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On integervalued generalized q-additive solutions
of linear recursions

By CS. SÁRVÁRI (Pécs)

Abstract. Let be given a natural number q > 1. The system {R0, R1, . . . } of
sets

Ri = qi{0, 1, . . . , q − 1} = {qi ·m | m = 0, 1, . . . , q − 1} (i = 0, 1, . . . )

is called the numbers system of basis q. Fuctions being additive with respect to the
numbers systsem of base q are called q-additive functions. (A. O. Gelfond. [1]) Let

P (x) = akxk + · · ·+ a1x + a0, P (x) ∈ Z[x],

and
P (E)f(n) := akf(n + k) + · · ·+ a1f(n + 1) + a0f(n),

where f : N0 → Z.
We give necessary and sufficient condition to existence of an integervalued gener-

alized q-additive solution of the linear recursion

P (E)f(n) = c · n (∀n ∈ N0)

Introduction. We write Z, N, N0 and C for the sets of integers,
positive integers, non-negative integers and complex numbers, respectively.

Definition 1.1. Let Ri ⊂ N0 (i =1, . . . ). The system R ={R0, R1, . . .}
is called an R-system if

(a) 0 ∈ Ri and 1 < card Ri < ∞ (i = 0, 1, . . . );
(b) for every 0 ≤ i < j, the least positive element of Ri is less

than the least positive element of Rj ;
(c) each n ∈ N0 admits a unique decomposition of the form

(1.2) n =
s∑

i=0

ri (ri ∈ Ri ; s ≥ 1).
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Definition 1.3. Given an R-system system R, a function f : N0 → C
is said to be R-additive if

f(0) = 0 and f(n) = f(r0) + · · ·+ f(rs)

with the decomposition (1.2) of the number n. Given a natural number
q > 1, the system {R0, R1, . . . } of the sets

Ri = qi{0, 1, . . . , q − 1} = {qi ·m | m = 0, 1, . . . , q − 1} (i = 0, 1, . . . )

is called the number system of basis q. Functions being additive with
respect to the number system of base q are called q-additive functions.

The concept of q-additivity goes back to A. O. Gelfond [1]. The
concept of R-additivity was introduced by J. Fejér [2] as a generalization
of q-additivity. For any complex constant c, the function f(n) = c · n is
R-additive with respect to every R-system. Let

P (x) = akxk + · · ·+ a1x + a0 , P (x) ∈ Z[x] .

For any function f : N0 → Z we write

(1.4) P (E)f(n)

:= akf(n + k) + ak−1f(n + k − 1) + · · ·+ a1f(n + 1) + a0f(n).

Consider the condition

P (E)f(n) ≡ 0 (mod n) (∀n ∈ N).

Hence, for R-additive functions f : N0 → Z, it follows

(1.5) P (E)f(n) = c · n (∀n ∈ N)

with a suitable rational integer c (see [3], [4]). In the case c = 0, (1.5)
can obviously be solved and the only interesting task is to investigate the
structure of the solutions. Our aim in this paper will be the investigation
of the solvability of (1.5) for c 6= 0.

Theorem. Given an R-system R, let d > 2, P ∈ Z[x] with deg P <
d− 2 and let R0 = {0, 1, . . . , d− 1} in the system R. Furthermore let

P1(x) =
(

P (x),
xd − 1
x− 1

)
, P2(x) =

P (x)
P1(x)

and let c 6= 0 be a fixed constant. Then the linear recursion

(2.1) P (E)f(n) = c · n (∀n ∈ N0)
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admits an integervalued R-additive solution if and only if

P (1) 6= 0 and P2(1) | c, furthermore

(a) 2P2(1) | c whenever deg P1(x) ≥ 1 and P ′(1) = 0 and

(x + 1) | P1(x),

(b) P 2
2 (1) | P ′2(1) · c whenever deg P1(x) ≥ 1 and P ′(1) = 0,

(c) P ′(1) = 0 whenever P1(x) = 1.

We shall make use of the following lemma.

