Publ. Math. Debrecen
48 / 3-4 (1996), 367-370

Continuous multifunction from $[-1,0]$ to \mathbb{R} having no continuous selection

By IVAN KUPKA (Bratislava)

Abstract

The paper presents an example of a continuous and Hausdorff continuous multifunction $F:[-1,0] \rightarrow \mathbb{R}$ with closed values which has no continuous selection.

1. Introduction

A classical condition in selection theory is the convexness of values $([5,6])$. Some papers dealing with the problem of existence of continuous and quasicontinuous selections considered multifunctions with compact values (see e.g. [2, 4]). But it is well known, that even finite-valued continuous multifunctions need not have a continuous selection. In 1976 Carbone gave an example of a continuous multifunction F from a circle C onto the boundary of Möbius band such that for each x in C the set $F(x)$ has exactly two points and F has no continuous selection ([1]).

But what can be said about continuous multifunctions $F: X \rightarrow Y$ when X and Y are extremely "nice"? Let us consider a Hausdorff continuous multifunction $F: \mathbb{R} \rightarrow \mathbb{R}$ with closed values. It is easy to see, that if there is a point t in \mathbb{R} such, that the value $F(t)$ has an upper bound in \mathbb{R} then all values of F have this property. So, the function defined by $f(x)=\max F(x)$ for each x in \mathbb{R} would be a continuous selection of F.

Maybe a little trick could help us to prove that for every Hausdorff continuous multifunction F from \mathbb{R} to \mathbb{R} there is a Hausdorff-continuous

[^0]multifunction G with a bounded value and such, that $G(x) \subseteq F(x)$ for each x in \mathbb{R} ?

No such little trick exists. To see this, it suffices to present an example of a Hausdorff continuous multifunction $F: \mathbb{R} \rightarrow \mathbb{R}$ with closed values which has no continuous selection.

2. Result

For definitions of basic notions: multifunction, selection, l.s.c., u.s.c. and Hausdorff continuous multifunction, Hausdorff metric etc. see e.g. [3] and [7]. A multifunction F is called continuous, if it is l.s.c. and u.s.c. (lower and upper semicontinuous).

The following example presents construction of a continuous and Hausdorff continuous multifunction $F:[-1,0] \rightarrow \mathbb{R}$ with closed values which has no continuous selection.

Example. Let $S:[-1,0] \rightarrow \mathbb{R}$ be defined as follows:

$$
\begin{aligned}
S(0)= & \mathbb{R} \\
S(x)= & \left\{\frac{n(n+1)}{2} x+\frac{k}{2^{n}} ; k \in \mathbb{Z}\right\} \\
& \cup\left\{n(n+1) \frac{2^{n}+1}{2^{n+1}} x+\frac{n+1}{2^{n+1}}+\frac{k}{2^{n}} ; k \in \mathbb{Z}\right\}
\end{aligned}
$$

for every positive integer n and every $x \in\left\langle-\frac{1}{n},-\frac{1}{n+1}\right\rangle$
In other words: the intersection of the graph of S with the set $\left\langle-\frac{1}{n},-\frac{1}{n+1}\right\rangle \times \mathbb{R}$ is the system of segments joining the following couples of points: the point $\left[-\frac{1}{n}, \frac{m}{2^{n}}\right]$ with the point $\left[-\frac{1}{n+1}, \frac{m}{2^{n}}+\frac{1}{2}\right]$ and $\left[-\frac{1}{n}, \frac{m}{2^{n}}\right]$ with the point $\left[-\frac{1}{n+1}, \frac{m}{2^{n}}+\frac{1}{2}+\frac{1}{2^{n+1}}\right]$ where m is an arbitrary integer.

Of course, S is Hausdorff continuous on $[-1,0)$; so, it is l.s.c. on this set. Now, it suffices to show, that S is Hausdorff continuous in 0 . But it is easy to see that for every $t \in\left\langle-\frac{1}{n}, 0\right)$ the following holds: if $s \in S(t)$ then $s+\frac{k}{2^{n}} \in S(t)$ for every integer k, so $H(S(t), \mathbb{R}) \leq \frac{1}{2^{n}}$, where H denotes the Hausdorff metric defined on $2^{\mathbb{R}}$. S has no continuous selection on \mathbb{R} while every continuous selection g of S defined on the set $[-1,0)$ has the property $\lim _{t \rightarrow 0^{-}} g(t)=+\infty$.

