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On quasi-uniformly continuous functions
and Lebesgue spaces

By JOSEFA MAR�IN (Valencia) and SALVADOR ROMAGUERA (Valencia)

Abstract. We show that every continuous function from a Lebesgue quasi-uni-
form space to a small-set symmetric quasi-uniform space is quasi-uniformly continuous.
We also introduce a new notion of Lebesgue quasi-uniformity which involves the two
topologies generated by a quasi-uniformity and its conjugate, namely a pair Lebesgue
quasi-uniformity. We show that every bicontinuous function from a pair Lebesgue quasi-
uniform space to a quasi-uniform space is quasi-uniformly continuous. Pair Lebesgue
quasi-uniform spaces have several interesting properties. Thus, we observe that a topo-
logical space admits only pair Lebesgue quasi-uniformities if and only if it is hereditarily
compact and quasi-sober and that a T1 topological space admits a pair Lebesgue quasi-
uniformity if and only if it is paracompact.

1. Introduction

A quasi-uniformity on a set X is a filter U on X × X such that (i)
each member of U is a reflexive relation on X, and (ii) for each U ∈ U
there is V ∈ U such that V 2 ⊆ U . (As usual V 2 = {(x, y) ∈ X ×X : there
is z ∈ X with (x, z) ∈ V and (z, y) ∈ V }.) The pair (X,U) is called a
quasi-uniform space. The topology T (U) = {A ⊆ X : for each x ∈ A there
is U ∈ U with U(x) ⊆ A} is called the topology induced by U on X, where
U(x) = {y ∈ X : (x, y) ∈ U}.

If U is a quasi-uniformity on X, then U−1 = {U−1 : U ∈ U} is also
a quasi-uniformity on X called conjugate of U . As usual U∗ will denote
the coarsest uniformity finer than U .
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A quasi-uniformity U on a set X is a Lebesgue quasi-uniformity pro-
vided that for each T (U)-open cover G of X there is U ∈ U such that the
cover {U(x) : x ∈ X} refines G [5]. The pair (X,U) is called a Lebesgue
quasi-uniform space.

The notion of a small-set symmetric quasi-uniform space was intro-
duced by Fletcher and Hunsaker (see, for instance, [4]). It is proved in
[13] that a quasi-uniform space (X,U) is small-set symmetric if and only
if T (U−1) ⊆ T (U).

Terms and undefined concepts may be found in [5].

In Section 2 of this paper we shall show that every continuous func-
tion from a Lebesgue quasi-uniform space to a small-set symmetric quasi-
uniform space is quasi-uniformly continuous.

In Section 3 we introduce and study the notion of a pair Lebesgue
quasi-uniform space. We show that every bicontinuous function from a pair
Lebesgue quasi-uniform space to a quasi-uniform space is quasi-uniformly
continuous. Each pair Lebesgue quasi-uniformity U is bicomplete and both
U and U−1 are convergence complete. It is shown that a topological space
admits only pair Lebesgue quasi-uniformities if and only if it is heredi-
tarily compact and quasi-sober and that a T1 topological space admits
a pair Lebesgue quasi-uniformity if and only if it is paracompact. Some
illustrative examples are also given.

2. Quasi-uniform continuity and Lebesgue
quasi-uniform spaces

Let (X,U) and (Y,V) be two quasi-uniform spaces. A function f :
X → Y is quasi-uniformly continuous provided that for each V ∈ V there
is U ∈ U such that (f(x), f(y)) ∈ V whenever (x, y) ∈ U .

In [5, Cororally 1.45] it is proved that each continuous function from
a Hausdorff compact quasi-uniform space to a uniform space is quasi-
uniformly continuous (see also [15]). This result was recently strength-
ened by Künzi who proved in [10, Proposition 1] that each continuous
function from a compact quasi-uniform space to a small-set symmetric
quasi-uniform space is quasi-uniformly continuous (see [17] for a general-
ization of this result to locally quasi-uniform spaces).

