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On the form of real solutions of the matrix functional equation
D (x)D(y) = D(xy) for non-singular matrices @

By M. KUCZMA (Katowice) and A. ZAJTZ (Krakow)

§ 1. In the present paper we shall give the general real measurable solution
of the matrix functional equation

(1 P(x)P(y)=P(xy)

for arbitrary real ‘values of x 0. We shall assume that the values of @ are real,
non-singular n>Xn matrices (only non-singular solutions are of importance for
applications), whereas arguments are real numbers different from zero. Measurable
solutions of equation (1) have been essentially given by D. Z. Pokovi¢ ([1]) and
S. KurepA ([3]). However, S. KUREPA considered equation (1) in the set

(2) D=expD = Ix:x = exp -! I, k integers}

>’
of exponential diadic fractions, and D. Z. Pokovi¢ in the set R* of positive real
numbers. But for various purposes (e. g. for applications in the theory of geometric
objects) it is necessary to know the solution of (1) for arbitrary real x #0. Admitting
also negative values of x presents some new difficulties.

The solution obtained is given an explicit form, suitable for immediate appli-
cations '). Such a form is not found in the papers by Pokovi¢ and KUREPA, though
it may be obtained by elementary considerations from the formulae given by those
authors (but only for x=0!).

The main point in the argument is the remark that, since the multiplicative
group R of reals is commutative, ®(R) must also be commutative. But since in general
the multiplication of matrices is not commutative, this allows one to get fairly precise
informations about the form of the function .

In the last section we give a decomposition of the general solution of (1) into
a product of a regular solution and a totally non-measurable solution.

§ 2. Matrices @ may be regarded as linear transforms of a real n-dimensional
vector space R”. Their form thus depends on the choice of the basis 2 in R". A change
of the basis is analytically expressed by the formula

d=C'oC,

') The classification of linear homogeneous geometric objects in X,, based on the results
of the present note, is the subject of the paper [5].
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where C is a real non-singular n X n matrix. Since the transformation
(3) - B(x)=C'd(x)C

leads from a solution @(x) of (1) to a solution &(x) of (1), we may seek the solution
@(x) in a basis # in which it has a particularly simple form. The general solution
&(x) is then obtained with the aid of formula (3).

Solutions of equation (1) are homomorphisms of the multiplicative group
R of real numbers different from zero into the linear group GL(n, R) of order

n over reals:
@: R—-~GL(n, R).

The group R is a direct product U, X R* of the group U, ={—1, 1} of the square
roots of unity, and of the multiplicative group R* of positive real numbers. Con-
sequently the homomorphism @ admits a decomposition into a product of homo-
morphisms
4) ®(x) = P, (sgn x) P,(|x])
with

®,: U, ~GL(n, W),

®,: R* -GL(n, N),
and it follows from (1) that @, and @, commute:
(5) ¢l¢2= ¢2¢l‘
We start with determining the homomorphism @,.

§ 3. Setting x=y=1 in the relation @,(x)®,(y)= @,(xy) we obtain
@,(1)* = &,(1), whence, since ®,(1) is non-singular, @,(1) = E, (the unit matrix

of order n). Similarly, for x=y = —1 we obtain
(6) ¢, (-1 = #,(1) = E,.
Writing F=@&,(—1) we have

= E, for x=0,
7 1(sgn x) = F for x<0.

By (6) F?=E,, i.e. the minimal polynomial of Fis A2 —1=(A—1)(4A+1). Hence
it follows that the characteristic roots of F are +1 (say, of multiplicity p) and —1
(of multiplicity ¢ =n—p), and all Jordan boxes of F are simple (of order 1). There-
fore there exists a basis Z, in R" in which F has the diagonal form

(8) F=f1 451 =1..~1).
P q
In view of (7) we get
9) ®,(sgnx) ={1,...,1, sgnx,...,sgnx}, p+q=n.
\_\pp-d 1_~&‘|—-—-’

In the sequel we assume that in R" a basis #, has been fixed so that formula (9)
gives the form of the homomorphism @,.
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§4. Now we pass to the determination of @,(x). Throughout this section
x may take values in R*. Hence it follows (cf. [2], and also [1]) that we may write
(®, being non-singular)

(10) b, (x) =exp A(x)
and it follows from (1) that

exp [A(x) + A(p)] =exp A(x).

This implies, A being real, that
(11) A(x) + A(y) = A(xp).

Since x, y are positive real numbers, we may set x =e" y=e". Introducing a new
function Z(u) = A(e*) we obtain from (11)

(12) Z(u)+E @) =E(u+0).
Hence
(13) ®,(x)=exp Z(In x), XERT,

where = (u) satisfies Cauchy’s additive equation (12). Formula (13) gives the general
solution of equation (1) in R*.

