Skew proximity functions

By SANDOR GACSALY]I (Debrecen)

§ 1. Skew proximity functions and proximity functions

A complex number is real if and only if it coincides with its conjugate: it is
one of the aims of this note to give a similar characterization of proximity functions
as introduced by B. BANASCHEWSKI and J. M. MARANDA [1].

We start with the following

Definition 1. A skew proximity function on a set E is a mapping « from the
set W(E) of all subsets of E into the set ®(E) of all filters on E satisfying the following
conditions ') for A. B, CZ E:

(S0) Ocx(09);
(S1) Bza(Ad) = B2 A;
(S2) 2(AB) = a(A) a(B);

(S3) For any Bca(A) there exists a C such that BEx(C) and Cex(A).
Lemma l. A4S B = x(A)=x(B).

PrROOF. ASB< A _JB=B. and then by (S2) «(B) = x(A)x(B), i.e.
a(A) = 2(B).

Definition 2. If z is a skew proximity function on the set E then the mapping
% from R(E) into L [V(E)] defined by the condition

(©) Bcx(A) @ E—A€a(E—B)

is said to be the conjugate of the skew proximity function .
In order to justify this definition. we establish the following

Proposition 1. The conjugate % of a skew proximity function » on a set E is a
skew proximity function on E.

) II am indebted to Professor A. CsiszAr for the following example showing that condition
(S0) is not redundant:

Let @#T<E, and X¢a(A)<> AU T< X. Then conditions (S1), (82) and (S3) are fulfilled, but
not (S0).
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PRrOOF. First we show that 2(A4) is a filter for any 4 £ E: The class %(A) is non-
void for any AZS E. Indeed. by (S0) we have 2(9Q)="1(E). and so E€x(A) <
< E— A€x(0) holds for any A S E. Moreover,

Bcu(A) < E—Acx(E—B) PRr i Ay
= L— A€ = <« (£ "
C2B< E-B2E-C=a(E—B)Sa(E-C) =1 ) co(A)

On the other hand:
Bcx(A) o E—Aca(E— B)
Cea(A) > E—Aca(E-C)

= a[(E-B)U(E-C)] = a[E—-(BNC)),

= E—Aca(E—B)Na(E—-C) =

E—Aca[E— (BN C)] < B Cca(A).
Let us now check the validity of the four conditions ?) listed in Definition 1.:
S0): @€a(@) < Ecx(E).
(S1): B€a(A) < E—A€a(E—B) > E—AZE—B < B2 A.
-(S_?.): Each of the following conditions is equivalent to the next one:
Cca(AUB),
E—(AUB)ca(E—-C),
(E—A)(E-B)ca(E—C),
E—A€a(E-C) & E-Bea(E-C),
Cca(A) & Cca(B).
Ceca(A)a(B).

(S3): Let Bca(A) <> E— A<x(E— B). Then by (S3) there exists a set £— C such
that E—Aca(E~C)and E—~Cea(E—B),i.e. B€x(C)and C<x(A). This completes
the proof of Proposition 1.

As an immediate consequence of condition (C) we have

Proposition 2. % =« for any skew proximity function x on a set E.

Now we are able to give the characterization of proximity functions in terms
of skew proximity functions and their conjugates mentioned at the outset. Let us
recall the definition of a proximity function:

Definition 3. A proximity function on a set E is a mapping o:B(E) ~ P (E)
satisfying the following conditions:

2) If (K) is a condition for « then the same condition for z will as a rule be denoted by (K).
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(A1) Béa(4) = B=2A4;

(A2) ASB = 2(A)=2a(B);

(A3) Bca(A) = E—Aca(E—B);

(A4) For any Bea(A) there exists a C such that B€2(C) and Cea(A).

A proximity function is always a skew proximity function. As a matter of
fact, condition (S2) is an easy consequence of (A2) and (A3). (See [1], Proposition 4.)
On the other hand. since a skew proximity function always satisfies conditions
(Al), (A2) and (A4), ?) it is a proximity function if and only if it satisfies also (A3).
Thus a comparison of condition (C) and of (A3) yields the following

Proposition 3. A skew proximity function x is a proximity function if and only
if a=a.