Since each quasi-uniformity compatible with a compact space is a
Lebesgue quasi-uniformity [5, Corollary 5.1], our next result generalizes
Künzi’s proposition cited above. It also generalizes [16, Proposition 9].
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Proposition 2.1. Let (X,U) be a Lebesgue quasi-uniform space and

(Y,V) be a small-set symmetric quasi-uniform space. Then each continuous

function f : (X,T (U)) → (Y, T (V)) is quasi-uniformly continuous.

Proof. Let V ∈ V. Choose W ∈ V such that W 2 ⊆ V . Since T (V) =
T (V∗), for each y ∈ Y there is Wy ∈ V such that Wy(y) ⊆ W ∗(y), where
W ∗ denotes the entourage W ∩W−1 of V∗. Then G = {f−1(Hy) : y ∈ Y }
is a T (U)-open cover of X where Hy = T (V)-int Wy(y) for all y ∈ Y .
Since (X,U) is a Lebesgue quasi-uniform space there is U ∈ U such that
{U(x) : x ∈ X} refines G. Let (a, b) in U . There is y ∈ Y such that U(a) ⊆
f−1(Hy), so that both f(a) and f(b) are in Wy(y). Hence (y, f(a)) ∈ W ∗

and (y, f(b)) ∈ W ∗. We conclude that (f(a), f(b)) ∈ W 2 ⊆ V . Therefore
f is quasi-uniformly continuous.

Remark 2.2. The above proof also shows that under the hypotheses
of Proposition 2.1, f is also quasi-uniformly continuous from (X,U) to
(Y,V−1).

3. Quasi-uniform continuity
and pair Lebesgue quasi-uniform spaces

Involving the two topologies generated by a quasi-uniformity and
its conjugate, Salbany proved in [19, Theorem 4.7] (see also [5, Theo-
rem 1.21]) that if (X,U) is a quasi-uniform space such that (X, T (U∗)) is
compact, then each bicontinuous function from (X,U) to a quasi-uniform
space (Y,V) is quasi-uniformly continuous. An alternative proof of this
result was recently presented by Kopperman [7, Theorem 2.3]. (Let us
recall that a function f : (X,U) → (Y,V) is bicontinuous provided that
f : (X, T (U)) → (Y, T (V)) and f : (X, T (U−1)) → (Y, T (V−1)) are both
continuous.)

In order to generalize Salbany’s theorem we introduce in Definition 3.1
the notion of a pair Lebesgue quasi-uniform space.

Similarly to [2] and [18], a pair open cover of a quasi-uniform space
(X,U) is a collection of pairs {(Gα,Hα) : α ∈ A} such that each Gα is
T (U)-open, each Hα is T (U−1)-open and for each x ∈ X there is α ∈ A
with x ∈ Gα ∩Hα.
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Definition 3.1. Let U be a quasi-uniformity on a set X. We say that U
is a pair Lebesgue quasi-uniformity if for each pair open cover {(Gα,Hα) :
α ∈ A} of (X,U) there is U ∈ U such that the pair cover {(U(x), U−1(x)) :
x ∈ X} refines {(Gα, Hα) : α ∈ A} (i.e. for each x ∈ X there is α ∈ A
such that U(x) ⊆ Gα and U−1(x) ⊆ Hα). In this case we say that (X,U)
is a pair Lebesgue quasi-uniform space.

The following result is the key in our study of pair Lebesgue quasi-
uniformities.

Proposition 3.2. Let (X,U) be a quasi-uniform space such that
(X,T (U∗)) is a compact space. Then (X,U) is a pair Lebesgue quasi-
uniform space.

Proof. Let {(Gα,Hα) : α ∈ A} be a pair open cover of (X,U). Then,
for each x ∈ X there is Vx ∈ U and α(x) ∈ A such that V 2

x (x) ⊆ Gα(x)

and (V −1
x )2(x) ⊆ Hα(x). Since T (U∗) is a compact topology, the cover

{T (U∗)-int(Vx(x) ∩ V −1
x (x)) : x ∈ X}

of X has a finite subcover {T (U∗)-int(Vxk
(xk)∩V −1

xk
(xk)) : k = 1, 2, . . . , n}.