Lemma. Let c 6= 0 be a complex constant, R0 = {0, 1, 2, . . . , d − 1}
and let P ∗(x) ∈ C[x] be a polynomial of degree at most d− 2. Then there

exists an R-additive function f(n) satisfying the condition

P ∗(E)f(n) = c (∀n ∈ N0)

if and only if the polynomial P ∗(x) is of the form P ∗(x) = (x − 1)P (x)
where P (1) 6= 0. The solutions are precisely the following functions f(n):

(2.2) f(n) =
c

P (1)
· n +

d−1∑

j=0

bjρ
jn =

c

P (1)
· n + g(n)

where ρ = exp(2πi/d) and the coefficients bj (j = 0, . . . , d − 1) have the

following properties

(i) bj = 0 if P ∗(ρj) 6= 0 (j = 0, 1, . . . , d− 1),

(ii)

d−1∑

j=0

bj = 0.

Proof. See [2].

Proof of the Theorem. If f(n) fulfills the equation (2.1) then

(2.3) P ∗(E)f(n) = ∆P (E)f(n) = c (∀n ∈ N0)

where P ∗(x) = (x−1)P (x). According to the Lemma, the linear recursion
(2.3) has an R-additive solution f(n) if and only if P (1) 6= 0. The solutions
have the form (2.2) and satisfy conditions (i) and (ii).
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Let P (n) be of the form (1.4) and let f(n) be a solution of (2.3).
Then, on the one hand, we have

P (E)f(n)= P (E)
(

c

P (1)
n + g(n)

)
= P (E)

c

P (1)
n + P (E)g(n)

= ak
c

P (1)
(n+k) + ak−1

c

P (1)
(n+k−1) + · · ·+a1

c

P (1)
(n + 1)

+ a0
c

P (1)
n + 0 + b0(ak + · · ·+ a0)

= P (E)
c

P (1)
n + P ′(1)

c

P (1)
+ b0P (1) = c · n,

that is

P ′(1)
P (1)

· c + b0P (1) = 0.(2.4)

On the other hand, since f(n) is integervalued,

P1(E)f(n) = P1(1)
c

P (1)
· n +

P ′1(1)
(1)

c + b0P1(1) ∈ Z.

Hence for n = 0 we get

P ′1(1)
P (1)

c + b0P1(1) ∈ Z,(2.5)

and for n = 1 we get

P1(1) · c

P (1)
+

P ′1(1)
P (1)

· c + b0P1(1) ∈ Z.(2.6)

From (2.5) and (2.6) it follows

P1(1)
c

P (1)
=

c

P2(1)
∈ Z.

Thus necessarily

P2(1) | c.
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I. a) If P ′(1) = 0 then by (2.4) we have b0 = 0. Then (2.6) implies

P1(1) · c

P (1)
+

P ′1(1)
P (1)

c =
c

P2(1)
+

P ′1(1)
P1(1)

· c

P2(1)
∈ Z,

thus
P ′1(1)
P1(1)

· c

P2(1)
∈ Z.

Since P1(x) is a symmetric reciprocal polynomial, it is easy to see that

h

2
P1(1) = P ′1(1)

where h denotes the degree of P1(x). If (x + 1) | P1(x) then h is odd,
otherwise h is even. Therefore, by the relation

P ′1(1)
P1(1)

· c

P2(1)
=

c

P2(1)
· h

2
∈ Z,

necessarily 2P2(1) | c whenever (x + 1) | P1(x).
b) If P ′(1) 6= 0 then, by (2.4),

b0 = −P ′(1) · c
P 2(1)

and, by (2.5),

P ′1(1) · c
P (1)

− P ′(1) · c
P 2(1)

· P1(1)

=
P ′1(1) · c

P (1)
− P ′1(1)P2(1) + P1(1) · P ′2(1)

P1(1) · P 2
2 (1)

· c = − P ′2(1)
P2(1) · c = · c

P2(1)
∈ Z,

or equivalently

P 2
2 (1) | P ′2(1) · c.

We show that some integervalued solution exists whenever the conditions
are fulfilled.

