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Continuous multifunction from [-1,0] to R
having no continuous selection

By IVAN KUPKA (Bratislava)

Abstract. The paper presents an example of a continuous and Hausdorff con-
tinuous multifunction F' : [—1,0] — R with closed values which has no continuous
selection.

1. Introduction

A classical condition in selection theory is the convexness of values
([5, 6]). Some papers dealing with the problem of existence of continu-
ous and quasicontinuous selections considered multifunctions with com-
pact values (see e.g. [2, 4]). But it is well known, that even finite-valued
continuous multifunctions need not have a continuous selection. In 1976
CARBONE gave an example of a continuous multifunction F' from a circle
C onto the boundary of Mobius band such that for each x in C' the set
F(z) has exactly two points and F' has no continuous selection ([1]).

But what can be said about continuous multifunctions F': X — Y
when X and Y are extremely “nice”? Let us consider a Hausdorff contin-
uous multifunction F' : R — R with closed values. It is easy to see, that
if there is a point ¢ in R such, that the value F(¢) has an upper bound
in R then all values of F' have this property. So, the function defined by
f(z) = max F'(z) for each z in R would be a continuous selection of F'.

Maybe a little trick could help us to prove that for every Hausdorff
continuous multifunction F' from R to R there is a Hausdorff-continuous
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multifunction G with a bounded value and such, that G(z) C F(z) for
each x in R?

No such little trick exists. To see this, it suffices to present an example
of a Hausdorff continuous multifunction F' : R — R with closed values
which has no continuous selection.

2. Result

For definitions of basic notions: multifunction, selection, l.s.c., u.s.c.
and Hausdorff continuous multifunction, Hausdorff metric etc. see e.g. [3]
and [7]. A multifunction F' is called continuous, if it is l.s.c. and u.s.c.
(lower and upper semicontinuous).

The following example presents construction of a continuous and Ha-
usdorff continuous multifunction F': [-1,0] — R with closed values which
has no continuous selection.

Ezample. Let S : [-1,0] — R be defined as follows:
S(0)=R

S(z) = {@:ﬁtg; keZ}

2" 41 n+1l &k
U{n(n+1) it Tt onrr T gns keZ}

o . . 1 1
for every positive integer n and every x € <—;, —n—+1>

In other words: the intersection of the graph of S with the set

<—l —L> x R is the system of segments joining the following couples

n’ n+1
of points: the point [—1, 2] with the point [—n+r1, oo+ 1] and [—-2, 2]
with the point [—%ﬂ, o+ % + Qn%] where m is an arbitrary integer.

Of course, S is Hausdorff continuous on [—1,0); so, it is l.s.c. on this
set. Now, it suffices to show, that S is Hausdorff continuous in 0. But it is
easy to see that for every ¢ € (—1,0) the following holds: if s € S(t) then
s+ & € S(t) for every integer k, so H(S(t),R) < 5=, where H denotes
the Hausdorff metric defined on 2%. S has no continuous selection on R
while every continuous selection g of S defined on the set [—1,0) has the
property tlir(r)l g(t) = +o0.

The multifunction S is not u.s.c. To see this, define a set U =
Uk - L.k ﬁ) Then U is an open neighborhood of the set S(—1)



Continuous multifunction. . . 369

and for every neighorhood V' of the point —1 there exists t € V' such that
S(t) is not a subset of U. A problem of this kind will not appear when
we make the set R — S(z) “sufficiently small”, i.e., a subset of a compact
interval.

Let G : [-1,0) — R be defined as follows:

G(x) < <—— +oo) for x € (—00,0).

Now, let us define F': [—1,0] — R as follows:

F(z)=S(x)UG(z) forxe[-1,0)
F(0) = S(0) =

It is easy to verify that F' is u.s.c. and Hausdorff continuous at the point 0.
Since both S and G are Hausdorff continuous on the set [—1,0), F' =
S UG is Hausdorff continuous, too. F'is u.s.c. on [—1,0). For example let

x € <—n, n—+1> and let W be an open neighborhood of the set F'(x).
Let us denote A = F(z) — ((—o00, 1) U (=1, 400)).

Let A() = U (@ —a,a+«) for a>0.
acA
Then there exists an € > 0 such that the set Z = (—oco, 1 +¢&)U(—1 -

g,+00) U A(e) is a subset of W. Let I be the set of such indices k € N,

that there exists t € <_E’ ——> for which the set
n(n+1) k 2" 4+ 1 k
{Tt—f— 2—n,n(n+1) IS t+ IS N(—n—1,n+1)

is nonempty.

Each of the functions l —%, n(n+1) T+ = 2n and n(n+1) %nill + ;ntll +
% (k € I) is uniformly contlnuous on the interval (—1, ——1-) The set
I is finite. So, considering the form of the set F'(x), it is easy to see that
there exists an § > 0 (i.e. 0 = M) such that for every ¢t € R satisfying
|t—z |<d,F(t) C Z C W holds.

So, F'is Hausdorff continuous, l.s.c. and u.s.c. on the interval [—1, 0].
Of course, F' has no continuous selection on [—1, 0].
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