (n=1, 2, ...) und

$$a_1^2 + \sum_{n=2}^{\infty} a_n^2 \log^2 n = \infty,$$

dann gibt es ein in [0, 1] orthonormiertes System $\{\varphi_n(x)\}_1^{\infty}$ mit (2) derart, da β die Reihe (1) in [0, 1] fast überall divergiert.

Die Behauptung folgt durch Anwendung des Hilfssatzes VI mit in einer vorherigen Mitteilung (K. Tandori [3]) angewandten Methode.

Hilfssatz VIII. Es sei K > 1. $\{a_n\} \in M(K)$ gilt dann und nur dann, wenn

(18)
$$\lim_{n \to \infty} \left(\lim_{N \to \infty} I_2(K; a_{n+1}, ..., a_{n+N}) \right) = 0.$$

BEWEIS. Ist (18) erfüllt, dann gilt $\{a_n\} \in l^2$ wegen (4). Wir wählen eine Indexfolge $(0=)n_0 < ... < n_k < ...$ mit

(19)
$$\sum_{k=0}^{\infty} \sum_{n=n_k+1}^{\infty} a_n^2 < \infty$$

und

(20)
$$\sum_{k=0}^{\infty} I_2(K; a_{n_k+1}, \dots, a_{n_{k+1}}) < \infty.$$

Es sei $\{\varphi_n(x)\}_1^{\infty}$ ein in [0, 1] orthonormiertes System mit (2). Nach dem Satz von

Riesz-Fischer gibt es eine Funktion $f(x) \in L^2[0, 1]$, nach der die Reihe (1) im quadratischen Mittel konvergiert. Bezeichnet $s_n(x)$ die *n*-te Partialsumme der Reihe (1), dann gilt

$$\sum_{k=0}^{\infty} \int_{0}^{1} (f(x) - s_{n_{k}}(x))^{2} dx = \sum_{k=0}^{\infty} \sum_{n=n_{k}+1}^{\infty} a_{n}^{2} < \infty$$

wegen (19), woraus $\lim_{k\to\infty} s_{n_k}(x) = f(x)$ fast überall folgt. Nach (20) ist

$$\sum_{k=0}^{\infty} \int_{0}^{1} \left(\max_{n_{k} < i \leq j < n_{k+1}} |a_{i}\varphi_{i}(x) + \ldots + a_{j}\varphi_{j}(x)| \right)^{2} dx < \infty$$

und so besteht

$$\max_{\substack{n_k < i \le j < n_{k+1}}} |a_i \varphi_i(x) + \dots + a_j \varphi_j(x)| \to 0 \qquad (k \to \infty)$$

fast überall, woraus $s_n(x) - s_{n_k}(x) \to 0$ $(n \to \infty; n_k < n < n_{k+1})$ sich fast überall ergibt. Damit haben wir $\{a_n\} \in M(K)$ bewiesen.

Ist (18) nicht erfüllt, dann gilt

(21)
$$\lim_{n \to \infty} \left(\lim_{N \to \infty} I_2(K; a_{n+1}, ..., a_{n+N}) \right) = \sigma > 0$$

auf Grund von $\lim_{N\to\infty} I_2(K; a_{n+1}, ..., a_N) \ge \lim_{N\to\infty} I_2(K; a_{n+2}, ..., a_N)$ (n=1, 2, ...). Nach (21) kann eine Indexfolge (0=) $n_0 < ... < n_k < ...$ mit $I_2(K; a_{n_k+1}, ..., a_{n_{k+1}}) \ge$ $\ge \sigma/2$ (k=0, 1, ...) gewählt werden. Ohne Beschränkung der Allgemeinheit können wir $I_2(K; a_{n_k+1}, ..., a_{n_{k+1}}) \ge 3$ (k=0, 1, ...) annehmen. Durch Anwendung der Hilfssatzes IV ergibt sich $\{a_n\} \notin M(K)$.

Für eine Folge $\{a_n\}_1^{\infty}$ setzen wir

$$\|\{a_n\}; K\|_2 = \inf \sum_{k=0}^{\infty} I_2^{1/2}(K; a_{n_k+1}, ..., a_{n_{k+1}}),$$

wobei das Infimum für alle unendlichen Indexfolgen $(0 =) n_0 < ... < n_k < ...$ gebildet wird. Auf Grund von (3), (4) und (5) können

(22)
$$\|\{a_n\}; K\|_2 \le \|\{a_n\}; K'\|_2 \le \|\{a_n\}; \infty\|_2$$
 $(K \le K')$ und

(23)
$$\left\{ \sum_{n=1}^{\infty} a_n^2 \right\}^{1/2} \le \|\{a_n\}; K\|_2 \le \sum_{n=1}^{\infty} |a_n|$$

leicht bewiesen werden. Aus dem Hilfssatz I folgt

(24)
$$\|\{a_n\}; K'\|_2 \leq \frac{K'}{\sqrt{K(K-1)}} \|\{a_n\}; K\|_2 \qquad (1 < K \leq K').$$

Satz I. Es sei K > 1. $\{a_n\} \in M(K)$ gilt dann und nur dann, wenn $\|\{a_n\}; K\|_2 < \infty$. M(K) ist mit der Norm $\|\{a_n\}; K\|_2$ ein Banachraum.

BEWEIS. Ist $\|\{a_n\}; K\|_2 < \infty$, dann gilt (18), woraus $\{a_n\} \in M(K)$ sich auf Grund des Hilfssatzes VIII ergibt. Ist aber $\|\{a_n\}; K\|_2 = \infty$, so kann (18) nicht bestehen. Auf Grund des Hilfssatzes VIII ist also $\{a_n\} \notin M(K)$. Um zu zeigen, daß $\|\{a_n\}; K\|_2$ in M(K) eine Norm ist, soll nur die Dreiecksungleichung bewiesen werden.

Wir zeigen zuerst die folgende Behauptung: es gilt

(25)
$$\|\{a_n\}; K\|_2 = \lim_{N \to \infty} I_2^{1/2}(K; a_1, ..., a_N) \quad (\{a_n\} \in M(K)),$$

woraus die Dreiecksungleichung auf Grund von (5) folgt. Es sei $\varepsilon(>0)$ beliebig angegeben. Ist $\{a_n\} \in M(K)$, dann gibt es eine Indexfolge $(0=)n_0 < ... < n_k < ...$ mit

(26)
$$\|\{a_n\}; K\|_2 \leq \sum_{k=0}^{\infty} I_2^{1/2}(K; a_{n_k+1}, ..., a_{n_{k+1}}) \leq \|\{a_n\}; K\|_2 + \varepsilon.$$

Es sei k_0 so groß, daß

$$\sum_{k=k_0+1}^{\infty} I_2^{1/2}(K; a_{n_k+1}, \ldots, a_{n_{k+1}}) < \varepsilon.$$

Aus (26) ergibt sich auf Grund von (5)

$$\|\{a_n\}; K\|_2 \leq I_2^{1/2}(K; a_1, ..., a_{n_{k_0+1}}) + \sum_{k=k_0+1}^{\infty} I_2^{1/2}(K; a_{n_k+1}, ..., a_{n_{k+1}}) \leq \|\{a_n\}; K\|_2 + \varepsilon,$$

woraus

$$\|\{a_n\}; K\|_2 - \varepsilon \le I_2^{1/2}(K; a_1, ..., a_{n_{k_0+1}}) \le \|\{a_n\}; K\|_2 + \varepsilon$$

folgt. Da $\varepsilon(>0)$ beliebig ist, erhalten wir (25) für $k_0 \to \infty$.

Die Vollständigkeit von M(K) ergibt sich aus (4) und daraus, daß $I_2(K; c_1, ..., c_N)$ in den Variablen $c_1, ..., c_N$ stetig ist. Damit haben wir Satz I bewiesen.

Aus (23) folgt $M(K) \subseteq l^2$ $(K \ge 1)$.

Auf Grund des Hilfssatzes II ergibt sich: *Ist* $|a_n| \le |b_n|$ (n = 1, 2, ...), *dann gilt* $\|\{a_n\}; K\|_2 \le (2K(K-1)^{-1})^{\frac{1}{2}} \|\{b_n\}; K\|_2 (K>1)$.

Durch Anwendung des Hilfssatzes II kann man leicht beweisen: Ist $\{a_n(1)\}_1^{\infty} \in M(K)$ und gilt $a_n(m) \searrow 0$ $(m \to \infty; n = 1, 2, ...)$, dann ist $\|\{a_n(m)\}; K\|_2 \to 0$ $(m \to \infty)$ (K > 1).

Aus dieser Behauptung folgt leicht, daß M(K) (K>1) separabel ist; die endlichen rationalen Folgen liegen nämlich in M(K) überall dicht.

Aus Satz I folgt, daß im Falle $\{a_n\} \in M(K)$ (K>1) eine positive, monoton ins Unendliche strebende Folge $\{\lambda_n\}$ mit $\{\lambda_n a_n\} \in M(K)$ existiert.

Aus dem Beweis des Hilfssatzes VIII ergibt sich, daß im Falle $\{a_n\} \notin M(K)$ (K>1) ein in [0,1] orthonormiertes System von Treppenfunktionen $\varphi_n(x)$ (n=1,2,...) mit (2) existiert derart, daß die Reihe (1) in [0,1] fast überall divergiert.

Es sei $1 \le p < 2$ und K > 1. Man kann die folgende Ungleichung leicht beweisen: Es gilt

$$\alpha I_2^{1/2}(K; c_1, ..., c_N) \leq I_p^{1/p}(K; c_1, ..., c_N) \leq I_2^{1/2}(K; c_1, ..., c_N)$$

mit einer positiven, nur von K abhängigen Konstante α.

Die zweite Ungleichung folgt aus der Hölderschen Ungleichung. Zum Beweis der ersten Ungleichung kann $I_2(K; c_1, ..., c_N) = 3$ angenommen werden. Nach dem Hilfssatz III gibt es ein in [0, 1] orthonormiertes System $\{\varphi_n(x)\}_1^N$ mit (2) derart, daß

$$\max_{1 \le i \le j \le N} |c_i \varphi_i(x) + \dots + c_j \varphi_j(x)| \ge 1$$

in einer meßbaren Menge $E(\subseteq [0, 1])$ mit mes $(E) \ge \varrho$ gilt, wobei $\varrho (\le 1)$ eine positive, nur von K abhängige Konstante bedeutet. Dann gilt

$$I_p^{1/p}(K; c_1, ..., c_N) \ge (\text{mes}(E))^{1/p} \ge \varrho^{1/p} 3^{-1/2} I_2^{1/2}(K; c_1, ..., c_N),$$

woraus sich die erste Ungleichung ergibt.

Aus diesen Ungleichungen erhalten wir, daß die entsprechenden Behauptungen anstatt p=2 auch für $1 \le p < 2$ gelten.