We have to prove now that some integervalued solution satisfying (2.4)
always exists. Namely, if (2.4) holds then the solutions of (2.3) satisfy also
(2.3).

Let the solutions of (2.3) be the functions

(2.7) f(n) =
c

P (1)
n +

d−1∑

j=0

bjρ
jn = An (∀n ∈ N0)
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where An ∈ Z (∀n ∈ N0). It is not hard to see that f(n) ∈ Z (∀n ∈ N0) if
and only if f(n) ∈ Z for n = 0, 1, . . . , d− 1. From (2.7) we deduce

(2.8)
d−1∑
s=0

bsρ
sn = An − c

P (1)
n (n = 0, 1, . . . , d− 1).

Multiplying the respective equations in (2.8) by ρ−jn for n = 0, 1, . . . , d−1
and then summing up, we get

d−1∑
n=0

d−1∑
s=0

bsρ
(s−j)n =

d−1∑
s=0
s 6=j

bs

d−1∑
n=0

ρ(s−j)n + bj

d−1∑
n=0

ρ0 =
d−1∑
n=0

(
An− c

P (1)
n

)
ρ−jn

=
d−1∑
n=0

cnρ−jn (j = 0, 1, . . . , d− 1; cn = An − c

P (1)
n).

Hence

dbj = C(ρ−j) (j = 0, 1, . . . , d− 1)

where C(ρ−j) is a polynomial with rational coefficients in ρ−j . If P (ρj) 6= 0
then bj = 0 (j = 0, 1, . . . , d − 1). Thus then we have C(ρ−j) = 0 whence
C(ρj) = 0. Therefore, with the notations

K(x) =
xd − 1
x− 1

, Q(x) =
K(x)
P1(x)

,

the polynomial

C(x) = A0 + (A1 − c

P (1)
)x + · · ·+ (Ad−1 − (d− 1)c

P (1)
)xd−1

where A0 = 0 (since f(0) = 0) satisfies

Q(x) | C(x)

and Q(x) is a product of circle division polynomials.

a) If P ′(1) = 0 then, according to (2.4), the condition b0 = 0 is
necessary and sufficient for a solution of (2.3) in order to be also solution
of (2.1). Then necessarily (x − 1)|C(x). Thus, with the notation C(x) =
xS(x), we have S(x) = (x − 1)Q(x)B∗(x) where B∗(x) is a polynomial
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with rational coefficients. Let c0 be an integer satisfying condition (a)
and let

λ =
c0

P2(1)

where λ = 2λ1, λ1 ∈ Z whenever (x + 1) | P1(x). Then

C(x) = xS(x) = A1x + · · ·+ Ad−1x
d−1 − c0

P (1)
(x + · · ·+ (d− 1)xd−1).

Hence, with the notation A(x) = A1 + A2x + · · ·+ Ad−1x
d−2,

S(x) = A(x)− λ

P1(1)
(1 + 2x + · · ·+ (d− 1)xd−2)

= A(x)− λ

P1(x)
K ′(x) = (x− 1)Q(x)B∗(x).

Therefore

A(x)(x− 1)− λd

P1(1)
K ′(x)(x− 1) = (x− 1)2Q(x)B∗(x).

Since K ′(x)(x− 1) + K(x) = dxd−1, we have

A(x)(x− 1)− λd

P1(1)
xd−1 = Q(x)

[
(x− 1)2B∗(x)− λ

P1(1)
P1(x)

]
.

Here Q(x) is a principal polynomial with rational coefficients and P1(1)|d.
Consequently, the polynomial

L(x) = (x− 1)2B∗(x)− λ

P1(1)
P1(x)

has integer coefficients. We show that the polynomial B∗(x) can be chosen
in a manner such that we have

L(x) = ax + b

with suitable constants a, b. We have then

L(1) = a + b = −λ ; L′(1) = a = − λ

P (1)
P ′1(1) ∈ Z

and hence a, b ∈ Z. Therefore B∗(x) and then the polinomial A(x) for the
solution can be constructed.

b) Case P ′(1) 6= 0. Now let

P (1)C(x) = B(x)Q(x) where B(x) = x ·B(x) = x · P (1)B∗(x).
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Then (x − 1) - Q(x)B(x) since B(1)Q(1) = P (1) · d · b0 6= 0. Taking into
account that (by (2.4)) b0 = −P ′(1)c/P 2(1), we have

B(1)Q(1) = P (1) · d · b0 = −P (1) · cP ′(1)d
P 2(1)

= −cdP ′(1)
P (1)

.