Put V =
⋂{Vxk

: k = 1, 2, . . . , n}. Then V ∈ U and we shall show
that the pair cover {(V (x), V −1(x)) : x ∈ X} refines the pair open cover
{(Gα,Hα) : α ∈ A}. Given x ∈ X there is k ∈ {1, 2, . . . , n} such that
x ∈ Vxk

(xk) ∩ V −1
xk

(xk). Thus x ∈ Gα(xk) ∩ Hα(xk). Let y ∈ V (x), then
y ∈ V 2

xk
(xk) ⊆ Gα(xk), so that V (x) ⊆ Gα(xk). Similarly V −1(x) ⊆ Hα(xk).

We conclude that (X,U) is pair Lebesgue.

Example 3.3. Let X be the unit interval I = [0, 1] and let d be the
quasi-pseudometric defined on X by d(x, y) = 0 if x ≤ y and d(x, y) = x−y
if y < x. Then d is a totally bounded quasi-pseudometric which induces
the Scott topology on the (continuous) complete partial order (I,≤) (see
[20, Example 2.6] ). Since d∗ = d ∨ d−1is the usual metric on X it follows
from Proposition 3.2 that (X,U(d)) is a pair Lebesgue quasi-uniform space.
(Note that T (d) and T (d−1) are the lower topology and the upper topology
on I, respectively.)

Example 3.4. The Khalimsky line (used in image processing) consists
of the integers Z with the topology generated by all sets of the form {2n−
1, 2n, 2n+1}, n ∈ Z (see [8], [9]). Clearly the quasi-pseudometric d defined
on Z by d(2n, 2n − 1) = d(2n, 2n + 1) = d(n, n) = 0 for all n ∈ Z and
d(x, y) = 1 otherwise, generates the Khalimsky line. It is easy to see that
U(d) is a pair Lebesgue quasi-uniformity. (Note that d∗ is the discrete
metric on Z).

Proposition 3.2 shows that, in fact, the next result is a generalization
of Salbany’s theorem cited above.
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Proposition 3.5. Let (X,U) be a pair Lebesgue quasi-uniform space
and (Y,V) be a quasi-uniform space. Then each bicontinuous function
f : (X,T (U), T (U−1)) → (Y, T (V), T (V−1)) is quasi-uniformly continuous.

Proof. Let V ∈ V. Choose W ∈ V such that W 2 ⊆ V . For each
y ∈ Y let Gy = T (V)-intW (y) and Hy = T (V−1)-intW−1(y). Then
{(f−1(Gy), f−1(Hy)) : y ∈ Y } is a pair open cover of (X,U). Since (X,U)
is a pair Lebesgue quasi-uniform space there is U ∈ U such that the pair
cover {(U(x), U−1(x)) : x ∈ X} refines {(f−1(Gy), f−1(Hy)) : y ∈ Y }.
Let (a, b) in U . There is y ∈ Y such that

U(a) ⊆ f−1(Gy) and U−1(a) ⊆ f−1(Hy).

Then a ∈ f−1(Hy), b ∈ f−1(Gy). Thus (f(a), y) ∈ W and (y, f(b)) ∈ W .
We conclude that (f(a), f(b)) ∈ W 2 ⊆ V . Therefore f is quasi-uniformly
continuous.

In the rest of the paper we shall give some properties of pair Lebesgue
quasi-uniform spaces and characterize those (quasi-pseudometrizable) to-
pological spaces for which every compatible (quasi-pseudometric) quasi-
uniformity is pair Lebesgue.

Proposition 3.6. Let (X,U) be a pair Lebesgue quasi-uniform space.
Then (X,U∗) is a Lebesgue uniform space.

