On integervalued generalized q-additive solutions of linear recursions

By CS. SÁRVÁRI (Pécs)

Abstract. Let be given a natural number $q>1$. The system $\left\{R_{0}, R_{1}, \ldots\right\}$ of sets

$$
R_{i}=q^{i}\{0,1, \ldots, q-1\}=\left\{q^{i} \cdot m \mid m=0,1, \ldots, q-1\right\} \quad(i=0,1, \ldots)
$$

is called the numbers system of basis q. Fuctions being additive with respect to the numbers systsem of base q are called q-additive functions. (A. O. GElfond. [1]) Let

$$
P(x)=a_{k} x^{k}+\cdots+a_{1} x+a_{0}, \quad P(x) \in \mathbb{Z}[x]
$$

and

$$
P(E) f(n):=a_{k} f(n+k)+\cdots+a_{1} f(n+1)+a_{0} f(n),
$$

where $f: \mathbb{N}_{0} \rightarrow \mathbb{Z}$.
We give necessary and sufficient condition to existence of an integervalued generalized q-additive solution of the linear recursion

$$
P(E) f(n)=c \cdot n \quad\left(\forall n \in \mathbb{N}_{0}\right)
$$

Introduction. We write $\mathbb{Z}, \mathbb{N}, \mathbb{N}_{0}$ and \mathbb{C} for the sets of integers, positive integers, non-negative integers and complex numbers, respectively.

Definition 1.1. Let $R_{i} \subset \mathbb{N}_{0}(i=1, \ldots)$. The system $R=\left\{R_{0}, R_{1}, \ldots\right\}$ is called an R-system if
(a) $0 \in R_{i}$ and $1<\operatorname{card} R_{i}<\infty(i=0,1, \ldots)$;
(b) for every $0 \leq i<j$, the least positive element of R_{i} is less than the least positive element of R_{j};
(c) each $n \in \mathbb{N}_{0}$ admits a unique decomposition of the form

$$
\begin{equation*}
n=\sum_{i=0}^{s} r_{i} \quad\left(r_{i} \in R_{i} ; s \geq 1\right) \tag{1.2}
\end{equation*}
$$

Definition 1.3. Given an R-system system R, a function $f: \mathbb{N}_{0} \rightarrow \mathbb{C}$ is said to be R-additive if

$$
f(0)=0 \quad \text { and } \quad f(n)=f\left(r_{0}\right)+\cdots+f\left(r_{s}\right)
$$

with the decomposition (1.2) of the number n. Given a natural number $q>1$, the system $\left\{R_{0}, R_{1}, \ldots\right\}$ of the sets

$$
R_{i}=q^{i}\{0,1, \ldots, q-1\}=\left\{q^{i} \cdot m \mid m=0,1, \ldots, q-1\right\} \quad(i=0,1, \ldots)
$$

is called the number system of basis q. Functions being additive with respect to the number system of base q are called q-additive functions.

The concept of q-additivity goes back to A. O. Gelfond [1]. The concept of R-additivity was introduced by J. Fejér [2] as a generalization of q-additivity. For any complex constant c, the function $f(n)=c \cdot n$ is R-additive with respect to every R-system. Let

$$
P(x)=a_{k} x^{k}+\cdots+a_{1} x+a_{0}, \quad P(x) \in \mathbb{Z}[x] .
$$

For any function $f: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ we write

$$
\begin{align*}
& P(E) f(n) \tag{1.4}\\
& \quad:=a_{k} f(n+k)+a_{k-1} f(n+k-1)+\cdots+a_{1} f(n+1)+a_{0} f(n) .
\end{align*}
$$

Consider the condition

$$
P(E) f(n) \equiv 0 \quad(\bmod n) \quad(\forall n \in \mathbb{N})
$$

Hence, for R-additive functions $f: \mathbb{N}_{0} \rightarrow \mathbb{Z}$, it follows

$$
\begin{equation*}
P(E) f(n)=c \cdot n \quad(\forall n \in \mathbb{N}) \tag{1.5}
\end{equation*}
$$

with a suitable rational integer c (see [3], [4]). In the case $c=0$, (1.5) can obviously be solved and the only interesting task is to investigate the structure of the solutions. Our aim in this paper will be the investigation of the solvability of (1.5) for $c \neq 0$.

