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Continuous multifunction from [−1, 0] to R
having no continuous selection

By IVAN KUPKA (Bratislava)

Abstract. The paper presents an example of a continuous and Hausdorff con-
tinuous multifunction F : [−1, 0] → R with closed values which has no continuous
selection.

1. Introduction

A classical condition in selection theory is the convexness of values
([5, 6]). Some papers dealing with the problem of existence of continu-
ous and quasicontinuous selections considered multifunctions with com-
pact values (see e.g. [2, 4]). But it is well known, that even finite-valued
continuous multifunctions need not have a continuous selection. In 1976
Carbone gave an example of a continuous multifunction F from a circle
C onto the boundary of Möbius band such that for each x in C the set
F (x) has exactly two points and F has no continuous selection ([1]).

But what can be said about continuous multifunctions F : X → Y

when X and Y are extremely “nice”? Let us consider a Hausdorff contin-
uous multifunction F : R → R with closed values. It is easy to see, that
if there is a point t in R such, that the value F (t) has an upper bound
in R then all values of F have this property. So, the function defined by
f(x) = max F (x) for each x in R would be a continuous selection of F .

Maybe a little trick could help us to prove that for every Hausdorff
continuous multifunction F from R to R there is a Hausdorff-continuous
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multifunction G with a bounded value and such, that G(x) ⊆ F (x) for
each x in R ?

No such little trick exists. To see this, it suffices to present an example
of a Hausdorff continuous multifunction F : R → R with closed values
which has no continuous selection.

2. Result

For definitions of basic notions: multifunction, selection, l.s.c., u.s.c.
and Hausdorff continuous multifunction, Hausdorff metric etc. see e.g. [3]
and [7]. A multifunction F is called continuous, if it is l.s.c. and u.s.c.
(lower and upper semicontinuous).

The following example presents construction of a continuous and Ha-
usdorff continuous multifunction F : [−1, 0] → R with closed values which
has no continuous selection.

Example. Let S : [−1, 0] → R be defined as follows:

S(0) = R

S(x) =
{

n(n + 1)
2

x +
k

2n
; k ∈ Z

}

∪
{

n(n + 1)
2n + 1
2n+1

x +
n + 1
2n+1

+
k

2n
; k ∈ Z

}

for every positive integer n and every x ∈
〈
− 1

n ,− 1
n+1

〉

In other words: the intersection of the graph of S with the set〈
− 1

n ,− 1
n+1

〉
× R is the system of segments joining the following couples

of points: the point [− 1
n , m

2n ] with the point [− 1
n+1 , m

2n + 1
2 ] and [− 1

n , m
2n ]

with the point [− 1
n+1 , m

2n + 1
2 + 1

2n+1 ] where m is an arbitrary integer.
Of course, S is Hausdorff continuous on [−1, 0); so, it is l.s.c. on this

set. Now, it suffices to show, that S is Hausdorff continuous in 0. But it is
easy to see that for every t ∈ 〈− 1

n , 0
)

the following holds: if s ∈ S(t) then
s + k

2n ∈ S(t) for every integer k, so H(S(t),R) ≤ 1
2n , where H denotes

the Hausdorff metric defined on 2R. S has no continuous selection on R
while every continuous selection g of S defined on the set [−1, 0) has the
property lim

t→0−
g(t) = +∞.

The multifunction S is not u.s.c. To see this, define a set U =⋃
k∈Z

(k
2 − 1

2|k| ;
k
2 + 1

2|k| ). Then U is an open neighborhood of the set S(−1)
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and for every neigborhood V of the point −1 there exists t ∈ V such that
S(t) is not a subset of U . A problem of this kind will not appear when
we make the set R− S(x) “sufficiently small”, i.e., a subset of a compact
interval.

Let G : [−1, 0) → R be defined as follows:

G(x) =
(
−∞,

1
x

〉
∪

〈
− 1

x
, +∞

)
for x ∈ (−∞, 0).

Now, let us define F : [−1, 0] → R as follows:

F (x) = S(x) ∪G(x) for x ∈ [−1, 0)

F (0) = S(0) = R.

It is easy to verify that F is u.s.c. and Hausdorff continuous at the point 0.
Since both S and G are Hausdorff continuous on the set [−1, 0), F =

S ∪G is Hausdorff continuous, too. F is u.s.c. on [−1, 0). For example let
x ∈

〈
− 1

n ,− 1
n+1

〉
and let W be an open neighborhood of the set F (x).

Let us denote A = F (x)− (
(−∞, 1

x ) ∪ (− 1
x , +∞)

)
.

Let A(α) =
⋃

a∈A

(a− α, a + α) for α > 0.

Then there exists an ε > 0 such that the set Z = (−∞, 1
x +ε)∪ (− 1

x −
ε, +∞) ∪ A(ε) is a subset of W . Let I be the set of such indices k ∈ N,
that there exists t ∈

〈
− 1

n ,− 1
n+1

〉
for which the set

{
n(n + 1)

2
t +

k

2n
, n(n + 1)

2n + 1
2n+1

t +
k

2n+1

}
∩ 〈−n− 1, n + 1〉

is nonempty.
Each of the functions 1

x , − 1
x , n(n+1)

2 x+ k
2n and n(n+1) 2n+1

2n+1 x+ n+1
2n+1 +

k
2n (k ∈ I) is uniformly continuous on the interval 〈− 1

n ,− 1
n+1 〉. The set

I is finite. So, considering the form of the set F (x), it is easy to see that
there exists an δ > 0 (i.e. δ = ε

2(n+1)2 ) such that for every t ∈ R satisfying
| t− x |< δ, F (t) ⊂ Z ⊂ W holds.

So, F is Hausdorff continuous, l.s.c. and u.s.c. on the interval [−1, 0].
Of course, F has no continuous selection on [−1, 0].
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