Satz II. Es gilt

(27)
$$\|\{a_n\}; K\|_2 \leq C \left(a_1^2 + \sum_{n=2}^{\infty} a_n^2 \log^2 n\right)^{1/2} (K \geq 1)$$

mit einer positiven, absoluten Konstante C. Ist $|a_n| \ge |a_{n+1}|$ (n=1, 2, ...), dann gilt

(28)
$$\|\{a_n\}; K\|_2 \ge D \left(a_1^2 + \sum_{n=2}^{\infty} a_n^2 \log^2 n\right)^{1/2} (K > 1),$$

wobei D eine positive, nur von K abhängige Konstante bedeutet.

BEWEIS. (27) folgt aus (22) und aus der entsprechenden Ungleichung für $\|\{a_n\}; \infty\|_2$. Ist $\|\{a_n\}; K\|_2 < \infty$, dann ist $\{a_n\} \in M(K)$. Nach dem Hilfssatz VII folgt

$$a_1^2 + \sum_{n=2}^{\infty} a_n^2 \log^2 n < \infty.$$

Für jede Folge $\{a_n\}$ gibt es also eine positive Konstante D derart, daß (28) besteht. Wir zeigen, daß D in (28) von der Folge $\{a_n\}$ unabhängig bestimmt werden kann. Im entgegengesetzten Falle können wir nämlich Folgen $\{a_n(m)\}_1^{\infty}$ (m=1,2,...) mit $|a_n(m)| \ge |a_{n+1}(m)|$ (n=1,2,...;m=1,2,...) und

(29)
$$\|\{a_n(m)\}; K\|_2 \le \frac{1}{m^4} \left(a_1^2(m) + \sum_{n=2}^{\infty} a_n^2(m) \log^2 n\right)^{1/2}$$

angeben. $\|\{a_n(m)\}; K\|_2 = 1/m^2 \pmod{m=1, 2, ...}$ kann vorausgesetzt werden. Dann folgt aus (29)

(30)
$$\left(a_1^2(m) + \sum_{n=2}^{\infty} a_n^2(m) \log^2 n\right)^{1/2} \to \infty \qquad (m \to \infty).$$

Auf Grund von (30) und von $|a_n(m)| \le ||\{a_n(m)\}; K||_2 \to 0 \quad (m \to \infty; n = 1, 2, ...)$ ergeben sich durch vollständige Induktion zwei Folgen ganzer Zahlen $(1 \le)v_1 < ...$

 $... < v_k < ... (v_0 = -1) \text{ und } (1 \le) m_1 < ... < m_k < ... \text{ mit}$

$$a_1^2(m_1) + \sum_{n=2}^{2^{v_1}} a_n^2(m_1) \log^2 n \ge 1, \quad \sum_{n=2^{v_{k-1}}+1}^{2^{v_k}} a_n^2(m_k) \log^2 n \ge 1 \quad (k=2,3,\ldots)$$

und

$$|a_{2^{v_k}}(m_k)| \ge |a_{2^{v_{k+1}}}(m_{k+1})| \qquad (k=1,2,\ldots).$$

Es sei $a_n = a_n(m_k)$ $(2^{v_{k-1}} < n \le 2^{v_k}; k = 1, 2, ...)$. Dann ist $|a_n| \ge |a_{n+1}|$ (n = 1, 2, ...) und

$$a_1^2 + \sum_{n=2}^{\infty} a_n^2 \log^2 n = \infty.$$

Auf Grund des Hilfssatzes VII folgt also $\{a_n\} \in M(K)$, was der Ungleichung

$$\|\{a_n\}; K\|_2 \le \sum_{m=1}^{\infty} \|\{a_n(m)\}; K\|_2 = \sum_{m=1}^{m} \frac{1}{m^2} < \infty$$

widerspricht. Damit haben wir Satz II bewiesen.

Wir werden noch einige Probleme erwähnen. Wie kann M(1) charakterisiert werden? Gilt $\|\{a_n\}; \infty\|_2 \le C \|\{a_n\}; K\|_2$ mit einer nur von K abhängigen positiven Konstante C? Gibt es im Falle $\{a_n\} \notin M(K)$ (K>1) eine positive, monoton zu 0 strebende Folge $\{\mu_n\}$ mit $\{a_n\mu_n\} \notin M(K)$? Gilt (25) für jede Folge $\{a_n\}$?

§ 2. Konvergenz mit Beschränktheitsbedingung für die Lebesgueschen Funktionen

Es sei $\{\lambda_n\}$ eine monoton nichtabnehmende Zahlenfolge mit $\lambda_1 \ge 1$. $M(\{\lambda_n\})$ bezeichnet die Klasse derjenigen Folgen $\{a_n\}_1^{\infty}$, für die die Orthogonalreihe (1) für jedes in [0, 1] orthonormiertes System $\{\varphi_n(x)\}_1^{\infty}$ mit

(31)
$$\sup_{0} \int_{0}^{1} \frac{dx}{\lambda_{\nu(x)}} \int_{0}^{1} \left| \sum_{k=1}^{\nu(x)} \varphi_{k}(x) \varphi_{k}(t) \right| dt \le 1$$

in [0, 1] fast überall konvergiert, wobei das Supremum für alle meßbaren Funktionen v(x) mit ganzzahligen Werten gebildet ist. Ist für ein in [0, 1] orthonormiertes System $\{\varphi_n(x)\}$

(32)
$$L_{\nu}(\{\varphi_n\}; x) = \int_{0}^{1} \left| \sum_{n=1}^{\nu} \varphi_n(x) \varphi_n(t) \right| dt \leq \lambda_{\nu} \quad (0 \leq x \leq 1; \nu = 1, 2, ...),$$

dann gilt (31). $M(\{\lambda_n\})$ ist mit den gewöhnlichen vektoriellen Operationen ein linearer Raum und es gilt $M(\{\lambda_n\}) \supseteq M(\{\mu_n\}) \supseteq M(\infty)$ ($\lambda_n \leq \mu_n$; n = 1, 2, ...).

Es sei $1 \le p \le 2$. Für eine Folge $\{c_n\}_1^N$ wird

$$I_p(\{\lambda_n\}; c_1, ..., c_N) = \sup_{0} \int_{1 \le i \le j \le N}^{1} (\max_{1 \le i \le j \le N} |c_i \varphi_i(x) + ... + c_j \varphi_j(x)|)^p dx$$

gesetzt, wobei das Supremum für alle in [0, 1] orthonormierten Systeme $\{\varphi_n(x)\}_{1}^N$ mit (31) gebildet wird. Offensichtlich ist

(33)
$$I_1(\{\lambda_n\}; c_1, ..., c_N) \leq I_1(\{\mu_n\}; c_1, ..., c_N) \leq I_1(\infty; c_1, ..., c_N) \ (\lambda_n \leq \mu_n; \ n = 1, 2, ...),$$

(34)
$$I_1(\{\lambda_n\}; c_1, ..., c_N) \leq \sum_{n=1}^N |c_n|$$

und

$$(35) I_1(\{\lambda_n\}; c_1 + d_1, ..., c_N + d_N) \le I_1(\{\lambda_n\}; c_1, ..., c_N) + I_1(\{\lambda_n\}; d_1, ..., d_N).$$

Daraus und aus (34) folgt, daß $I_1(\{\lambda_n\}; c_1, ..., c_N)$ in den Variablen $c_1, ..., c_N$ stetig ist.

Die Abschätzung

(36)
$$|c_n| \le CI_1(\{\lambda_n\}; c_1, ..., c_N) \quad (1 \le n \le N)$$

mit einer positiven absoluten Konstante C kann man ebenfalls leicht beweisen. Es sei nämlich $I_n = [0, \frac{1}{2}]$ und die I_k $(k = 1, ..., N; k \neq n)$ sollen der Reihe nach die Intervalle $(\frac{1}{2} + (j-1)/2(N-1), \frac{1}{2} + j/2(N-1)]$ (j = 1, ..., N-1) bezeichnen. Wir setzen

$$\varphi_n(x) = \begin{cases} 1/\sqrt{\operatorname{mes}(I_n)} & (x \in I_n), \\ 0 & \text{sonst} \end{cases}$$

 $(n=1,\ldots,N)$. $\{\varphi_n(x)\}_1^N$ ist ein orthonormiertes Sytsem in [0, 1], es besteht $L_v(\{\varphi_n\};x)=1$ $(0 \le x \le 1; v=1,2,\ldots)$ und es gilt

$$|c_n|/\sqrt{2} \le \int_0^1 \left(\max_{1 \le i \le j \le N} |c_i \varphi_i(x) + \dots + c_j \varphi_j(x)|\right) dx,$$

woraus (36) folgt.

Wir benötigen einige Hilfssätze.

Hilfssatz IX. Es gilt

$$I_1(\{a\lambda_n\}; c_1, ..., c_N) \le 2\sqrt{a}I_1(\{\lambda_n\}; c_1, ..., c_N)$$
 $(a > 1)$

Beweis. Auf Grund der Definition von I_1 gibt es ein in [0, 1] orthonormiertes System $\{\psi_n(x)\}_1^N$ mit

(37)
$$\int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_{i} \psi_{i}(x) + ... + c_{j} \psi_{j}(x)| \right) dx \ge \frac{1}{2} I_{1}(\{a\lambda_{n}\}; c_{1}, ..., c_{N})$$

und

(38)
$$\sup_{0} \int_{0}^{1} \frac{dx}{a\lambda_{\mu(x)}} \int_{0}^{1} \left| \sum_{n=1}^{\mu(x)} \psi_{n}(x) \psi_{n}(t) \right| dt \leq 1,$$

wobei das Supremum für alle meßbaren Funktionen $\mu(x)$ mit ganzzahligen Werten gebildet ist. Wir setzen

$$\varphi_n(x) = \begin{cases} \sqrt{a}\psi_n(ax) & (0 \le x \le 1/a), \\ 0 & \text{sonst} \end{cases}$$

(n=1, ..., N). Das System $\{\varphi_n(x)\}_1^N$ ist in [0, 1] orthonormiert. Ist $x \in [0, 1/a]$, dann gilt

$$L_{v}(\{\varphi_{n}\}; x) = a \int_{0}^{1/a} \left| \sum_{n=1}^{v} \psi_{n}(ax) \psi_{n}(at) \right| dt = \int_{0}^{1} \left| \sum_{n=1}^{v} \psi_{n}(ax) \psi_{n}(t) \right| dt;$$

im Falle $x \in (1/a, 1]$ ist aber $L_v(\{\varphi_n\}; x) = 0$ (v = 1, 2, ...). Es sei v(x) eine beliebige meßbare Funktion mit ganzzahligen Werten. Auf Grund von (38) erhalten wir

$$\int_{0}^{1} \frac{L_{v(x)}(\{\varphi_{n}\}; x)}{\lambda_{v(x)}} dx = \int_{0}^{1/a} \frac{dx}{\lambda_{v(x)}} \int_{0}^{1} \left| \sum_{n=1}^{v(x)} \psi_{n}(ax) \psi_{n}(t) \right| dt =$$

$$= \int_{0}^{1} \frac{1}{a\lambda_{v(x/a)}} L_{v(x/a)}(\{\psi_{n}\}; x) dx \leq 1.$$

Da v(x) eine beliebige, meßbare Funktion mit ganzzahligen Werten bedeutet, ist (31) erfüllt. Weiterhin gilt

$$\int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_{i} \varphi_{i}(x) + \dots + c_{j} \varphi_{j}(x)| \right) dx =$$

$$= \sqrt{a} \int_{0}^{1/a} \left(\max_{1 \le i \le j \le N} c_{i} \psi_{i}(ax) + \dots + c_{j} \psi_{j}(ax)| \right) dx =$$

$$= \frac{1}{\sqrt{a}} \int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_{i} \psi_{i}(x) + \dots + c_{j} \psi_{j}(x)| \right) dx,$$

woraus die Behauptung auf Grund von (37) folgt.