§ 2. Some further results on skew proximity functions

We shall denote the set of all skew proximity functions on a set E by n(E).
This set n(E) possesses a natural partial order defined by the condition “x(A4)<
S a'(A) for all AS E” which will be denoted by xS «". (To be read: z is coarser
than «’, or «” is finer than =«.)

The operation of forming the conjugate of a skew proximity function is isotone
with respect to the partial order just introduced:

Proposition 4. S 2" = xS a" for o, &' cn(E).

PROOF. X€a(A) © E—A€a(E—X) = E—Acod'(E—X) & Xca'(A).
It was shown in [1] that conditions (A2), (A3) and (A4) in the definition of a
proximity function can be replaced by the single condition

(AS) 2(A)A[B] = 2(A)Ax(B). *)

The following two propositions are concerned with the pair of conditions
which in the case of skew proximity functions corresponds to (AS).

Proposition 5. Any skew proximity function o on a set E satisfies the following
two conditions:
(D) %2(A)A[B] = x(A) 4x(B),

(D) %(A)A[B] = x(A)Ax(B). *)

3) In order to give a ,,skew™ generalization of proximity functions, the obvious thing to do
would be to drop condition (A3) from Definition 3., and to define skew proximity functions by
the remaining three conditions. Then, however, the proof of our Proposition 1. would break down
at the place where we want to show that the intersection of two sets belonging to x(.4) belongs to
a(A).

4) a4b means that the filters a and b are incompatible, i. e. that together they generate the
improper filter. Clearly, a4d iff some set from a has void intersection with some set from b,

*) Instead of (D) and (5) we could have written

B(A)A[B] = B(A)AB(B) for f=a,a.
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Proor. Let z be a skew proximity function and assume that x(A4)4[B], i.e.
that X' B = O forsome X<x(A). By (S3) we have Xcz(Y) and Y<x(A) for some
YS E. Now

Xea(Y) e E—YE(E—X)

BNX =0 =BSE—X= a(B)2x(E-X)
So we have Y¢cu(A4) and E—Y<x(B), i.e. 2(4) and z(B) are incompatible. This
establishes (D), and (D) now follows by Propositions 1. and 2.

Conditions (D) and (D) together are able to replace part of the conditions in
Definition 1. This is the essential content of the following

}:, E—Y¢a(B).

Proposition 6. Letr 2 be a mapping from Y(E) into ®(E) satisfying conditions

(S0) Qcx(9);

(S1) BEa(A) = B2 A;

(S2) x2(A)Na(B) S a(A4'UB).

Let moreover the mapping x: V(E) - L[L(E)] be defined by condition
(C) Bca(A) & E—Aca(E—B).

If conditions

(D) 2(A)A[B] = 2(A)Az(B).

and

(D) 2(A)A[B] = z(A)Ax(B)

are satisfied then = and x are skew proximity functions conjugate to each other.
Proor. It will be sufficient to show that x satisfies (S2) and (S3).
First we establish Lemma 1.:

(L) A= B = 2(A) 2a(B).
If ASB and X<u«(B) then
2(B)A[E— X] = a(B)Ax(E — X),
and so there exist disjoint sets Y€x(B) and Zcx(E—X). From Y2 B= A one has
ANZ=0 = 2(E-X)A4[A] = a(E—X)du(A).
Thus there exist disjoint sets Vea(A4) and Wea(E—X). We see that
Vea(A)
VEE-W
while on the other hand ©)
WEr(E—X) > W2E-X=>E-WCX.
We get X<cax(A), and this establishes (L).

}= E— Wca(A),

¢) OF course, (S1) and (C) together imply
(S1) Bea(A)=>B2 A.
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By what we have just proved a(A4'_ B)
(S2') yields (S2).