Since d = P (1) ·Q(1),

B(1) ·Q(1) = −cP1(1)Q(1)P ′(1)
P1(1)P2(1)

,

B(1) = − c

P2(1)
· P ′(1) = − c

P2(1)
(P ′1(1)P2(1) + P1(1)P ′2(1)),

B(1) = −c · P ′1(1)− c · P1(1)P2(1)
P ′2(1)
P 2

2 (1)
.

Thus we have obtained that

B(1) = −cP ′1(1)− P (1) · c · P ′2(1)
P 2

2 (1)
.(2.9)

On the other hand, now we have

S(x) = Q(x) ·B∗(x); C(x) = x · S(x) = x ·Q(x) ·B∗(x).

Hence, with the transformations used in a),

A(x)(x− 1)− λd

P1(x)
xd−1 = Q(x)

[
(x− 1)B∗(x)− λ

P1(1)
P1(x)

]
,

L(x) = (x− 1)B∗(x)− λ

P1(1)
P1(x) (L(x) ∈ Z[x]).

We shall seek the functions L(x) in the form of a constant. We have
L(1) = −λ and hece L(x) = λ identically. Since λ = c/P2(1), with the
notation B(x) = P (1)B∗(x) it follows

(x− 1)B(x) = P (1)
(

λ
P1(x)
P1(1)

− λ

)
= P (1)

c

P2(1)

(
P1(x)
P1(1)

− 1
)

.

Thus
(x− 1)B(x) = c(P1(x)− P1(1))

B(x) = c
P1(x)− P1(1)

x− 1
.
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Therefore limx→1 B(x) = B(1) = cP ′1(1). Since B(x) = xB(x),

B(1) = 1 ·B(1) = cP ′1(1).(2.10)

The coefficients of B(x) are (mod P (1))-uniquely determined, since

P (x)C(x) =
d−1∑

i=1

(P (1)Ai − ic)xi = Q(x) ·B(x).

However, we shall show that the polynomial B(x) satisfying (2.9) can be
constructed by modifying the coefficients of a polynomial B(x) satisfying
(2.10) in a manner such that B∗

i ≡ Bi (mod P (1)) should be preserved for
i = 1, . . . , d− 1.

Observe that we have

−2cP ′1(1) ≡ 0 (mod P (1))

because P2(1) | c and 2P ′1(1)/P1(1) ∈ Z. Let kP (1) = P ′1(1)(−2c). Then

k =
P ′1(1)(−2c)
P1(1)P2(1)

=
P ′1(1)(−2)

P1(1)
· c

P2(1)
;

P ′1(1)(−2)
P1(1)

= −h , =⇒ k = −h
c

P2(1)
= −hλ.

Thus

P ′1(1)(−2c) = −hλP (1) = h(−λP (1)).

Since deg P1(x) = deg B(x) = h, B0 = 0 and c · P ′2(1)/P 2
2 (1) ∈ Z, we can

construct the polynomial B(x) satisfying (2.9) by subtsracting P (1) from
every coefficient of a polynomial B(x) satisfying (2.10) and then modifying
the coefficients by appropriate multiples of P (1).

II. It is easy to see that if P1(x) = 1 identically then b0 = 0 because
of (ii). Thus necessarily P ′(1) = P ′2(1) = 0. Hence necessarily

P1(E)f(n) = 1
c

P (1)
n + 0 =

c

P (1)
n =

c

P2(1)
n ∈ Z (∀n ∈ N).

Hence for n = 1 we get
c

P2(1)
∈ Z.

Since g(n) = 0 identically, the only existing solution is the trivial

f(n) =
c

P (1)
n =

c

P2(1)
n.
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