Hilfssatz X. Es sei $I_1(\{\lambda_n\}; c_1, ..., c_N) \ge 16\sqrt{2}$. Dann gibt es ein in [0, 1] orthonormiertes System von Treppenfunktionen $\psi_n(x)$ (n = 1, ..., N) derart, daß

$$\sup \int_{0}^{1} \frac{2L_{v(x)}(\{\psi_n\}; x)}{\lambda_{v(x)}} dx \le 1$$

gilt, wobei das Supremum für alle meßbaren Funktionen v(x) mit ganzzahligen Werten gebildet ist, und

$$\max_{1 \le i \le j \le N} |c_i \psi_i(x) + \dots + c_j \psi_j(x)| \ge 1$$

in einer einfachen Menge $E(\subseteq [0, 1])$ mit $mes(E) \ge 1/4$ besteht.

BEWEIS. Auf Grund des Hilfssatzes IX ist $I_1(\{\lambda_n/4\}; c_1, ..., c_N) \ge 4\sqrt{2}$. Nach der Definition von I_1 gibt es ein in [0, 1] orthonormiertes System $\{\chi_n(x)\}_1^N$ mit

(39)
$$\int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_{i} \chi_{i}(x) + \dots + c_{j} \chi_{j}(x)| \right) dx > 2\sqrt{2}$$

und

(40)
$$\sup_{0} \int_{0}^{1} \frac{4L_{\nu(x)}(\{\chi_{n}\}; x)}{\lambda_{\nu(x)}} dx \leq 1,$$

wobei das Supremum für alle meßbaren Funktionen v(x) mit ganzzahligen Werten gebildet ist.

Für $\eta > 0$ wählen wir die Treppenfunktionen $\{\overline{\chi}_n(x)\}_{1}^N$ mit

$$\int_{0}^{1} (\chi_{n}(x) - \overline{\chi}_{n}(x))^{2} dx < \eta \qquad (n = 1, ..., N)$$

und

(41)
$$|\bar{\chi}_n(x)| \leq |\chi_n(x)| \quad (0 \leq x \leq 1; n = 1, ..., N).$$

Wir setzen

$$\alpha_{i,j} = \int_{0}^{1} \overline{\chi}_{i}(x) \overline{\chi}_{j}(x) dx$$
 $(i, j = 1, ..., N).$

Es sei $\varepsilon(>0)$ beliebig angegeben. Ist η genügend klein, dann folgt aus (39), (40), (41) und aus der Orthonormalität der Funktionen $\chi_n(x)$

(42)
$$\int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_i \overline{\chi}_i(x) + \dots + c_j \overline{\chi}_j(x)| \right) dx > 2\sqrt{2},$$

(43)
$$\sup_{0} \int_{0}^{1} \frac{4L_{v(x)}(\{\overline{\chi}_{n}\}; x)}{(1+\varepsilon)\lambda_{v(x)}} dx \leq 1$$

(wobei das Supremum für alle meßbaren Funktionen v(x) mit ganzzahligen Werten gebildet ist) und

$$(44) \qquad |\alpha_{i,j}| \leq \varepsilon/N \quad (i,j=1,\ldots,N; \ i \neq j), \qquad 1-\varepsilon \leq \alpha_{i,i} \leq 1+\varepsilon \quad (i=1,\ldots,N).$$

Die Funktionen $\varphi_n(x)$ definieren wir folgenderweise. Wir teilen das Intervall (1, 2] in N(N-1) gleiche Teilintervalle $I_{i,j}$ $(i, j=1, ..., N; i \neq j)$ ein. Wir setzen

$$\varphi_{n}(x) = \begin{cases} \overline{\chi}_{n}(x) & (x \in [0,1]), \\ \sqrt{2^{-1}N(N-1)|\alpha_{n,i}|} & (x \in I_{n,i}; i = 1, ..., N; i \neq n), \\ -\sqrt{2^{-1}N(N-1)|\alpha_{n,i}|} \operatorname{sign} \alpha_{n,i} & (x \in I_{i,n}; i = 1, ..., N; i \neq n), \\ 0 & \operatorname{sonst} \end{cases}$$

(n=1,...,N). Diese Treppenfunktionen bilden in [0,2] ein orthogonales System und nach (44) gilt

$$(45) 1-\varepsilon \leq \alpha_{n,n} + \sum_{\substack{1 \leq j \leq N \\ j \neq n}} |\alpha_{n,j}| = \int_0^2 \varphi_n^2(x) \, dx \leq 1+2\varepsilon (n=1,\ldots,N).$$

Es sei $\mu(x)$ eine in [0, 2] meßbare Funktion mit ganzzahligen Werten. Nach (41) und (43) ist

(46)
$$\int_{0}^{1} \frac{2}{\lambda_{\mu(x)}} \left(\int_{0}^{2} \left| \sum_{n=1}^{\mu(x)} \varphi_{n}(x) \varphi_{n}(t) \right| dt \right) dx = \int_{0}^{1} \frac{2}{\lambda_{\mu(x)}} \left(\int_{0}^{1} + \int_{1}^{2} dx \right) dx \le$$

$$\leq \frac{1+\varepsilon}{2} + \sqrt{2N(N-1)} \max_{1 \leq i, j \leq N; \ i \neq j} \sqrt{|\alpha_{i,j}|} \sum_{n=1}^{N} \int_{0}^{1} |\chi_{n}(x)| dx < 1,$$

wenn ε genügend klein ist. Weiterhin gilt auf Grund von (44)

$$(47) \qquad \int_{1}^{2} \frac{2dx}{\lambda_{\mu(x)}} \int_{0}^{2} \left| \sum_{n=1}^{\mu(x)} \varphi_{n}(x) \varphi_{n}(t) \right| dt \leq$$

$$\leq \sum_{1 \leq i, j \leq N; \ i \neq j} \int_{I_{i,j}} \frac{2dx}{\lambda_{\mu(x)}} \int_{0}^{2} \left(|\varphi_{i}(x) \varphi_{i}(t)| + |\varphi_{j}(x) \varphi_{j}(t)| \right) dt \leq$$

$$\leq \sqrt{2} \sum_{1 \leq i, j \leq N; \ i \neq j} \left(\int_{0}^{2} |\varphi_{i}(t)| \ dt + \int_{0}^{2} |\varphi_{j}(t)| \ dt \right) \sqrt{|\alpha_{i,j}|} < 1,$$

wenn ε genügend klein ist. Aus (46) und (47) ergibt sich

(48)
$$\sup \int_{0}^{2} \frac{2}{\lambda_{\mu(x)}} \left(\int_{0}^{2} \left| \sum_{n=1}^{\mu(x)} \varphi_{n}(x) \varphi_{n}(t) \right| dt \right) dx < 2,$$

wobei das Supremum für alle meßbaren Funktionen $\mu(x)$ mit ganzzahligen Werten gebildet wird.

Wir setzen

$$\overline{\varphi}_n(x) = \sqrt{2} \varphi_n(2x) \Big(\int_0^2 \varphi_n^2(x) \, dx \Big)^{-1/2} \qquad (n = 1, ..., N).$$

Ist $\varepsilon(>0)$ genügend klein, so erhalten wir aus (42), (45) und (48)

$$\int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_i \overline{\varphi}_i(x) + \ldots + c_j \overline{\varphi}_j(x)| \right) dx \ge 2,$$

und

(49)
$$\sup_{0} \int_{0}^{1} \frac{2L_{v(x)}(\{\overline{\varphi}_{n}\}; x)}{\lambda_{v(x)}} dx \leq 1,$$

wobei das Supremum für alle meßbaren Funktionen v(x) mit ganzzahligen Werten gebildet ist. Die Treppenfunktionen $\bar{q}_n(x)$ bilden in [0, 1] ein orthonormiertes System. Ohne Beschränkung der Allgemeinheit kann

(50)
$$\int_{0}^{1} \left(\max_{1 \le i \le j \le N} |c_i \overline{\varphi}_i(x) + \dots + c_j \overline{\varphi}_j(x)| \right) dx = 2$$

vorausgesetzt werden.

Es sei $I_r = (a_r, b_r)$ $(r = 1, ..., \varrho)$ eine Zerlegung von [0, 1] in paarweise disjunkte Intervalle derart, daß jede Funktion $\overline{\varphi}_n(x)$ in jedem I_r konstant ist. Es sei

$$F(x) = \max_{1 \le i \le j \le N} |c_i \overline{\varphi}_i(x) + \dots + c_j \overline{\varphi}_j(x)|;$$

die Werte von F(x) in den Intervallen I_r bezeichnen wir der Reihe nach mit w_r . Nach (50) ist

(51)
$$\sum_{r=1}^{\varrho} w_r \operatorname{mes}(I_r) = 2.$$

Es seien $1 \le r_1 < ... < r_s \le \varrho$ diejenigen Indizes r, für die $w_r \ge 1$ ist. Nach (51) gilt

$$(2 \ge) \sum_{i=1}^{s} w_{r_i} \operatorname{mes}(I_{r_i}) \ge 1.$$

Es seien $J_r = (\alpha_r, \beta_r)$ $(r = 1, ..., \varrho)$ nacheinander folgende Intervalle in [0, 3] mit mes $(J_r) = \text{mes } (I_r)$ $(r \neq r_i; i = 1, ..., s)$, bzw. mit mes $(J_{r_i}) = w_{r_i}$ mes (I_{r_i}) (i = 1, ..., s), und $\overline{J_{r_i}} = (\overline{\alpha_{r_i}}, \overline{\beta_{r_i}})$ (i = 1, ..., s) nacheinander folgende Intervalle in (3, 4] mit mes $(\overline{J_{r_i}}) = \text{mes } (I_{r_i})$ (i = 1, ..., s). Wir setzen

$$\overline{\psi}_{n}(x) = \begin{cases} \overline{\varphi}_{n}(x - \alpha_{r} + a_{r}) & (x \in J_{r}; \ r \neq r_{i}; \ i = 1, \dots, s) \\ \frac{1}{w_{r_{i}}} \overline{\varphi}_{n} \left(\frac{x - \alpha_{r_{i}}}{w_{r_{i}}} + a_{r_{i}} \right) & (x \in J_{r_{i}}; \ i = 1, \dots, s), \\ \left(1 - \frac{1}{w_{r_{i}}} \right)^{1/2} \overline{\varphi}_{n}(x - \overline{\alpha}_{r_{i}} + a_{r_{i}}) & (x \in \overline{J_{r_{i}}}; \ i = 1, \dots, s), \\ 0 & \text{sonst} \end{cases}$$

(n=1,...,N). Auf Grund von (52) ist diese Definition richtig.