From the commutativity condition (5) it follows that @,(x) must commute
with matrix (8) and consequently it must be of the form

¢,(x) 0

0 (Pq(.\')] =~ {‘Pp(x)y (%(X)},

Py(x) = [

where ¢,(x) and ¢,(x) are matrices of order p and g, respectively. In virtue of (10)
also A(x) must have a similar, generalized diagonal form A(x)={,(x), 4,(x)} and
hence also Z(u) ={,(u), £, (u)}. Consequently, according to (13),

(14) @, (x)={exp &, (In x), exp £, (In x)}.

The functions &,(«) and & («) (with values in GL(p, R) and GL(q, M), respectively)
satisfy, similarly as =(u), the Cauchy equation (12).
The measurability condition implies now that

(15) Sw)y=ud,, S (u)=uA,,

where 4, and A, are constant real matrices of order p and g, respectively.

In the p- and g¢-dimensional linear subspaces of R" determined by the first
p and by the last ¢ vectors of the basis #,, respectively, we choose new bases
#,and #, in which matrices 4, and A4, have Jordan’s canonical form. This does not
change the form of the matrix F and consequently formula (9) is still valid in the
new basis B5=2,X4,.
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Since A, and A, are real, their Jordan boxes will have the form

ra 1 'B E,
i B E,
(16) K= S iy e BPSE P
a 1 ' B E,
L a| 1 1 AN
where
a b 5 140
“|-b a)’ e | R

and a, b are real constants (cf. e. g. [4], p. 87).
Inserting (15) into (14) we obtain

(17) P, (x) = {x4r, x4a}, p+qg=n,
where A, and A, have Jordan boxes of form (16).
§ 5. Taking into account (4), (9) and (17) we obtain

(18) P (x) ={|x|*, (sgn x) |x|4}, p+g=n.

As results from the general theory of functions of a matrix argument (cf. [2]), to
boxes (16) of matrices A,, A, there correspond the following boxes of matrices
]\‘I-“P ]tl“‘a

Ix*  [x|*In|x]| - lxl‘“'lrl2 x] .. “(m 11)1 5 b F
19 x<= R 2)1 x{* 10”2 x|
. |x|* 3
X [P (bInlxl) 5y x| (0 x])? = ]”,'r|"(1n|x;)=-l
, 241 >
(20) x|t = |x[®  |x|®(b1n |x]) ... 2), 1x|B(b In |x])*~2 :
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where
[P [].rj“cos(blnixl) |x|9sin (b In |x|)

—|x[*sin(bIn|x|) |x|°cos(bIn|x])]’

Here a and b are the constants occurring in (16).
Thus we arrive to the following result.

Theorem 1. For every real non-singular measurable solution ®(x) of equation
(1) in R there exists a basis in which ®(x) is a generalized diagonal matrix function
with boxes of the four possible forms:

(21) [x|%, |x|k, (sgnx)|x|¥, (sgn x)|x|F,

where x| and |x|" are given by formulae (19) and (20). On the other hand, every
generalized diagonal matrix function ®(x) ?) with boxes of form (21) evidently satisfies
equation (1).

§ 6. Instead assuming measurability we may restrict the domain of definition
of @ to the group U, X D, where D is the multiplicative group of exponential diadic
fractions (cf. (2)). The same argument as previously leads now to formula (18)
as the general real solution of equation (1) in the set considered.

Now, if @(x) is any solution of equation (1) in R, then (18) must hold for x

of the form +exp The function

%
¥ (x) = ®(x) {|x|~4», (sgn x) |x| 44}

also is a solution of (1) and in view of (18) we have ¥ (x)=E, for x= iexp?,

and moreover

(22) Y(—1)=E,.

Hence the decomposition

@ (x) = P (x){ |x|4, (sgn x) |x|4}

results, where ¥ (x) is a solution of (1) in R which is identically E, on + D. According
to the considerations in § 4 we must have (cf. (22))

¥(x)=exp Z(In |x]),
whence finally
(23) @ (x)=(exp Z(In |x])) {|x*r, (sgn x) |x|4e}.

In (23) Z(u) is a function satisfying equation (12) and vanishing on the set D of
diadic fractions. Unless Z(u)=0, when (23) reduces to (18), the matrix function
Z(u) is totally non-measurable (all its entries are non-measurable functions). Thus
we are led to the following decomposition theorem:

) _Or, more generally, every function (3), where @(x) is a generalized diagonal matrix function
with boxes of form (21).
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Theorem 2. Every real non-singular solution of equation (1) in R may be given
(in a suitable basis) form (23), where {|x|4», (sgn x)|x|44} is a measurable solution
of (1) as described in Theorem 1, and Z(u) is a totally non-measurable matrix-valued
Sfunction satisfyving equation (12), or =(u)=0.

This decomposition may turn out useful for the purpose of classification of
geometric objects with not necessarily measurable transformation law.
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