Theorem. Given an R-system R, let $d>2, P \in \mathbb{Z}[x]$ with $\operatorname{deg} P<$ $d-2$ and let $R_{0}=\{0,1, \ldots, d-1\}$ in the system R. Furthermore let

$$
P_{1}(x)=\left(P(x), \frac{x^{d}-1}{x-1}\right), \quad P_{2}(x)=\frac{P(x)}{P_{1}(x)}
$$

and let $c \neq 0$ be a fixed constant. Then the linear recursion

$$
\begin{equation*}
P(E) f(n)=c \cdot n \quad\left(\forall n \in \mathbb{N}_{0}\right) \tag{2.1}
\end{equation*}
$$

admits an integervalued R-additive solution if and only if
$P(1) \neq 0$ and $P_{2}(1) \mid c$ furthermore
(a) $2 P_{2}(1) \mid c$ whenever $\operatorname{deg} P_{1}(x) \geq 1$ and $P^{\prime}(1)=0$ and $(x+1) \mid P_{1}(x)$,
(b) $P_{2}^{2}(1) \mid P_{2}^{\prime}(1) \cdot c$ whenever $\operatorname{deg} P_{1}(x) \geq 1$ and $P^{\prime}(1)=0$,
(c) $P^{\prime}(1)=0$ whenever $P_{1}(x)=1$.

We shall make use of the following lemma.
Lemma. Let $c \neq 0$ be a complex constant, $R_{0}=\{0,1,2, \ldots, d-1\}$ and let $P^{*}(x) \in \mathbb{C}[x]$ be a polynomial of degree at most $d-2$. Then there exists an R-additive function $f(n)$ satisfying the condition

$$
P^{*}(E) f(n)=c \quad\left(\forall n \in \mathbb{N}_{0}\right)
$$

if and only if the polynomial $P^{*}(x)$ is of the form $P^{*}(x)=(x-1) P(x)$ where $P(1) \neq 0$. The solutions are precisely the following functions $f(n)$:

$$
\begin{equation*}
f(n)=\frac{c}{P(1)} \cdot n+\sum_{j=0}^{d-1} b_{j} \rho^{j n}=\frac{c}{P(1)} \cdot n+g(n) \tag{2.2}
\end{equation*}
$$

where $\rho=\exp (2 \pi i / d)$ and the coefficients $b_{j}(j=0, \ldots, d-1)$ have the following properties

$$
\begin{aligned}
& \text { (i) } b_{j}=0 \quad \text { if } \quad P^{*}\left(\rho^{j}\right) \neq 0 \quad(j=0,1, \ldots, d-1), \\
& \text { (ii) } \sum_{j=0}^{d-1} b_{j}=0
\end{aligned}
$$

Proof. See [2].
Proof of the Theorem. If $f(n)$ fulfills the equation (2.1) then

$$
\begin{equation*}
P^{*}(E) f(n)=\Delta P(E) f(n)=c \quad\left(\forall n \in \mathbb{N}_{0}\right) \tag{2.3}
\end{equation*}
$$

where $P^{*}(x)=(x-1) P(x)$. According to the Lemma, the linear recursion (2.3) has an R-additive solution $f(n)$ if and only if $P(1) \neq 0$. The solutions have the form (2.2) and satisfy conditions (i) and (ii).

Let $P(n)$ be of the form (1.4) and let $f(n)$ be a solution of (2.3). Then, on the one hand, we have

$$
\begin{aligned}
P(E) f(n)= & P(E)\left(\frac{c}{P(1)} n+g(n)\right)=P(E) \frac{c}{P(1)} n+P(E) g(n) \\
= & a_{k} \frac{c}{P(1)}(n+k)+a_{k-1} \frac{c}{P(1)}(n+k-1)+\cdots+a_{1} \frac{c}{P(1)}(n+1) \\
& +a_{0} \frac{c}{P(1)} n+0+b_{0}\left(a_{k}+\cdots+a_{0}\right) \\
= & P(E) \frac{c}{P(1)} n+P^{\prime}(1) \frac{c}{P(1)}+b_{0} P(1)=c \cdot n,
\end{aligned}
$$

that is

$$
\begin{equation*}
\frac{P^{\prime}(1)}{P(1)} \cdot c+b_{0} P(1)=0 . \tag{2.4}
\end{equation*}
$$