Die Treppenfunktionen $\overline{\psi}_n(x)$ bilden in [0, 4] ein orthonormiertes System. Es sei

$$\bar{E} = \bigcup_{\sigma=1}^{s} J_{r_{\sigma}}.$$

 \bar{E} ist einfach und es gilt

(53)
$$\operatorname{mes}(\bar{E}) \ge 1$$

nach (52). Ist $x \in E$, dann gilt offensichtlich

(54)
$$\max_{1 \le i \le j \le N} |c_i \overline{\psi}_i(x) + \dots + c_j \overline{\psi}_j(x)| = 1.$$

Es sei $\mu(x)$ eine beliebige in [0, 4] meßbare Funktion mit ganzzahligen Werten. Ist $x \in J_{r_0}$ $(r_0 \neq r_i; i = 1, ..., s)$, dann gilt

$$\int_{0}^{4} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\psi}_{n}(t) \right| dt = \sum_{r \neq r_{i} \ (i=1,\dots,s)}^{\varrho} \int_{r} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t - \alpha_{r} + a_{r}) \right| dt +$$

$$+ \sum_{i=1}^{s} \frac{1}{w_{r_{i}}} \int_{I_{r_{i}}} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n} \left(\frac{t - \alpha_{r_{i}}}{w_{r_{i}}} + a_{r_{i}} \right) \right| dt +$$

$$+ \sum_{i=1}^{s} \left(1 - \frac{1}{w_{r_{i}}} \right)^{1/2} \int_{I_{r_{i}}} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t - \overline{\alpha}_{r_{i}} + a_{r_{i}}) \right| dt =$$

$$= \sum_{r \neq r_{i} \ (i=1,\dots,s)}^{\varrho} \int_{I_{r}} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t) \right| dt + \sum_{i=1}^{s} \int_{I_{r_{i}}} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t) \right| dt +$$

$$+ \sum_{i=1}^{s} \left(1 - \frac{1}{w_{r_{i}}} \right)^{1/2} \int_{I_{r_{i}}} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t) \right| dt \leq 2L_{m}(\{\overline{\varphi}_{n}\}; x - \alpha_{r_{0}} + a_{r_{0}})$$

für m = 1, ..., N, woraus sich

(55)
$$\sum_{\substack{r=1\\r\neq r_i\ (i=1,\ldots,s)}}^{\varrho} \int_{J_r} \frac{1}{2\lambda_{\mu(x)}} \left(\int_{0}^{4} \left| \sum_{n=1}^{\mu(x)} \overline{\psi}_n(x) \overline{\psi}_n(t) \right| dt \right) dx \le$$

$$\leq \sum_{\substack{r=1\\r\neq r_i\ (i=1,\ldots,s)}}^{\varrho} \int_{I_r} \frac{L_{\mu(x-a_r+\alpha_r)}(\{\overline{\varphi}_n\};x)}{\lambda_{\mu(x-a_r+\alpha_r)}} dx$$

ergibt. Ist $x \in J_{r_{i_0}}$ $(1 \le i_0 \le s)$, dann gilt

$$\int_{0}^{4} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\psi}_{n}(t) \right| dt = \sum_{\substack{r \neq r_{i} \ (i=1,...,s) \ J_{r}}}^{2} \int_{r=1}^{m} \psi_{n}(x) \overline{\varphi}_{n}(t - \alpha_{r} + a_{r}) \right| dt + \\
+ \sum_{i=1}^{s} \frac{1}{w_{r_{i}}} \int_{J_{r_{i}}}^{s} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n} \left(\frac{t - \alpha_{r_{i}}}{w_{r_{i}}} + a_{r_{i}} \right) \right| dt + \\
+ \sum_{i=1}^{s} \left(1 - \frac{1}{w_{r_{i}}} \right)^{1/2} \int_{J_{r_{i}}}^{s} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t - \overline{\alpha}_{r_{i}} + a_{r_{i}}) \right| dt = \\
= \sum_{\substack{r=1 \ r \neq r_{i} \ (i=1,...,s)}}^{s} \int_{I_{r}}^{s} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t) \right| dt + \sum_{i=1}^{s} \int_{I_{r_{i}}}^{s} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t) \right| dt + \\
+ \sum_{i=1}^{s} \left(1 - \frac{1}{w_{r_{i}}} \right)^{1/2} \int_{I_{r_{i}}}^{s} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t) \right| dt \leq \frac{2}{w_{r_{i_{0}}}} L_{m} \left\{ \{ \overline{\varphi}_{n} \} ; \frac{x - \alpha_{r_{i_{0}}}}{w_{r_{i_{0}}}} + a_{r_{i_{0}}} \right\}$$

für m=1,...,N, woraus wir

$$(56) \qquad \sum_{i=1}^{s} \int_{J_{r_{i}}} \frac{1}{2\lambda_{\mu(x)}} \left(\int_{0}^{4} \left| \sum_{n=1}^{\mu(x)} \overline{\psi}_{n}(x) \overline{\psi}_{n}(t) \right| dt \right) dx \leq$$

$$\leq \sum_{i=1}^{s} \int_{J_{r_{i}}} \frac{L_{\mu(w_{r_{i}}(x-a_{r_{i}})+\alpha_{r_{i}})}(\{\overline{\varphi}_{n}\}; x)}{\lambda_{\mu(w_{r_{i}}(x-a_{r_{i}})+\alpha_{r_{i}})}} dx$$

erhalten. Ist aber $x \in \overline{J}_{r_{i_0}}$ $(1 \le i_0 \le s)$, dann gilt

$$\int_{0}^{4} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\psi}_{n}(t) \right| dt = \sum_{r \neq r_{i}}^{\varrho} \int_{(i=1,...,s)}^{\infty} \int_{r} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t - \alpha_{r} + a_{r}) \right| dt + \\
+ \sum_{i=1}^{s} \frac{1}{w_{r_{i}}} \int_{J_{r_{i}}}^{\infty} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n} \left(\frac{t - \alpha_{r_{i}}}{w_{r_{i}}} + a_{r_{i}} \right) \right| dt + \\
+ \sum_{i=1}^{s} \left(1 - \frac{1}{w_{r_{i}}} \right)^{1/2} \int_{I_{r_{i}}}^{\infty} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t - \overline{\alpha}_{r_{i}} + a_{r_{i}}) \right| dt = \\
= \sum_{r \neq r_{i}}^{\varrho} \int_{(i=1,...,s)}^{\infty} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t) \right| dt + \sum_{i=1}^{s} \int_{I_{r_{i}}}^{\infty} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t) \right| dt + \\
+ \sum_{i=1}^{s} \left(1 - \frac{1}{w_{r_{i}}} \right)^{1/2} \int_{I_{r_{i}}}^{\infty} \left| \sum_{n=1}^{m} \overline{\psi}_{n}(x) \overline{\varphi}_{n}(t) \right| dt \leq 2L_{m}(\{\overline{\varphi}_{n}\}; x - \overline{\alpha}_{r_{i}} + a_{r_{i}})$$

für m=1,...,N, woraus

(57)
$$\sum_{i=1}^{s} \int_{\overline{J}_{r_{i}}} \frac{1}{2\lambda_{\mu(x)}} \int_{0}^{4} \left| \sum_{n=1}^{\mu(x)} \overline{\psi}_{n}(x) \overline{\psi}_{n}(t) \right| dt \leq \sum_{i=1}^{s} \int_{I_{r_{i}}} \frac{L_{\mu(x-a_{r_{i}}+\overline{a}_{r_{i}})}(\{\overline{\varphi}_{n}\}; x)}{\lambda_{\mu(x-a_{r_{i}}+\overline{a}_{r_{i}})}} dx$$

folgt. Aus (55), (56) und (57) erhalten wir auf Grund von (49), daß

(58)
$$\int_{0}^{4} \frac{1}{2\lambda_{\mu(x)}} \left(\int_{0}^{4} \left| \sum_{n=1}^{\mu(x)} \overline{\psi}_{n}(x) \overline{\psi}_{n}(t) \right| dt \right) dx \leq 1$$

für jede in [0, 4] meßbare Funktion $\mu(x)$ mit ganzzahligen Werten besteht. Wir setzen endlich

$$\psi_n(x) = 2\overline{\psi}_n(4x) \qquad (n = 1, ..., N).$$

Weiterhin bezeichnet E die Bildmenge von \bar{E} bei der Transformation y = x/4. Auf Grund von (53), (54) und (58) ist es offensichtlich, daß die Funktionen $\psi_n(x)$ und die Menge E alle Forderungen des Hilfssatzes X befriedigen.

Hilfssatz XI. Es sei $\lambda_n \to \infty$. Ist für eine Indexfolge (0=) $n_0 < \ldots < n_k < \ldots$

$$I_1(\{\lambda_n\}; a_{n_k+1}, ..., a_{n_{k+1}}) = I_1(\{\lambda_n\}; \underbrace{0, ..., 0}_{n_k}, a_{n_k+1}, ..., a_{n_{k+1}}) \ge 16\sqrt{2} \ (k = 0, 1, ...),$$

dann gibt es ein in [0, 1] orthonormiertes System von Treppenfunktionen $\varphi_n(x)$ (n=1, 2, ...) mit (31) derart, daß die Reihe (1) in [0, 1] fast überall divergiert.

BEWEIS. Durch vollständige Induktion definieren wir eine Indexfolge (0=) k(0) < ... < k(i) < ..., ein in [0,1] orthonormiertes System von Treppenfunktionen $\varphi_n(x)$ (n=1,2,...), und eine Folge von einfachen Mengen $F_i(\subseteq [0,1])$ (i=1,2,...) mit folgenden Eigenschaften:

Für jedes i gilt

(59)
$$\lambda_{n_{k(i)}+1}^{-1} \left(1 + \sum_{j=1}^{i-1} \left(M(j) + 1 \right) \right) \le 1/8,$$

wobei

$$M(j) = \sup_{0 \le x \le 1} \int_{0}^{1} \left| \sum_{n=n_{k(j)}+1}^{n_{k(j)+1}} \varphi_n(x) \varphi_n(t) \right| dt$$

ist.

Die Mengen F_i sind stochastisch unabhängig und für jedes i gilt

(60)
$$mes(F_i) \ge 1/4$$
.

Es besteht

(61)
$$L_{n_{k(1)}}(\{\varphi_n\};x) \leq 1, \quad \sup_{0} \int_{0}^{1} \frac{1}{\lambda_{\nu(x)}} L_{\nu(x)}(\{\varphi_n\};x) dx \leq 1/8,$$

wobei das Supremum für alle meßbaren Funktionen v(x) mit ganzzahligen Werten $1 \le v(x) \le n_{k(1)}$ gebildet ist.