In order to establish (S3) let Bcu(A), i.e. 2(A)A[E—B]. Then by (D)
a(A)Ax(E — B), i. e. there exist disjoint sets X € x(A4) and Y€z (E— B). We see that
Yéa(E—B) = Bea(E—Y), and

XNY=90=>XCE-Y
Xeca(A)
Thus (S3) holds and the proof of the proposition is complete.

1N

%2(A)(1«(B), and this, together with

}:b E-Yeca(A).

§ 3. Skew proximity functions and topogenous structures

We have shown in an earlier paper that proximity functions are equivalent
to symmetrical topogenous structures (see [3], Theorem 1.). This result leads one
to guess that skew proximity functions will turn out to be equivalent to topogenous
structures, and our next aim is to prove the correctness of this guess.

Let us first call in mind the definition of a topogenous structure (see [2]; cf.
also [3], Definition 1.):

Definition 4. A topogenous structure on a set E is a relation < defined on
W(E), satisfyving the following conditions:

(01) O<9,E<E;

(02) A<=B = AC B;

(03) ACSA<BSB = A<B;
Q) A<B&A'<B = ANA'<BNF;
Q) A=B3QA'<B = AUA'<BUPB;
(7.9 A<B = (3C)A<C<B.

The set of all topogenous structures on £ possesses a natural partial order,
namely the one induced by set-theoretical inclusion in B(E) > B(E):

. & =S <=, © A<B implies A< ,B for A, BEE.
The equivalence above mentioned can now be stated in a more formal way as
follows:

Theorem 1. (1) If = is a topogenous structure on E then the function » . defined on
the subsets of E by
2.(4) = {X|[A<X}
is a skew proximity function on E.
(2) If = is a skew proximity function on E then the relation < , defined for subsets
of E by
A<= ,B < Bca(A)
is a topogenous structure on E.
(3) The mappings = —x. and % - =, are one-to-one correspondences, inverse
1o each other, between the sets of all topogenous structures and all skew proximity
functions on E which preserve the respective partial orders.
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PrOOF. (1) For any ASE, a.(A) = {X|A<X| is a filter. This is an easy
consequence of (01), (03) and of (Q).
Moreover, this filter x_(A4) has the properties (S0)—(S3).

(S0): Ocx_(0) follows from O =0O.

(S1): Bea.(A) = B2 A follows from (02).

(S2): a2 (AUB) = a (A)Nax (B).

As a matter of fact. making use of (03) we get

> A<X o Xca (A)
= B<X e Xca.(B)
This proves 2.(A'B) € a.(A)x2.(B). On the other hand, we get by (Q”)
=>A<X
=B<X
a(A)Na(B) S a(AL)B).

(S3): Bea (A) = (3C)Bca(C) & Cca(A).
This is an immediate consequence of (7. 9).

(2) The relation A <,B <> Bca(A) satisfies all the conditions listed in Defi-
nition 4.

(01): (S0) and E€a(E) yield O =, 0 and E -~ E.
(02): A-=,B = A< B follows from (SI).
(03): AS A<, BEB = A<,B,

XE::((ALJB)-mAl_JB-:Xl }: Xea (A) 2 (B).

XGacAA)ﬁxAB){ }JAUB*:XQXQL‘-(ALB). L ©.

because we have the implication 7)
B2B ca(A’) & a(d) = Bea(A).
(Q): A=,B Bca(A)Sa(ANA)
A <,B & Bca(A)Sa(ANA)
(Q"): A<,B <> Beu(A)
A" <=,B < B'ca(A)

}= BNBca(ANA) < ANA <, BNE.

}:1 BUBca(A)Na(Ad') =a(AUA) &
o AJUA <,BUB'.

(7.9) A<,B= (3C)A<,C<,B.

This is an immediate consequence of (S3).

(3) The proof given in [3] fort Part (3) of Theorem 1. remains valid without
change.

In [2] the complement <=¢ of a semi-topogenous order - was defined by
A<°B< E—~B<E—-A.