On the other hand, since $f(n)$ is integervalued,

$$
P_{1}(E) f(n)=P_{1}(1) \frac{c}{P(1)} \cdot n+\frac{P_{1}^{\prime}(1)}{(1)} c+b_{0} P_{1}(1) \in \mathbb{Z}
$$

Hence for $n=0$ we get

$$
\begin{equation*}
\frac{P_{1}^{\prime}(1)}{P(1)} c+b_{0} P_{1}(1) \in \mathbb{Z} \tag{2.5}
\end{equation*}
$$

and for $n=1$ we get

$$
\begin{equation*}
P_{1}(1) \cdot \frac{c}{P(1)}+\frac{P_{1}^{\prime}(1)}{P(1)} \cdot c+b_{0} P_{1}(1) \in \mathbb{Z} \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6) it follows

$$
P_{1}(1) \frac{c}{P(1)}=\frac{c}{P_{2}(1)} \in \mathbb{Z}
$$

Thus necessarily

$$
P_{2}(1) \mid c .
$$

I. a) If $P^{\prime}(1)=0$ then by (2.4) we have $b_{0}=0$. Then (2.6) implies

$$
P_{1}(1) \cdot \frac{c}{P(1)}+\frac{P_{1}^{\prime}(1)}{P(1)} c=\frac{c}{P_{2}(1)}+\frac{P_{1}^{\prime}(1)}{P_{1}(1)} \cdot \frac{c}{P_{2}(1)} \in \mathbb{Z}
$$

thus

$$
\frac{P_{1}^{\prime}(1)}{P_{1}(1)} \cdot \frac{c}{P_{2}(1)} \in \mathbb{Z}
$$

Since $P_{1}(x)$ is a symmetric reciprocal polynomial, it is easy to see that

$$
\frac{h}{2} P_{1}(1)=P_{1}^{\prime}(1)
$$

where h denotes the degree of $P_{1}(x)$. If $(x+1) \mid P_{1}(x)$ then h is odd, otherwise h is even. Therefore, by the relation

$$
\frac{P_{1}^{\prime}(1)}{P_{1}(1)} \cdot \frac{c}{P_{2}(1)}=\frac{c}{P_{2}(1)} \cdot \frac{h}{2} \in \mathbb{Z}
$$

necessarily $2 P_{2}(1) \mid c$ whenever $(x+1) \mid P_{1}(x)$.
b) If $P^{\prime}(1) \neq 0$ then, by (2.4),

$$
b_{0}=-\frac{P^{\prime}(1) \cdot c}{P^{2}(1)}
$$

and, by (2.5),

$$
\begin{gathered}
\frac{P_{1}^{\prime}(1) \cdot c}{P(1)}-\frac{P^{\prime}(1) \cdot c}{P^{2}(1)} \cdot P_{1}(1) \\
=\frac{P_{1}^{\prime}(1) \cdot c}{P(1)}-\frac{P_{1}^{\prime}(1) P_{2}(1)+P_{1}(1) \cdot P_{2}^{\prime}(1)}{P_{1}(1) \cdot P_{2}^{2}(1)} \cdot c=-\frac{P_{2}^{\prime}(1)}{P_{2}(1) \cdot c}=\frac{c}{P_{2}(1)} \in \mathbb{Z},
\end{gathered}
$$

or equivalently

$$
P_{2}^{2}(1) \mid P_{2}^{\prime}(1) \cdot c
$$

We show that some integervalued solution exists whenever the conditions are fulfilled.

We have to prove now that some integervalued solution satisfying (2.4) always exists. Namely, if (2.4) holds then the solutions of (2.3) satisfy also (2.3).