Für jedes i gelten

und

und

(63)
$$\sup_{Q} \int_{0}^{1} \frac{1}{\lambda_{\nu(x)}} \left(\int_{0}^{1} \left| \sum_{n=n_{R(i)}+1}^{\nu(x)} \varphi_{n}(x) \varphi_{n}(t) \right| dt \right) dx \leq 3/4,$$

wobei das Supremum für alle meßbaren Funktionen v(x) mit ganzzahligen Werten $n_{k(i)} < v(x) \le n_{k(i+1)}$ gebildet wird.

Für jedes i gilt

(64)
$$\max_{\substack{n_{k(i)}$$

Es sei k(1) die kleinste positive ganze Zahl mit $\lambda_{n_{k(1)}+1}^{-1} \leq 1/8$. Wir setzen

$$\varphi_n(x) = \begin{cases} \sqrt{8}\chi_n(8x) & (0 \le x \le 1/8), \\ 0 & \text{sonst} \end{cases}$$

 $(n=1,...,n_{k(1)})$, wobei $\chi_n(x)$ die n-te Haarsche Funktion bezeichnet. Dann gilt (61). (Siehe z. B. G. ALEXITS [1], S. 46-50.) Es sei $i_{\rm c}(\ge 0)$ eine ganze Zahl. Wir nehmen an, daß die Indizes k(i) $(i=1,...,i_0+1)$, die Treppenfunktionen $\varphi_n(x)$ $(1\le n\le n_{k(i_0+1)})$ und die einfachen Mengen F_i $(i=1,...,i_{\rm c})$ schon definiert sind derart, daß diese Funktionen in [0,1] ein orthonormiertes System bilden, diese Mengen stochastisch unabhängig sind, (61), weiterhin (59) für $i=1,...,i_{\rm c}+1$, (60), (62), (63) und (64) für $i=1,...,i_{\rm c}$ erfüllt sind.

Dann können wir eine Zerlegung von [0,1] in paarweise disjunkte Intervalle I_s $(s=1,\ldots,\sigma)$ angeben derart, daß jede Funktion $\varphi_n(x)$ $(1 \le n \le n_{k(i_0+1)})$ in jedem I_s konstant ist und jede Menge F_i $(i=1,\ldots,i_0)$ die Vereinigung gewisser I_s ist. Die zwei Hälften von I_s bezeichnen wir mit I_s' bzw. I_s'' . Wir wenden den Hilfssatz X mit der Folge $\lambda_{n_k(i_0+1)+1},\ldots,\lambda_{n_k(i_0+1)+1}$ und mit den Koeffizienten $a_{n_k(i_0+1)+1},\ldots,a_{n_k(i_0+1)+1}$ an. Die entsprechenden Funktionen bzw. die entsprechende Menge bezeichnen wir mit $\psi_n(x)$ $(n=n_{k(i_0+1)}+1,\ldots,n_{k(i_0+1)+1})$ bzw. mit E. Wir setzen

$$\varphi_{n_{k(i_0+1)}+1}(x) = \sum_{s=1}^{\sigma} \psi_{n_{k(i_0+1)}+1}(I'_s; x) - \sum_{s=1}^{\sigma} \psi_{n_{k(i_0+1)}+1}(I''_s; x)$$

$$(l = 1, \dots, n_{k(i_0+1)+1} - n_{k(i_0+1)})$$

$$F_{i_0+1} = (\bigcup_{s=1}^{\sigma} E(I'_s)) \cup (\bigcup_{s=1}^{\sigma} E(I''_s)),$$

wobei im allgemeinen für ein endliches Intervall I = [a, b]

$$f(I; x) = \begin{cases} f\left(\frac{x-a}{b-a}\right) & (a < x < b), \\ 0 & \text{sonst} \end{cases}$$

ist und für eine Menge $H \subseteq [0, 1]$ H(I) die Bildmenge von H bei der Transformation y = (b-a)x + a bedeutet.

Die Funktionen $\varphi_n(x)$ $(n = n_{k(i_0+1)} + 1, ..., n_{k(i_0+1)+1})$ sind auch Treppenfunktionen und die Menge F_{i_0+1} ist einfach. Die Mengen F_i $(i=1, ..., i_0+1)$ sind offensichtlich stochastisch unabhängig, weiterhin ist (60) auch für $i=i_0+1$ erfüllt. Durch einfache Rechnung folgt

(65)
$$\int_{0}^{1} \frac{1}{\lambda_{v(x)}} \left(\int_{0}^{1} \left| \sum_{n=n_{k(i_{0}+1)+1}}^{v(x)} \varphi_{n}(x) \varphi_{n}(t) \right| dt \right) dx \leq 1/2$$

für jede meßbare Funktion v(x) mit ganzzahligen Werten $n_{k(i_0+1)} < v(x) \le n_{k(i_0+1)+1}$. Es sei $n_{k(i_0+2)}$ die kleinste von n_k mit $n_{k(i_0+2)} > n_{k(i_0+1)}$, für die (59) im Falle $i=i_0+2$ besteht. Es sei J_1,\ldots,J_ϱ eine Zerlegung von [0,1] in paarweise disjunkte Intervalle derart, daß jede Funktion $\varphi_n(x)$ $(1 \le n \le n_{k(i_0+1)+1})$ in jedem J_r konstant ist. Die zwei Hälften von J_r bezeichnen wir mit J_r' bzw. mit J_r'' . Wir setzen

$$\varphi_{n_{k(i_0+1)+1}+l}(x) = \sum_{r=1}^{\varrho} \chi_l(J'_r\,;\,x) - \sum_{r=1}^{\varrho} \chi_l(J''_r\,;\,x) \qquad (l=1,\,\ldots,\,n_{k(i_0+2)}-n_{k(i_0+1)+1}),$$

wobei $\chi_n(x)$ die n-te Haarsche Funktion bezeichnet. Dann ist

(66)
$$\int_{0}^{1} \left| \sum_{n=n_{k(i_0+1)+1}+1}^{m} \varphi_n(x) \varphi_n(t) \right| dt = 1 \quad (0 \le x \le 1; n_{k(i_0+1)+1} < n \le n_{k(i_0+2)}).$$

Offensichtlich bilden die Treppenfunktionen $\varphi_n(x)$ $(1 \le n \le n_{k(i_0+2)})$ ein in [0, 1] orthonormiertes System, (64) ist auch für $i = i_0 + 1$ erfüllt, weiterhin folgt aus (65) und (66), daß (62) und (63) für $i = i_0 + 1$ bestehen. Die Folge $\{k(i)\}$, das Funktionensystem $\{\varphi_n(x)\}_1^{\infty}$ und die Mengenfolge $\{F_i\}_1^{\infty}$ mit den erwähnten Eigenschaften erhalten wir durch Induktion.

Ist $x \in \overline{\lim}_{i \to \infty} F_i$, dann ist die Reihe (1) wegen (64) divergent. Da die Mengen F_i stochastisch unabhängig sind und (60) für jedes i besteht, ergibt sich durch Anwendung des zweiten Borel—Cantellischen Lemmas, daß mes $(\overline{\lim}_{i \to \infty} F_i) = 1$ ist. Die Reihe (1) divergiert also in [0, 1] fast überall.

Es sei v(x) eine meßbare Funktion mit ganzzahligen Werten. Ist $n_{k(i)} < v(x) \le n_{k(i+1)}$ (i=1, 2, ...), dann gilt, auf Grund von (59), (62) und (63),

(67)
$$\frac{1}{\lambda_{v(x)}} L_{v(x)}(\{\varphi_{n}\}; x) \leq \frac{1}{\lambda_{n_{k(i)}+1}} \left(L_{n_{k(1)}}(\{\varphi_{n}\}; x) + \frac{1}{\lambda_{v(x)}} \int_{0}^{1} \left| \sum_{n=n_{k(j)}+1}^{n_{k(j)}+1} \varphi_{n}(x) \varphi_{n}(t) \right| dt + \int_{0}^{1} \left| \sum_{n=n_{k(j)}+1+1}^{n_{k(j)}+1} \varphi_{n}(x) \varphi_{n}(t) \right| dt \right\} + \frac{1}{\lambda_{v(x)}} \int_{0}^{1} \left| \sum_{n=n_{k(i)}+1}^{v(x)} \varphi_{n}(x) \varphi_{n}(t) \right| dt \leq$$

$$\leq \frac{1}{\lambda_{n_{k(t)}+1}} \left(1 + \sum_{j=1}^{i-1} \left(M(j) + 1 \right) \right) + \frac{1}{\lambda_{v(x)}} \int_{0}^{1} \left| \sum_{n=n_{k(i)}+1}^{v(x)} \varphi_{n}(t) \right| dt \leq$$

$$\leq \frac{1}{8} + \frac{1}{\lambda_{v(x)}} \int_{0}^{1} \left| \sum_{n=n_{k(i)}+1}^{v(x)} \varphi_{n}(x) \varphi_{n}(t) \right| dt.$$

E bezeichnet die Untermenge von [0, 1], in der $v(x) \le n_{k(1)}$ ist und es sei $CE = [0, 1] \setminus E$. Dann ist, auf Grund von (61), (62) und (67),

$$\int_{0}^{1} \frac{L_{v(x)}(\{\varphi_{n}\}; x)}{\lambda_{v(x)}} dx \leq \int_{E} \frac{L_{v(x)}(\{\varphi_{n}\}; x)}{\lambda_{v(x)}} dx + \frac{1}{8} \int_{CE} dx + \int_{CE} \frac{dx}{\lambda_{v(x)}} \int_{0}^{1} \left| \sum_{n=n_{k(i)}+1}^{v(x)} \varphi_{n}(x) \varphi_{n}(t) \right| dt \leq 1.$$

Also ist (31) erfüllt.

Hilfssatz XII. Es sei $\lambda_n \nearrow \infty$. $\{a_n\} \in M(\{\lambda_n\})$ gilt dann und nur dann, wenn $\lim_{n \to \infty} \left(\lim_{N \to \infty} I_1(\{\lambda_n\}; a_{n+1}, ..., a_{n+N})\right) = 0.$

Beweis. Ist (68) erfüllt, dann gibt es eine Indexfolge (0=) $n_0 < ... < n_k < ...$ mit

(69)
$$\sum_{k=0}^{\infty} I_1(\{\lambda_n\}; a_{n_k+1}, \dots, a_{n_{k+1}}) < \infty.$$

Es sei $\{\varphi_n(x)\}_1^{\infty}$ ein in [0, 1] orthonormiertes System mit (31). Aus (69) folgt

(70)
$$\sum_{k=0}^{\infty} \int_{0}^{1} \left(\max_{n_{k} < i \leq j \leq n_{k+1}} |a_{i}\varphi_{i}(x) + \ldots + a_{j}\varphi_{j}(x)| \right) dx < \infty.$$

Bezeichnet $s_n(x)$ die *n*-te Partialsumme von (1), dann ergibt sich

$$\sum_{k=0}^{\infty} \int_{0}^{1} |s_{n_{k+1}}(x) - s_{n_{k}}(x)| dx < \infty$$

nach (70), woraus wir erhalten, daß lim $s_{n_k}(x)$ fast überall existiert. Es sei $n_k < n < n_{k+1}$. Aus (70) folgt weiterhin

$$|s_n(x) - s_{n_k}(x)| \le \max_{n_k < i \le j \le n_{k+1}} |a_i \varphi_i(x) + \dots + a_j \varphi_j(x)| \to 0 \qquad (n \to \infty)$$

fast überall, womit $\{a_n\} \in M(\{\lambda_n\})$ bewiesen ist.