") a(A")=a(A) follows by Lemma 1.
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If = is a topogenous structure then so is =¢. This can be proved directly on
the basis of Definition 4., but it is also an obvious consequence of the following

Proposition 7. For any skew proximity function o on a set E the equality

=<z = (=)°

holds.

PRrROOF.
A*fEB@B(-:C_!_(A_) =

- s o
A(c:,)t-gﬁE_B._.._“E_AQ}E Acu(E—B).

§ 4. Skew proximity relations

As is known from [1]. proximity functions are equivalent to proximity relations
— a fact to which they seem to owe their name. We are now going to give a similar
characterization of skew proximity functions, with the help of “‘skew proximity
relations™ suitably defined:

Definition 5. A skew proximity relation on a set Eis a relation & defined on
W(E), satisfying the following conditions (with o denoting the negation of 9):
\AUBSC = A3C&BSC,

(P1) 3 - -
COA\UB = CSARCIB:

(P2) xox for x€E;
(P3) A0D and DoA for ASE;
(P4) If AOB then there exist disjoint sets X and Y such that A OE—X and E— YJB.

The set of all skew proximity relations on E possesses a natural partial order,
namely the one induced by set-theoretical inclusion in B(E) X R(E):

050, < AOB implies A6,B for A, BS E.

The following two propositions will be needed in the sequel:

Proposition 8. For any skew proximity relation 6 on a set E

(A0B & A, S A & B,SB) = A,0B,.
PROOF. _ _
AOB <+ A;' JAOB > A, 0B <> A,0B'UB, = A,08B,.
Proposition 9.
(A0B & AS A, & BEB,) > A,0B,.
Proof. 4,0B, would imply A6B by the preceding proposition.
The equivalence hinted at previously can now be stated and proved as follows:
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Theorem 2. (1) If « is a skew proximity function on E then the relation
o, on R(E) defined by
Ad,B <> E—B¢a(A)

is a skew proximity relation on E.

(2) If 6 is a skew proximity relation on E then the mapping =;: ‘R(E) - "L[L(E)]
defined by

ay(A) = {X|AOE - X}

is a skew proximity function on E.

(3) The mappings o« —~0, and 6 ~u; are one-to-one correspondences. inverse to
each other. between the sets of all skew proximity functions and all skew proximity
relations on E which preserve the respective partial orders.

Proor. (1) We must check the validity for d, of conditions (P1)—(P4) in Defi-
nition 3.

(P1): Each of the following conditions is equivalent to the next one:
A\UBJ,C,
E—Cca(AUB) = a(A)Na(B),
E—-Cca(A) & E—Cca(B),
46,C & Bs,C.
This establishes the first condition in (P1). As to the second condition:
Cé,AUB,
E—(AUB)¢ca(C),
(E—A) N (E—-B)ca(C),
E—A€a(C)& E—Beca(C),
Cd,4 & C3,B.
(P2): x0,x holds for x€E, because E— x4 a(x) by (S1).
(P3): A8,0 < Ecua(A) is clear, and ©5,4 < E— Aca(@) is true by (S0).
(P4):  A5,B < E—Bca(A) = a(A)A[B] = x(A) Ax(B).

The last condition means the existence of disjoint sets X and Y such that X ¢ x(A),
Y€u(B) < E—Bca(E—Y), i.e. we have A5,E—X and E—Y §,B.
(2) Let us show that o, satisfies the conditions of Definition 1.
25(A) is non-void for any AC E, since EcayAd) < A0@ holds by (P3).
Using Proposition 8. at the appropriate place, we get

X€ay(A) < ASE—-X

Y2X e E-YC E—X}” ASE—Y < Yeu,(A).



Skew proximity functions 279

Again, by (P1),
Xcay(A) & ASE— X|
Yeous(A) <> AGE—Y)

Hence x,(A) is a filter.

= AV(E—X)U(E-Y) o ASE—(XNY) < XN YEus;(A).