Proof. Let {Gα : α ∈ A} be a T (U∗)-open cover of X. For each
x ∈ X there is α(x) ∈ A and Ux ∈ U such that x ∈ Ux(x)∩U−1

x (x) ⊆ Gα(x).
Then there exists U ∈ U such that the pair cover {(U(x), U−1(x)) : x ∈
X} refines the pair cover {(Ux(x), U−1

x (x)) : x ∈ X}. Hence, for each
x ∈ X there is y ∈ X with U(x) ⊆ Uy(y) and U−1(x) ⊆ U−1

y (y). Thus
U(x) ∩ U−1(x) ⊆ Gα(y). We conclude that U∗ is a Lebesgue uniformity.

A quasi-uniformity U is called bicomplete [5] if U∗ is a complete uni-
formity. Since every Lebesgue uniformity is complete we have

Corollary 3.7. Each pair Lebesgue quasi-uniformity is bicomplete.

Proposition 3.8. Let (X,U) be a pair Lebesgue quasi-uniform space.
Then both U and U−1 are Lebesgue quasi-uniformities.

Proof. We shall show that U is a Lebesgue quasi-uniformity. Let
{Gα : α ∈ A} be a T (U)-open cover of X. For each α ∈ A let Hα = X.
Then {(Gα,Hα) : α ∈ A} is a pair open cover of (X,U), so that there is
U ∈ U such that the pair open cover {(U(x), U−1(x)) : x ∈ X} refines
{(Gα,Hα) : α ∈ A}. We conclude that {U(x) : x ∈ X} refines {Gα : α ∈
A}. Similarly we see that U−1 is Lebesgue.

Since every Lebesgue quasi-uniformity is convergence complete [5, Pro-
position 5.7] we have
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Corollary 3.9. Let (X,U) be a pair Lebesgue quasi-uniform space.
Then both U and U−1 are convergence complete quasi-uniformities.

Example 3.10. Let X be the unit interval I = [0, 1] and let d be the
quasi-pseudometric defined on X by d(0, x) = d(x, 1) = 0 for all x ∈ X,
d(x, 0) = 1 for all x 6= 0, d(x, x) = 0 for all x ∈ X and d(x, y) = x oth-
erwise. Then both T (d) and T (d−1) are compact topologies, so that U(d)
and U−1(d) are Lebesgue quasi-uniformities. Furthermore T (d∗) is the
discrete topology on X and U(d∗) is not a Lebesgue uniformity. Therefore
U(d) is not pair Lebesgue.

Note that the topology T (d) of the above examples is not R0. This
fact is not accidental since every R0 quasi-uniform space (X,U) whit the
property that U and U−1 are Lebesgue quasi-uniformities satisfies T (U) =
T (U−1) = T (U∗) [5, Corollary 5.2].

Let us recall that a nonempty subspace Y of a topological space (X,T )
is irreducible [1, Chapter 2] if each pair of nonempty Y -open subsets has
a nonempty intersection. (X,T ) is called quasi-sober [6, p. 154] if each
closed irreducible subset is of the form T - cl x for some x ∈ X.

Proposition 3.11. A topological space admits only pair Lebesgue
quasi-uniformities if and only if it is a hereditarily compact quasi-sober
space.

Proof. Let (X,T ) be a space such that every compatible quasi-
uniformity is pair Lebesgue. By Corollary 3.7, (X, T ) admits only bi-
complete quasi-uniformities, so that it is hereditarily compact and quasi-
sober [12, Proposition 6]. Conversely, if (X,T ) is hereditarily compact and
quasi-sober then T (P∗) is a compact topology where P denotes the Pervin
quasi-uniformity of (X, T ) (see [3], [6]). We conclude that (X,T ) admits
a unique quasi-uniformity [11, Proposition 3] which is pair Lebesgue by
Proposition 3.2.

A quasi-pseudometric d on a set X is called pair Lebesgue provided
that the quasi-uniformity U(d) generated by d is pair Lebesgue.