Ist aber (68) nicht erfüllt, dann gibt es eine Indexfolge $(0=)n_0 < ... < n_k < ...$ mit $I_1(\{\lambda_n\}; a_{n_k+1}, ..., a_{n_{k+1}}) \ge \sigma > 0$ (k=0, 1, ...). Ohne Beschränkung der Allgemeinheit kann $I_1(\{\lambda_n\}; a_{n_k+1}, ..., a_{n_{k+1}}) \ge 16\sqrt{2} \ (k=0, 1, ...)$ angenommen werden. Durch Anwendung des Hilfssatzes XI erhalten wir $\{a_n\} \notin M(\{\lambda_n\})$.

Bemerkung. Aus (68) folgt $\{a_n\} \in M(\{\lambda_n\})$ ohne der Bedingung $\lambda_n \nearrow \infty$.

Für eine Folge $\{a_n\}_{1}^{\infty}$ setzen wir

$$\|\{a_n\}; \{\lambda_n\}\|_1 = \inf \sum_{k=0}^{\infty} I_1(\{\lambda_n\}; a_{n_k+1}, \dots, a_{n_{k+1}}),$$

wobei das Infimum für alle unendlichen Indexfolgen $(0=)n_0 < ... < n_k < ...$ gebildet wird. Auf Grund von (34) und (36) folgt

(71)
$$\frac{1}{C} |a_{n_0}| \le \|\{a_n\}; \{\lambda_n\}\|_1 \le \sum_{n=1}^{\infty} |a_n| \qquad (n_0 = 1, 2, ...),$$

wobei C eine positive, absolute Konstante bedeutet. Auf Grund von (33) kann $\|\{a_n\}; \{\lambda_n\}\|_1 \le \|\{a_n\}; \infty\|_1$ leicht eingesehen werden. Aus (33) folgt $\|\{a_n\}; \{\lambda_n\}\|_1 \le \|\{a_n\}; \{\lambda_n\}\}$ $\leq \|\{a_n\}; \{\mu_n\}\|_1 \ (\lambda_n \leq \mu_n; n = 1, 2, ...).$

Satz III. Es sei $\lambda_n \nearrow \infty$. $\{a_n\} \in M(\{\lambda_n\})$ gilt dann und nur dann, $\|\{a_n\}; \{\lambda_n\}\|_1 < \infty$. $M(\{\lambda_n\})$ ist mit der Norm $\|\{a_n\}; \{\lambda_n\}\|_1$ ein Banachraum.

BEWEIS. Ist $\|\{a_n\}; \{\lambda_n\}\|_1 < \infty$, dann gilt (68), woraus sich auf Grund des Hilfssatzes XII $\{a_n\} \in M(\{\lambda_n\})$ ergibt. Ist aber $\|\{a_n\}; \{\lambda_n\}\|_1 = \infty$, dann kann (68) nicht bestehen und aus dem Hilfssatz XII folgt $\{a_n\} \notin M(\{\lambda_n\})$. $\|\{a_n\}; \{\lambda_n\}\|_1$ ist eine Norm in $M(\{\lambda_n\})$. Dazu sollen wir nun die Dreiecksungleichung beweisen.

Wir werden zeigen, daß im Falle $\lambda_n \rightarrow \infty$

(72)
$$\|\{a_n\}; \{\lambda_n\}\|_1 = \lim_{N \to \infty} I_1(\{\lambda_n\}; a_1, ..., a_N) \qquad (\{a_n\} \in M(\{\lambda_n\}))$$

besteht, woraus sich die Dreiecksungleichung ergibt. Im Falle $\{a_n\} \in M(\{\lambda_n\})$ gibt es nach der Definition von $\|\{a_n\}; \{\lambda_n\}\|_1$ eine Indexfolge $(0=)n_0 < ... < n_k < ...$ mit

(73)
$$\|\{a_n\}; \{\lambda_n\}\|_1 \leq \sum_{k=0}^{\infty} I_1(\{\lambda_n\}; a_{n_k+1}, ..., a_{n_{k+1}}) \leq \|\{a_n\}; \{\lambda_n\}\|_1 + \varepsilon,$$

wobei $\varepsilon(>0)$ beliebig angegeben ist. Es sei k_0 so groß, daß

(74)
$$\sum_{k=k_0+1}^{\infty} I_1(\{\lambda_n\}; a_{n_k+1}, \dots, a_{n_{k+1}}) < \varepsilon.$$

Wegen (35) folgt aus (73)

$$\begin{aligned} \|\{a_n\}; \, \{\lambda_n\}\|_1 &\leq I_1(\{\lambda_n\}; \, a_1, \ldots, a_{n_{k_0+1}}) + \sum_{k=k_0+1}^{\infty} I_1(\{\lambda_n\}; \, a_{n_k+1}, \ldots, a_{n_{k+1}}) \leq \\ &\leq \|\{a_n\}; \, \{\lambda_n\}\|_1 + \varepsilon. \end{aligned}$$

Daraus und aus (74) ergibt sich

$$\|\{a_n\};\{\lambda_n\}\|_1 - \varepsilon \leq I_1(\{\lambda_n\};a_1,...,a_{n_{k_0+1}}) \leq \|\{a_n\};\{\lambda_n\}\|_1 + \varepsilon.$$

Da $I_1(\{\lambda_n\}; a_1, ..., a_N) \le I_1(\{\lambda_n\}; a_1, ..., a_{N+1})$ (N=1, 2, ...) ist, erhalten wir daraus

$$\|\{a_n\}; \{\lambda_n\}\|_1 - \varepsilon \leq \lim_{N \to \infty} I_1(\{\lambda_n\}; a_1, ..., a_N) \leq \|\{a_n\}; \{\lambda_n\}\|_1 + \varepsilon.$$

Da $\varepsilon(>0)$ beliebig ist, folgt (72).

Die Vollständigkeit von $M(\{\lambda_n\})$ ergibt sich leicht auf Grund von (71), daraus, daß $I_1(\{\lambda_n\}; c_1, ..., c_N)$ in den Variablen $c_1, ..., c_N$ stetig ist. Damit haben wir Satz III bewiesen.

Aus den Beweisen der Hilfssätze XI und XII erhalten wir: Es sei $\lambda_n \nearrow \infty$. Ist $\{a_n\} \notin M(\{\lambda_n\}), dann \ gibt \ es \ ein \ in \ [0,1] \ orthonormiertes \ System \ von \ Treppenfunk$ tionen $\varphi_n(x)$ (n=1, 2, ...) mit (31) derart, daß die Reihe (1) in [0, 1] fast überall divergiert.

Aus dem Satz III folgt: Es sei $\lambda_n \nearrow \infty$. Ist $\{a_n\} \in M(\{\lambda_n\})$, dann gibt es eine positive, monoton ins Unendliche strebende Folge $\{\mu_n\}$ mit $\{a_n\mu_n\} \in M(\{\lambda_n\})$.

Aus dem Hilfssatz XII und (72) ergibt sich: $M(\{\lambda_n\})$ $(\lambda_n \nearrow \infty)$ ist separabel.

(Die endlichen rationalen Folgen liegen in $M(\{\lambda_n\})$ überall dicht.) Wir erwähnen einige Probleme. Wie kann $M(\{\lambda_n\})$ mit $\lambda_n = O(1)$ charakterisiert werden? Gelten die entsprechenden Behauptungen anstatt p=1 für 1 ?Ist $\|\{a_n\}; \{\lambda_n\}\|_1 \le \|\{b_n\}; \{\lambda_n\}\|_1 (|a_n| \le |b_n|; n = 1, 2, ...)$ richtig? Gibt es im Falle $\{a_n\} \notin M(\{\lambda_n\})$ eine positive, monoton zu 0 strebende Folge $\{\mu_n\}$ mit $\{\mu_n a_n\} \notin M(\{\lambda_n\})$? Gilt (72) für jede Folge $\{a_n\}$?

Um noch einen weiteren Satz zu beweisen, werden wir einige Hilfssätze vorausschicken.

Hilfssatz XIII. Es sei $p(\ge 2)$ eine natürliche Zahl. Dann gibt es ein in [0, 5] orthonormiertes System von Treppenfunktionen $f_l(p; x)$ (l=1, ..., 2p) mit folgenden Eigenschaften: Es gilt

$$\int_{0}^{5} \left| \sum_{k=1}^{n} f_{l}(p; x) f_{l}(p; t) \right| dt \le A \log^{2} p \qquad (0 \le x \le 5; n = 1, ..., 2p)$$

und für jedes $x \in [2, 3]$ existiert ein Index m(x) (<2p) derart, da β die Funktionswerte $f_l(p; x)$ (l = 1, ..., m(x)) positiv sind und

$$\sum_{l=1}^{m(x)} f_l(p; x) \ge B\sqrt{p} \log p$$

besteht, wobei A und B positive, absolute Konstanten bedeuten.

Hilfssatz XIII ist bekannt. (Siehe K. TANDORI [4].)

Hilfssatz XIV. Es seien $p(\ge 2)$, q natürliche Zahlen und $c \ge 1$. Dann gibt es ein [0, 1] orthonormiertes System von Treppenfunktionen $g_l(c, p; q; x)$ (l = 1, ..., 2pq) mit folgenden Eigenschaften. Es gilt

$$\int_{0}^{1} \left| \sum_{l=1}^{n} g_{l}(c, p, q; x) g_{l}(c, p, q; t) \right| dt \le A \log^{2} p \qquad (0 \le x \le 1; n = 1, ..., 2pq),$$

es gibt eine einfache Menge $E(\subseteq [0, 1])$ mit mes (E) = 1/5c derart, daß für jedes $x \in E$ ein Index m(x) (<2pq) mit $g_1(c, p, q; x) \ge 0$ (l = 1, ..., m(x)) und

$$\sum_{l=1}^{m(x)} g_l(c, p, q; x) \ge \sqrt{5} B \sqrt{cpq} \log p$$

existiert, wobei A und B positive, absolute Konstanten sind.

BEWEIS. Wir wenden den Hilfssatz XIII im Falle p an. Wir setzen

$$g_{2kp+1}(c, p, q; x) = \begin{cases} \sqrt{5qc} f_l(p, 5qc(x-k/qc)) & (k/qc \le x < (k+1)/qc; k = 0, ..., q-1), \\ 0 & \text{sonst} \end{cases}$$

(l=1, ..., 2p). Es sei

$$E = \bigcup_{k=0}^{q-1} \left[\frac{k}{qc} + \frac{2}{5qc}, \frac{k}{qc} + \frac{3}{5qc} \right].$$

Diese Funktionen und diese Menge befriedigen alle Forderungen des Hilfssatzes XIV.