Let the solutions of (2.3) be the functions

$$
\begin{equation*}
f(n)=\frac{c}{P(1)} n+\sum_{j=0}^{d-1} b_{j} \rho^{j n}=A_{n} \quad\left(\forall n \in \mathbb{N}_{0}\right) \tag{2.7}
\end{equation*}
$$

where $A_{n} \in \mathbb{Z}\left(\forall n \in \mathbb{N}_{0}\right)$. It is not hard to see that $f(n) \in \mathbb{Z}\left(\forall n \in \mathbb{N}_{0}\right)$ if and only if $f(n) \in \mathbb{Z}$ for $n=0,1, \ldots, d-1$. From (2.7) we deduce

$$
\begin{equation*}
\sum_{s=0}^{d-1} b_{s} \rho^{s n}=A_{n}-\frac{c}{P(1)} n \quad(n=0,1, \ldots, d-1) \tag{2.8}
\end{equation*}
$$

Multiplying the respective equations in (2.8) by $\rho^{-j n}$ for $n=0,1, \ldots, d-1$ and then summing up, we get

$$
\begin{gathered}
\sum_{n=0}^{d-1} \sum_{s=0}^{d-1} b_{s} \rho^{(s-j) n}=\sum_{\substack{s=0 \\
s \neq j}}^{d-1} b_{s} \sum_{n=0}^{d-1} \rho^{(s-j) n}+b_{j} \sum_{n=0}^{d-1} \rho^{0}=\sum_{n=0}^{d-1}\left(A_{n}-\frac{c}{P(1)} n\right) \rho^{-j n} \\
=\sum_{n=0}^{d-1} c_{n} \rho^{-j n} \quad\left(j=0,1, \ldots, d-1 ; c_{n}=A_{n}-\frac{c}{P(1)} n\right)
\end{gathered}
$$

Hence

$$
d b_{j}=C\left(\rho^{-j}\right) \quad(j=0,1, \ldots, d-1)
$$

where $C\left(\rho^{-j}\right)$ is a polynomial with rational coefficients in ρ^{-j}. If $P\left(\rho^{j}\right) \neq 0$ then $b_{j}=0(j=0,1, \ldots, d-1)$. Thus then we have $C\left(\rho^{-j}\right)=0$ whence $C\left(\rho^{j}\right)=0$. Therefore, with the notations

$$
K(x)=\frac{x^{d}-1}{x-1}, \quad Q(x)=\frac{K(x)}{P_{1}(x)},
$$

the polynomial

$$
C(x)=A_{0}+\left(A_{1}-\frac{c}{P(1)}\right) x+\cdots+\left(A_{d-1}-\frac{(d-1) c}{P(1)}\right) x^{d-1}
$$

where $A_{0}=0$ (since $f(0)=0$) satisfies

$$
Q(x) \mid C(x)
$$

and $Q(x)$ is a product of circle division polynomials.
a) If $P^{\prime}(1)=0$ then, according to (2.4), the condition $b_{0}=0$ is necessary and sufficient for a solution of (2.3) in order to be also solution of (2.1). Then necessarily $(x-1) \mid C(x)$. Thus, with the notation $C(x)=$ $x S(x)$, we have $S(x)=(x-1) Q(x) B^{*}(x)$ where $B^{*}(x)$ is a polynomial
with rational coefficients. Let c_{0} be an integer satisfying condition (a) and let

$$
\lambda=\frac{c_{0}}{P_{2}(1)}
$$

where $\lambda=2 \lambda_{1}, \lambda_{1} \in \mathbb{Z}$ whenever $(x+1) \mid P_{1}(x)$. Then

$$
C(x)=x S(x)=A_{1} x+\cdots+A_{d-1} x^{d-1}-\frac{c_{0}}{P(1)}\left(x+\cdots+(d-1) x^{d-1}\right) .
$$

Hence, with the notation $A(x)=A_{1}+A_{2} x+\cdots+A_{d-1} x^{d-2}$,

$$
\begin{aligned}
S(x) & =A(x)-\frac{\lambda}{P_{1}(1)}\left(1+2 x+\cdots+(d-1) x^{d-2}\right) \\
& =A(x)-\frac{\lambda}{P_{1}(x)} K^{\prime}(x)=(x-1) Q(x) B^{*}(x) .
\end{aligned}
$$

Therefore

$$
A(x)(x-1)-\frac{\lambda d}{P_{1}(1)} K^{\prime}(x)(x-1)=(x-1)^{2} Q(x) B^{*}(x)
$$

Since $K^{\prime}(x)(x-1)+K(x)=d x^{d-1}$, we have

$$
A(x)(x-1)-\frac{\lambda d}{P_{1}(1)} x^{d-1}=Q(x)\left[(x-1)^{2} B^{*}(x)-\frac{\lambda}{P_{1}(1)} P_{1}(x)\right]
$$