(S0): O cuy(@) < OOE holds by (P3).
(S1): Beuy(A) = B2 A.

Let indeed be B¢ uyA) <> ASE— B and suppose A (E— B) #@. Then
x€A N(E-B)

for some x¢E, and by Proposition 10. xox = A0FE — B. This contradiction proves

AM(E—-B)=@ < B2 A.
(S2): a,(AUB) = ay(A)NayB).
Indeed. _

Xcoas(A\!B)=> AUBSE—X =

> AIE— XA BOE—-X < Xcaz(A)& X €x;(B).

(83): Be€uy(A) = (ZC)BEay(C)& Ceay(A).

Let Beay(A) <> ASE — B. Then by (P4) there exist disjoint sets X and Y such that
AJE — X and E— YOE—B, i.e. that X€a,(A4) and BEay(E—Y). Now XN Y=0=
= XS E—Y, so we have E— Y€ayA) and (S3) holds with C = E-Y.

(3) The mappings —9, and o —~u; being realized by the same “‘transition
formulae™ as in Proposition 7. of [1]. the proof of Part (3) of that proposition applies
without change. %)

To a given skew proximity relation d, there corresponds in a natural way a
“conjugate”, namely the relation J; . belonging to the conjugate skew proximity
function. Between d, and 05 a very simple connection exists:

Proposition 11. For any skew proximity function x on a set E, A0;B < Bj,A.

PRrOOF.
Ad; B E— Bca(A) o E— Aca(B) < Bo, A.

§ 5. An example
All our previous considerations derived their justification from the implicit

assumption that the *“skew” concepts introduced (i.e. those of skew proximity
function, topogenous structure and skew proximity relation) are in fact different

#) Strictly speaking, the transition formulae of [1] do differ from ours inasmuch as they

contain E—XJA4 where we have A0E - X. This difference is however inessential. since d in [1] is
commutative: AdB=> BdA.
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from the corresponding “‘symmetrical” ones (proximity function, symmetrical
topogenous structure and proximity relation respectively).

For completeness sake, let us discuss now a simple example proving the correct-
ness of this assumption:

Let £ be the real line, and for 4. BE E put

AdB < (xEAXyEB) - x=y.

The relation 6 so defined satisfies the conditions of Definition 5. For (P1),
(P2) and (P3) this is immediately clear, while in order to see the validity of (P4)
we can put X={x|x=a« for some a€ A}, and ¥ = E—X.

Thus J is a skew proximity relation, but it is certainly not a proximity relation,
because for non-void sets 4 and B, A0B and BdA are mutually exclusive conditions.

To the relation o just defined there corresponds by Theorem 2. a skew proximity
function «;, and then by Theorem 1. a topogenous structure =, . These yield
examples of a skew proximity function which is not a proximity function. and of
a topogenous structure which is not a symmetrical topogenous structure respectively.

As a matter of fact, the “transition formulae™ used in our Theorem 2. are
the same as those in Proposition 7. of [1]. So, if the skew proximity function z;
were a proximity function, Proposition 7. of [1] would imply that é is a proximity
relation, in contradiction to the definition of .

Theorem 1. of the present note and Theorem 1. of [3] yvield a similar conclusion
for the topogenous structure —, .

Of course, it is also possible to check the properties of x; and of =, directly,
on the basis of their explicit characterizations:

a(A) = {X|AOE-X} = {X|(x€EAXYyEE-X)=x=<Y},
and
A=, B < BeayA),

A*Z’“B ﬂ(.\'E/i &}’GE—B) - X<).

References

[1] B. BANASCHEWSKI—J. M. MARANDA, Proximity Functions, Math. Nachr. 23 (1961), 1-37.

[2] A. CsaszAr, Foundations of General Topology, Oxford—London—New York— Paris, 1963,

[3] S. A. GacsALyl, On proximity functions and symmetrical topogenous structures, Publ. Math.
Debrecen 11 (1964), 165174,

{ Received October 20, 1964.)