Es sei $\{\lambda_n\}$ eine monoton ins Unendliche strebende, von unten konkave Folge mit $\lambda_1 \ge 1$ und $\lambda_n \le (\log n)^2$ $(n \ge 2)$. (Im folgenden verwenden wir Logarithmus mit der Basis 2.) Die Indexfolge $\{m_k\}$ definieren wir folgenderweise. Es sei $m_1 = 1$ und m_{k+1} sei die natürliche Zahl mit $\lambda_{m_{k+1}} > 2\lambda_{m_k+1}$ und $\lambda_{m_{k+1}-1} \le 2\lambda_{m_k+1}$ $(k=1,2,\ldots)$. Wegen der Konkavität gilt

$$\frac{\lambda_{2m_k} - \lambda_{m_k+1}}{m_k - 1} \le \frac{\lambda_{m_k+1} - \lambda_{m_1}}{m_k - m_1 + 1},$$

woraus

$$\lambda_{2m_k} - \lambda_{m_k+1} \leq \frac{m_k - m_1}{m_k} \lambda_{m_k+1} - \frac{m_k - m_1}{m_k} \lambda_{m_1} \leq \lambda_{m_k+1}$$

folgt. Nach der Definition von m_{k+1} gilt also $m_{k+1} > 2m_k$ $(k \ge 2)$. Daraus erhalten wir

$$\log^2(m_{k+1}-m_k) > \log^2 m_k \ge \lambda_{m_k} \qquad (k=2, 3, ...).$$

Ist k genügend groß, dann gibt es eine natürliche Zahl \bar{q}_k mit

(75)
$$\frac{\lambda_{m_k}}{4} \le A \log^2 \left[\frac{m_{k+1} - m_k}{2\bar{q}_k} \right] \le \frac{\lambda_{m_k}}{3},$$

wobei A die im Hilfssatz XIV erwähnte Konstante ist und $[\alpha]$ den ganzen Teil von α bezeichnet. Ist k genügend groß, dann besteht

$$\lambda_{m_k}/4 \ge 1.$$

Nach der Definition von m_k gilt $\lambda_{m_k} > 2^{k-1} \lambda_{m_1+1}$ (k=2,3,...). Ist k genügend groß, dann erhalten wir durch einfache Rechnung

(77)
$$\frac{1}{3}(\lambda_{m_1}+\ldots+\lambda_{m_k})+(k+2) \leq \frac{1}{2}\lambda_{m_{k+1}} \qquad (k=0,1,\ldots).$$

Wir bezeichnen der Reihe nach mit $n_1, n_2, ...$ diejenigen Indizes m_k , für die (75), (76) und (77) bestehen; mit $q_1, q_2, ...$ bezeichnen wir der Reihe nach die entsprechenden \bar{q}_k ($n_0 = 1$). Dann gelten

(78)
$$\lambda_{n_k}/4 \ge 1$$
 $(k = 1, 2, ...),$

(79)
$$\frac{\lambda_{n_k}}{4} \le A \log^2 \left[\frac{n_{k+1} - n_k}{2q_k} \right] \le \frac{\lambda_{n_k}}{3} \qquad (k = 1, 2, ...)$$

und

(80)
$$\frac{1}{3} (\lambda_{n_1} + \ldots + \lambda_{n_k}) + (k+2) \leq \frac{1}{2} \lambda_{n_{k+1}} \qquad (k=0,1,\ldots).$$

Hilfssatz XV. Es sei $\{\lambda_n\}$ eine monoton ins Unendliche strebende, von unten konkave Folge mit $\lambda_1 \ge 1$ und $\lambda_n = O(\log^2 n)$. Befriedigt die positive, monoton zu 0 strebende Folge $\{a_n\}$ die Bedingung

$$\sum_{n=n_k}^{n_{k+1}-1} a_n^2 \le C a_{n_{k+1}-1}^2 (n_{k+1}-n_k) \qquad (k=0,1,\ldots)$$

mit einer positiven Konstante C und gilt

$$\sum_{n=1}^{\infty} a_n^2 \, \lambda_n = \infty,$$

dann gibt es ein in [0, 1] orthonormiertes System $\{\varphi_n(x)\}_1^{\infty}$ mit (32) derart, da β die Reihe (1) in [0, 1] fast überall divergiert.

Beweis. Ohne Beschränkung der Allgemeinheit kann $\lambda_n \leq \log^2 n \ (n \geq 2)$ vorausgesetzt werden. Es sei

$$p_k = \left[\frac{n_{k+1} - n_k}{2q_k}\right] \quad \text{und} \quad c_k = \left(\min\left(1, \lambda_{n_k}(n_{k+1} - n_k)a_{n_{k+1}-1}^2\right)\right)^{-1} \quad (k = 1, 2, \ldots).$$

Aus unseren Annehmen folgt

$$\sum_{k=1}^{\infty} c_k^{-1} = \infty.$$

Durch vollständige Induktion werden wir ein in [0, 1] orthonormiertes System von Treppenfunktionen $\varphi_n(x)$ (n=1, 2, ...) und eine Folge der einfachen Mengen $E_i \subseteq [0, 1]$ (i=1, 2, ...) definieren mit folgenden Eigenschaften:

Die Mengen E_i sind stochastisch unabhängig und für i=1, 2, ... gilt

(82)
$$\operatorname{mes}(E_i) = 1/5c_i;$$
 Es gilt

(83)
$$\int_{0}^{1} \left| \sum_{n=1}^{m} \varphi_{n}(x) \varphi_{n}(t) \right| dt \leq 1 \qquad (0 \leq x \leq 1; 1 \leq m < n_{1})$$

und für jedes i = 1, 2, ... besteht

(84)
$$\int_{n=n_i}^{1} \left| \sum_{n=n_i}^{m} \varphi_n(x) \varphi_n(t) \right| dt \leq \frac{\lambda_{n_i}}{3} + 1 \quad (0 \leq x \leq 1; \ n_i \leq m < n_{i+1});$$

Für jedes i=1, 2, ... gilt

(85)
$$\max_{\substack{n_i \equiv p \equiv q < n_{i+1} \\ q \neq q}} |a_p \varphi_p(x) + \dots + a_q \varphi_q(x)| \ge \sqrt{5} \frac{B}{4\sqrt{A}} \qquad (x \in E_i),$$

wobei A und B die im Hilfssatz XIV erwähnten Konstanten bedeuten.

Es sei $\varphi_n(x) = \chi_n(x)$ $(n=1, ..., n_1-1)$, wo $\chi_n(x)$ die n-te Haarsche Funktion bezeichnet. Dann gilt (83). Wir nehmen an, daß die Treppenfunktionen $\varphi_n(x)$ $(n=1, ..., n_{k_0}-1; k_0 \ge 1)$ und die einfachen Mengen $E_i(\subseteq [0, 1])$ $(i=1, ..., k_0-1)$ schon definiert sind derart, daß diese Funktionen in [0, 1] ein orthonormiertes System bilden, diese Mengen stochastisch unabhängig sind, und (83), weiterhin (82), (84) und (85) für $i=1, ..., k_0-1$ erfüllt sind.

Dann gibt es eine Zerlegung von [0,1] in paarweise disjunkte Intervalle I_r $(r=1,...,\varrho)$ derart, daß jede Funktion $\varphi_n(x)$ $(n=1,...,n_{k_0}-1)$ in jedem I_r konstant ist und jede Menge E_i $(i=1,...,k_0-1)$ die Vereinigung gewisser I_r ist. Die zwei Hälften von I_r bezeichnen wir mit I_r' bzw. mit I_r'' . Wir wenden den Hilfssatz XIV im Falle $q=q_{k_0}, p=p_{k_0}, c=c_{k_0}$ an. Die entsprechenden Funktionen bzw. die entsprechende Menge bezeichnen wir mit $\overline{\varphi}_n(x)$ $(n=1,...,2p_{k_0}q_{k_0})$ bzw. mit \overline{E} . Wir setzen

$$\varphi_{n_{k_0}+n-1}(x) = \sum_{r=1}^{g} \overline{\varphi}_n(I'_r; x) - \sum_{r=1}^{g} \overline{\varphi}_n(I''_r; x) \qquad (n=1, ..., 2p_{k_0}q_{k_0})$$

und

$$E_{k_0} = \bigl(\bigcup_{r=1}^{\varrho} \overline{E}(I_r')\bigr) \cup \bigl(\bigcup_{r=1}^{\varrho} \overline{E}(I_r'')\bigr).$$

Die Menge E_{k_0} ist einfach und die Mengen E_i $(i=1,...,k_0)$ sind offensichtlich stochastisch unabhängig. Auf Grund des Hilfssatzes XIV gilt (82) für $i=k_0$. Die

Funktionen $\varphi_n(x)$ $(n_{k_0} \le n < n_{k_0} + 2p_{k_0}q_{k_0})$ sind Treppenfunktionen. Auf Grund von (79) gilt

(86)
$$\int_{0}^{1} \left| \sum_{n=n_{k_0}}^{m} \varphi_n(x) \varphi_n(t) \right| dt \leq \frac{\lambda_{n_{k_0}}}{3} \qquad (0 \leq x \leq 1; n_{k_0} \leq n < n_{k_0} + 2p_{k_0} q_{k_0}).$$

Auf Grund der Positivität und der Monotonität der Folge $\{a_n\}$ ergibt sich durch Anwendung des Hilfssatzes XIV, mit Rücksicht auf (78) und (79),

(87)
$$\max_{n_{k_0} \le p \le q < n_{k_0} + 2p_{k_0}q_{k_0}} |a_p \varphi_p(x) + \dots + a_q \varphi_q(x)| \ge \sqrt{5} \frac{B}{4\sqrt{A}} \qquad (x \in E_{k_0}).$$

Nach der Definition von n_k gilt $n_k + 2p_{k_0}q_{k_0} < n_{k_0+1} - 1$. Da die Funktionen $\varphi_n(x)$ $(1 \le n < n_{k_0} + 2p_{k_0}q_{k_0})$ Treppenfunktionen sind, können wir eine Zerlegung von [0, 1] in paarweise disjunkte Intervalle J_s $(s = 1, ..., \sigma)$ angeben derart, daß jede Funktion $\varphi_n(x)$ $(1 \le n < n_{k_0} + 2p_{k_0}q_{k_0})$ in jedem J_s konstant ist. Die zwei Hälften von J_s bezeichnen wir mit J_s' bzw. mit J_s'' . Wir setzen

$$\varphi_{n_{k_0}+2p_{k_0}q_{k_0}+n-1}(x) = \sum_{s=1}^{\sigma} \chi_n(J_s'; x) - \sum_{s=1}^{\sigma} \chi_n(J_s''; x) \ (n=1, \ldots, n_{k_0+1}-n_{k_0}-2p_{k_0}q_{k_0}),$$

wobei $\chi_n(x)$ die *n*-te Haarsche Funktion bezeichnet. Offensichtlich bilden die Treppenfunktionen $\varphi_n(x)$ $(1 \le n \le n_{k_0+1}-1)$ ein orthonormiertes System in [0, 1]. Aus (87) folgt, daß (85) für $i=k_0$ besteht. Weiterhin gilt offensichtlich

$$\int_{0}^{1} \left| \sum_{n=n_{k_0}+2p_{k_0}q_{k_0}}^{m} \varphi_n(x) \varphi_n(t) \right| dt \le 1 \qquad (0 \le x \le 1; \ n_{k_0} + 2p_{k_0}q_{k_0} \le m < n_{k_0+1}).$$

Daraus und aus (86) folgt, daß (84) für $i=k_0$ besteht.