Here $Q(x)$ is a principal polynomial with rational coefficients and $P_{1}(1) \mid d$. Consequently, the polynomial

$$
L(x)=(x-1)^{2} B^{*}(x)-\frac{\lambda}{P_{1}(1)} P_{1}(x)
$$

has integer coefficients. We show that the polynomial $B^{*}(x)$ can be chosen in a manner such that we have

$$
L(x)=a x+b
$$

with suitable constants a, b. We have then

$$
L(1)=a+b=-\lambda ; \quad L^{\prime}(1)=a=-\frac{\lambda}{P(1)} P_{1}^{\prime}(1) \in \mathbb{Z}
$$

and hence $a, b \in \mathbb{Z}$. Therefore $B^{*}(x)$ and then the polinomial $A(x)$ for the solution can be constructed.
b) Case $P^{\prime}(1) \neq 0$. Now let

$$
P(1) C(x)=B(x) Q(x) \quad \text { where } \quad B(x)=x \cdot \bar{B}(x)=x \cdot P(1) B^{*}(x) .
$$

Then $(x-1) \nmid Q(x) B(x)$ since $B(1) Q(1)=P(1) \cdot d \cdot b_{0} \neq 0$. Taking into account that $($ by $(2.4)) b_{0}=-P^{\prime}(1) c / P^{2}(1)$, we have

$$
B(1) Q(1)=P(1) \cdot d \cdot b_{0}=-\frac{P(1) \cdot c P^{\prime}(1) d}{P^{2}(1)}=-\frac{c d P^{\prime}(1)}{P(1)} .
$$

Since $d=P(1) \cdot Q(1)$,

$$
\begin{gathered}
B(1) \cdot Q(1)=-\frac{c P_{1}(1) Q(1) P^{\prime}(1)}{P_{1}(1) P_{2}(1)}, \\
B(1)=-\frac{c}{P_{2}(1)} \cdot P^{\prime}(1)=-\frac{c}{P_{2}(1)}\left(P_{1}^{\prime}(1) P_{2}(1)+P_{1}(1) P_{2}^{\prime}(1)\right), \\
B(1)=-c \cdot P_{1}^{\prime}(1)-c \cdot P_{1}(1) P_{2}(1) \frac{P_{2}^{\prime}(1)}{P_{2}^{2}(1)} .
\end{gathered}
$$

Thus we have obtained that

$$
\begin{equation*}
B(1)=-c P_{1}^{\prime}(1)-P(1) \cdot c \cdot \frac{P_{2}^{\prime}(1)}{P_{2}^{2}(1)} \tag{2.9}
\end{equation*}
$$

On the other hand, now we have

$$
S(x)=Q(x) \cdot B^{*}(x) ; \quad C(x)=x \cdot S(x)=x \cdot Q(x) \cdot B^{*}(x)
$$

Hence, with the transformations used in a),

$$
\begin{gathered}
A(x)(x-1)-\frac{\lambda d}{P_{1}(x)} x^{d-1}=Q(x)\left[(x-1) B^{*}(x)-\frac{\lambda}{P_{1}(1)} P_{1}(x)\right], \\
L(x)=(x-1) B^{*}(x)-\frac{\lambda}{P_{1}(1)} P_{1}(x) \quad(L(x) \in \mathbb{Z}[x])
\end{gathered}
$$

We shall seek the functions $L(x)$ in the form of a constant. We have $L(1)=-\lambda$ and hece $L(x)=\lambda$ identically. Since $\lambda=c / P_{2}(1)$, with the notation $\bar{B}(x)=P(1) B^{*}(x)$ it follows

$$
(x-1) \bar{B}(x)=P(1)\left(\lambda \frac{P_{1}(x)}{P_{1}(1)}-\lambda\right)=P(1) \frac{c}{P_{2}(1)}\left(\frac{P_{1}(x)}{P_{1}(1)}-1\right) .
$$

Thus

$$
\begin{gathered}
(x-1) \bar{B}(x)=c\left(P_{1}(x)-P_{1}(1)\right) \\
\bar{B}(x)=c \frac{P_{1}(x)-P_{1}(1)}{x-1}
\end{gathered}
$$