Proposition 3.12. A quasi-pseudometrizable topological space ad-
mits only pair Lebesgue quasi-pseudometrics if and only if it is a heredi-
tarily compact quasi-sober space.

Proof. Let (X, T ) be a quasi-pseudometrizable space such that ev-
ery compatible quasi-pseudometric is pair Lebesgue. By Corollary 3.7,
(X,T ) admits only bicomplete quasi-pseudometrics, so that it is heredi-
tarily compact and quasi-sober [14, Theorem 2]. The converse follows from
Proposition 3.11.
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Problem 3.13. Characterize those topological spaces which admit a
pair Lebesgue quasi-uniformity.

The preceding problem which remains open has a somewhat surprising
solution in the case that the space is T1.

Proposition 3.14. A T1 topological space admits a pair Lebesgue

quasi-uniformity if and only if it is a (regular)paracompact space.

Proof. Let (X, T ) be a T1 space admitting a pair Lebesgue quasi-
uniformity U . By Proposition 3.9, both U and U−1 are Lebesgue quasi-
uniformities. Therefore T (U) = T (U−1) = T (U∗) [5, Corollary 5.2]. We
conclude that U∗ is a Lebesgue uniformity on X compatible with T . Con-
sequently U∗ is the fine uniformity of (X,T ) and, thus, it is a (regular)
paracompact space. The converse is clear.

Remark 3.15. In the proof of the preceding result we have used the
well-known fact that if U is a Lebesgue uniformity on a set X, then U
is exactly the fine uniformity of (X,T (U)). The situation in the “pair
Lebesgue” case is very different for topological spaces. In fact, it is not
hard to prove that the fine quasi-uniformity of a T1 topological space (X,T )
is pair Lebesgue if and only if T is the discrete topology on X. However
we have the following result of a bitopological nature.

Proposition 3.16. Let (X,U) be a pair Lebesgue quasi-uniform space

and let FN denote the finest quasi-uniformity on X such that T (FN ) =
T (U) and T (FN−1) = T (U−1). Then U = FN .

Proof. Clearly U ⊆ FN . Let W ∈ FN , then there is a quasi-
pseudometric d on X which T (d) ⊆ T (U) and T (d−1) ⊆ T (U−1) and there
is an r > 0 such that Vr ⊆ W where Vr = {(x, y) : d(x, y) < r}. Consider
the pair open cover of (X,U), B = {(Bd(x, r/2), Bd−1(x, r/2)) : x ∈ X}.
Choose U ∈ U such that {(U(x), U−1(x)) : x ∈ X} refines B. Given
(x, y) ∈ U there is a ∈ X such that U(x) ⊆ Bd(a, r/2) and U−1(x) ⊆
Bd−1(a, r/2), so that d(a, y) < r/2 and d(x, a) < r/2. We conclude that
(x, y) ∈ Vr ⊆ W , and thus U=FN .
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Proposition 3.17. A topological space admits a pair Lebesgue quasi-
metric if and only if it is a metrizable space whose set of nonisolated points
is compact.

Proof. It is well-known that a metrizable space admits a Lebesgue
metric if and only if the set of nonisolated points is compact. Let (X,T )
be a space which admits a pair Lebesgue quasi-metric d. Similarly to the
proof of Proposition 3.14, T = T (d∗). Since, by Proposition 3.6, d∗ is a
Lebesgue metric, we conclude that (X, T ) is a metrizable space whose sets
of nonisolated points is compact. The converse is clear.

We finally give an example which answers some questions that may
be asked in the light of the obtained results.

Example 3.18. Let N be the set of natural numbers. Define a quasi-
metric d on N by d(n,m) = 1/m if n < m, d(n,m) = 1 if n > m and
d(n, n) = 0 for all n,m ∈ N. Thus T (d) is the cofinite topology on N, so
that d is a Lebesgue quasi-metric. Since d∗ is the discrete metric, it is a
Lebesgue metric. However, (N, T (d)) does not admits any pair Lebesgue
quasi-uniformity as Proposition 3.14 shows.
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