Die Funktionen $\varphi_n(x)$ und die Mengen E_i mit den erwähnten Eigenschaften erhalten wir durch Induktion.

Gilt $x \in \overline{\lim}_{i \to \infty} E_i$, dann ist die Reihe (1) wegen (85) divergent. Da die Mengen E_i stochastisch unabhängig sind, ergibt sich aus (81) und (82), durch Anwendung des zweiten Borel—Cantellischen Lemmas, daß mes $(\overline{\lim}_{i \to \infty} E_i) = 1$ ist. Also divergiert die Reihe (1) in [0, 1] fast überall. Aus (80), (83) und (84) erhalten wir leicht, daß (32) für dieses System $\{\varphi_n(x)\}$ erfüllt wird.

Satz IV. Es gilt

(88)
$$\|\{a_n\}; \{\lambda_n\}\|_1 \leq A_1 \left(\sum_{n=1}^{\infty} a_n^2 \lambda_n\right)^{1/2}$$

mit einer positiven, absoluten Konstante A_1 . Es sei $\{\lambda_n\}$ eine monoton ins Unendliche strebende, von unten konkave Folge mit $\lambda_n = O(\log^2 n)$. Befriedigt die positive, monoton

zu 0 strebende Folge {an} die Bedingung

$$\sum_{n=n_k}^{n_{k+1}-1} a_n^2 \le C a_{n_{k+1}-1}^2 (n_{k+1}-n_k) \qquad (k=0,1,\ldots)$$

mit einer positiven, absoluten Konstante C, dann gilt

(89)
$$\|\{a_n\}; \{\lambda_n\}\|_1 \ge A_2 \left(\sum_{n=1}^{\infty} a_n^2 \lambda_n\right)^{1/2},$$

wo A2 eine von der Folge {an} unabhängige Konstante ist.

BEWEIS. Es sei $\sum_{n=1}^{\infty} a_n^2 \lambda_n < \infty$ und $\{\varphi_n(x)\}_1^{\infty}$ bezeichne ein in [0, 1] orthonormiertes System mit (31). Die n-te Partialsumme der Reihe (1) bzw. der Reihe $\sum_{n=1}^{\infty} \sqrt[N]{\lambda_n} a_n \varphi_n(x)$ bezeichnen wir mit $s_n(x)$ bzw. mit $s_n^*(x)$. Durch Anwendung der Methode von S. KACZMARZ—A. N. KOLMOGOROFF—G. SELIVERSTOFF (siehe z. B. G. ALEXITS [1], S. 172—174) kann

(90)
$$|s_n^*(x)| \le \sqrt{\lambda_n} F_N(x)$$
 $(0 \le x \le 1; n = N, N+1, ...)$

mit

(91)
$$\int_{0}^{1} F_{N}(x) dx \leq M \left(\sum_{n=N}^{\infty} a_{n}^{2} \lambda_{n} \right)^{1/2}$$

bewiesen werden, wobei $M(\ge 1)$ eine absolute Konstante ist. Für $n \ge m \ge N$ setzen wir

$$s_{n}(x) - s_{m-1}(x) = \sum_{k=m}^{n} \frac{1}{\sqrt{\lambda_{k}}} \sqrt{\lambda_{k}} a_{k} \varphi_{k}(x) =$$

$$= \sum_{k=m}^{n-1} \left(\frac{1}{\sqrt{\lambda_{k}}} - \frac{1}{\sqrt{\lambda_{k+1}}} \right) |s_{k}^{*}(x) - s_{m-1}^{*}(x)| + \frac{1}{\sqrt{\lambda_{n}}} |s_{n}^{*}(x) - s_{m-1}^{*}(x)|.$$

Daraus und aus (90) ergibt sich

$$|s_{n}(x) - s_{m-1}(x)| \leq \sum_{k=m}^{\infty} \left(\frac{1}{\sqrt{\lambda_{k}}} - \frac{1}{\sqrt{\lambda_{k+1}}} \right) |s_{k}^{*}(x) - s_{N-1}^{*}(x)| +$$

$$+ |s_{m-1}^{*}(x) - s_{N-1}^{*}(x)| \sum_{k=m}^{\infty} \left(\frac{1}{\sqrt{\lambda_{k}}} - \frac{1}{\sqrt{\lambda_{k+1}}} \right) + 2F_{N}(x) \leq$$

$$\leq \sum_{k=N}^{\infty} \left(\frac{1}{\sqrt{\lambda_{k}}} - \frac{1}{\sqrt{\lambda_{k+1}}} \right) |s_{k}^{*}(x) - s_{N-1}^{*}(x)| + 4F_{N}(x).$$

Durch einfache Rechnung erhalten wir

$$\int_{0}^{1} \left(\sum_{k=N}^{\infty} \left(\frac{1}{\sqrt{\lambda_{k}}} - \frac{1}{\sqrt{\lambda_{k+1}}} \right) |s_{k}^{*}(x) - s_{N-1}^{*}(x)| \right) dx \leq \frac{1}{\sqrt{\lambda_{N}}} \sqrt{\sum_{k=N}^{\infty} \lambda_{k} a_{k}^{2}}.$$

Nach (91) ist also

$$\int_{0}^{1} \left(\sup_{N \le m \le n} |s_n(x) - s_{m-1}(x)| \right) dx \le \left(4M + \frac{1}{\sqrt{\lambda_N}} \right) \sqrt{\sum_{k=N}^{\infty} \lambda_k a_k^2},$$

woraus

(92)
$$\lim_{n\to\infty} \left(\lim_{N\to\infty} I_1(\{\lambda_n\}; a_{n+1}, \dots, a_N) \right) = 0$$

und

(93)
$$\lim_{N \to \infty} I_1(\{\lambda_n\}; a_1, ..., a_N) \le 5M \left(\sum_{n=1}^{\infty} a_n^2 \lambda_n\right)^{1/2}$$

sich ergeben. Aus (92) erhalten wir durch Anwendung der Bemerkung nach dem Hilfssatz XII $\{a_n\} \in M(\{\lambda_n\})$. Nach (72) und (93) ergibt sich (88).

Es sei $\|\{a_n\}; \{\lambda_n\}\|_1 < \infty$. Dann gilt $\sum_{n=1}^{\infty} a_n^2 \lambda_n < \infty$ auf Grund des Hilfssatzes XV.

Also besteht (89) mit einer Konstante A_2 . Wir werden zeigen, daß A_2 von der Folge $\{a_n\}$ unabhängig bestimmt werden kann. Im entgegengesetzten Falle gibt es Folgen $\{a_n(m)\}_1^{\infty}$ (m=1, 2, ...), die die Forderungen des Satzes IV befriedigen, derart, daß

$$\|\{a_n(m)\}; \{\lambda_n\}\|_1 \le \frac{1}{m^4} \left(\sum_{n=1}^{\infty} a_n^2(m)\lambda_n\right)^{1/2} \qquad (m=1, 2, \ldots).$$

Man kann $\|\{a_n\}; \{\lambda_n\}\|_1 = 1/m^2 \ (m=1, 2, ...)$ voraussetzen. Dann gilt

$$\sum_{k=N}^{\infty} (n_{k+1} - n_k) a_{n_{k+1}-1}^2(m) \lambda_{n_k} \to \infty \qquad (m \to \infty; N = 1, 2, ...).$$

Auf Grund dieser Relation und von (71) kann man durch Induktion zwei Indexfolgen $(0=)v_0 < ... < v_k < ...$ und $(1 \le) m_1 < ... < m_k < ...$ mit

(94)
$$\sum_{k=v_{l-1}}^{v_l-1} (n_{k+1} - n_k) a_{n_{k+1}-1}^2 (m_l) \lambda_{n_k} \ge 1 \qquad (l = 1, 3, ...)$$
 und
$$a_{n_{v_l}-1}(m_l) \ge a_{n_{v_l}}(m_{l+1}) \qquad (l = 1, 2, ...)$$

angeben. Es sei $c_{n_{v_l}+n} = a_{n_{v_l}+n}(m_{l+1})$ $(n=0, ..., n_{v_{l+1}}-n_{v_l}-1; l=1, 2, ...)$ und $c_n = a_n(m_1)$ $(1 \le n \le n_{v_l})$. Für die Folge $\{c_n\}$ sind die Bedingungen des Hilfssatzes

XV erfüllt und auf Grund von (94) ist $\sum_{n=1}^{\infty} c_n^2 \lambda_n = \infty$. Durch Anwendung des Hilfssatzes XV ergibt sich also $\{c_n\} \in M(\{\lambda_n\})$.

Es seien

$${c_n(1)}_1^\infty = {a_1(m_1), ..., a_{n_{v_1}-1}(m_1), 0, ...},$$

$$\{c_n(l+1)\}_1^{\infty} = \{\widehat{0, ..., 0}, a_{n_{v_l}}(m_{l+1}), ..., a_{n_{v_{l+1}}-1}(m_{l+1}), 0, ...\}$$

(l=1, 2, ...). Offensichtlich besteht

$$\{c_n\}_1^{\infty} = \sum_{l=1}^{\infty} \{c_n(l)\}_1^{\infty}$$

und

$$\|\{c_n(l)\}; \{\lambda_n\}\|_1 \le \|\{a_n(m_l)\}; \{\lambda_n\}\|_1 \qquad (l=1, 2, ...).$$

Auf Grund dieser Relationen erhalten wir

$$\|\{c_n\}; \{\lambda_n\}\|_1 \leq \sum_{l=1}^{\infty} \|\{c_n(l)\}; \{\lambda_n\}\|_1 \leq \sum_{l=1}^{\infty} \|\{a_n(m_l)\}; \{\lambda_n\}\|_1 = \sum_{l=1}^{\infty} \frac{1}{m_l^2} < \infty,$$

woraus sich $\{c_n\} \in M(\{\lambda_n\})$ ergibt. Die Ungleichung (89) besteht also mit einer von der Folge $\{a_n\}$ unabhängigen, positiven Konstante A_2 . Damit haben wir Satz IV bewiesen.

Literatur

- G. ALEXITS, [1] Convergence problems of orthogonal series, Budapest, 1961.
- K. TANDORI, [1] Über die Konvergenz der Orthogonalreihen II, Acta Sci. Math. Szeged, 25 (1964), 219 - 232
 - [2] Über die Konvergenz der Orthogonalreihen, Acta Sci. Math. Szeged, 24 (1963), 139 - 151.

 - [3] Über die orthogonalen Funktionen, I., Acta Sci. Math. Szeged, 18 (1957), 57-130.
 [4] Über die orthogonalen Funktionen V (Genaue Weylsche Multiplikatorfolgen), Acta Sci. Math. Szeged, 20 (1959), 1-13.

(Eingegangen am 13. Juli 1964.)