Therefore $\lim _{x \rightarrow 1} \bar{B}(x)=\bar{B}(1)=c P_{1}^{\prime}(1)$. Since $B(x)=x \bar{B}(x)$,

$$
\begin{equation*}
B(1)=1 \cdot \bar{B}(1)=c P_{1}^{\prime}(1) \tag{2.10}
\end{equation*}
$$

The coefficients of $B(x)$ are $(\bmod P(1))$-uniquely determined, since

$$
P(x) C(x)=\sum_{i=1}^{d-1}\left(P(1) A_{i}-i c\right) x^{i}=Q(x) \cdot B(x)
$$

However, we shall show that the polynomial $B(x)$ satisfying (2.9) can be constructed by modifying the coefficients of a polynomial $B(x)$ satisfying (2.10) in a manner such that $B_{i}^{*} \equiv B_{i}(\bmod P(1))$ should be preserved for $i=1, \ldots, d-1$.

Observe that we have

$$
-2 c P_{1}^{\prime}(1) \equiv 0 \quad(\bmod P(1))
$$

because $P_{2}(1) \mid c$ and $2 P_{1}^{\prime}(1) / P_{1}(1) \in \mathbb{Z}$. Let $k P(1)=P_{1}^{\prime}(1)(-2 c)$. Then

$$
\begin{gathered}
k=\frac{P_{1}^{\prime}(1)(-2 c)}{P_{1}(1) P_{2}(1)}=\frac{P_{1}^{\prime}(1)(-2)}{P_{1}(1)} \cdot \frac{c}{P_{2}(1)} ; \\
\frac{P_{1}^{\prime}(1)(-2)}{P_{1}(1)}=-h, \Longrightarrow k=-h \frac{c}{P_{2}(1)}=-h \lambda .
\end{gathered}
$$

Thus

$$
P_{1}^{\prime}(1)(-2 c)=-h \lambda P(1)=h(-\lambda P(1)) .
$$

Since $\operatorname{deg} P_{1}(x)=\operatorname{deg} B(x)=h, B_{0}=0$ and $c \cdot P_{2}^{\prime}(1) / P_{2}^{2}(1) \in \mathbb{Z}$, we can construct the polynomial $B(x)$ satisfying (2.9) by subtsracting $P(1)$ from every coefficient of a polynomial $B(x)$ satisfying (2.10) and then modifying the coefficients by appropriate multiples of $P(1)$.
II. It is easy to see that if $P_{1}(x)=1$ identically then $b_{0}=0$ because of (ii). Thus necessarily $P^{\prime}(1)=P_{2}^{\prime}(1)=0$. Hence necessarily

$$
P_{1}(E) f(n)=1 \frac{c}{P(1)} n+0=\frac{c}{P(1)} n=\frac{c}{P_{2}(1)} n \in \mathbb{Z} \quad(\forall n \in \mathbb{N})
$$

Hence for $n=1$ we get

$$
\frac{c}{P_{2}(1)} \in \mathbb{Z}
$$

Since $g(n)=0$ identically, the only existing solution is the trivial

$$
f(n)=\frac{c}{P(1)} n=\frac{c}{P_{2}(1)} n .
$$

Acknowledgement. The author is very grateful to Prof. J. Fehér for his valuable suggestions during the preparation of this work.

References

[1] A. O. Gelfond, Sur les nombres qui ont des proprites additives et multiplicatives données, Acta Arithm. 13 (1968), 259-265.
[2] J. Fehér, Bemerkungen über R-additive Funktionen, Annales Univ. Eötvös Loránd, Sectio Math. 29 (1986), 273-281.
[3] J. Fehér, Vervollständigung der Arbeit "Characterization of generalized q-additive functions", Publ. Math. Debrecen 33 (1986), 219-225.
[4] J. Fehér, Characterization of integervalued R-additive functions, Publ. Math. Debrecen 31 (1984), 165-170.

CSABA SÁRVÁRI
DEPT. OF MATH. AND INFORMATICS
TECHNICAL UNIVERSITY POLLÁK MIHÁLY
BOSZORKÁNY U. 2.
7624 PÉCS, HUNGARY