The multifunction S is not u.s.c. To see this, define a set $U=$ $\bigcup_{k \in \mathbb{Z}}\left(\frac{k}{2}-\frac{1}{2^{|k|}} ; \frac{k}{2}+\frac{1}{2^{|k|}}\right)$. Then U is an open neighborhood of the set $S(-1)$
and for every neigborhood V of the point -1 there exists $t \in V$ such that $S(t)$ is not a subset of U. A problem of this kind will not appear when we make the set $\mathbb{R}-S(x)$ "sufficiently small", i.e., a subset of a compact interval.

Let $G:[-1,0) \rightarrow \mathbb{R}$ be defined as follows:

$$
G(x)=\left(-\infty, \frac{1}{x}\right\rangle \cup\left\langle-\frac{1}{x},+\infty\right) \quad \text { for } x \in(-\infty, 0)
$$

Now, let us define $F:[-1,0] \rightarrow \mathbb{R}$ as follows:

$$
\begin{aligned}
& F(x)=S(x) \cup G(x) \quad \text { for } x \in[-1,0) \\
& F(0)=S(0)=\mathbb{R} .
\end{aligned}
$$

It is easy to verify that F is u.s.c. and Hausdorff continuous at the point 0 .
Since both S and G are Hausdorff continuous on the set $[-1,0), F=$ $S \cup G$ is Hausdorff continuous, too. F is u.s.c. on $[-1,0)$. For example let $x \in\left\langle-\frac{1}{n},-\frac{1}{n+1}\right\rangle$ and let W be an open neighborhood of the set $F(x)$.

Let us denote $A=F(x)-\left(\left(-\infty, \frac{1}{x}\right) \cup\left(-\frac{1}{x},+\infty\right)\right)$.
Let $A(\alpha)=\bigcup_{a \in A}(a-\alpha, a+\alpha)$ for $\alpha>0$.
Then there exists an $\varepsilon>0$ such that the set $Z=\left(-\infty, \frac{1}{x}+\varepsilon\right) \cup\left(-\frac{1}{x}-\right.$ $\varepsilon,+\infty) \cup A(\varepsilon)$ is a subset of W. Let I be the set of such indices $k \in \mathbb{N}$, that there exists $t \in\left\langle-\frac{1}{n},-\frac{1}{n+1}\right\rangle$ for which the set

$$
\left\{\frac{n(n+1)}{2} t+\frac{k}{2^{n}}, n(n+1) \frac{2^{n}+1}{2^{n+1}} t+\frac{k}{2^{n+1}}\right\} \cap\langle-n-1, n+1\rangle
$$

is nonempty.
Each of the functions $\frac{1}{x},-\frac{1}{x}, \frac{n(n+1)}{2} x+\frac{k}{2^{n}}$ and $n(n+1) \frac{2^{n}+1}{2^{n+1}} x+\frac{n+1}{2^{n+1}}+$ $\frac{k}{2^{n}} \quad(k \in I)$ is uniformly continuous on the interval $\left\langle-\frac{1}{n},-\frac{1}{n+1}\right\rangle$. The set I is finite. So, considering the form of the set $F(x)$, it is easy to see that there exists an $\delta>0$ (i.e. $\left.\delta=\frac{\varepsilon}{2(n+1)^{2}}\right)$ such that for every $t \in \mathbb{R}$ satisfying $|t-x|<\delta, F(t) \subset Z \subset W$ holds.

So, F is Hausdorff continuous, l.s.c. and u.s.c. on the interval $[-1,0]$. Of course, F has no continuous selection on $[-1,0]$.

References

[1] L. Carbone, Selezioni continue in spazi non lineari e punti fissi, Rend. Circ. Mat. Palermo 25 (1976), 101-115.
[2] I. KUPKA, Quasicontinuous selections for compact-valued multifunctions, Math. Slovaca 43 (1993), 69-75.
[3] K. Kuratowski, Topologie I., PWN, Warszawa 1952.
[4] M. Matejdes, Sur les sélecteurs des multifonctions, Math. Slovaca 37 (1987), 1110-124.
[5] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361-382.
[6] E. Michael, Continuous selections II, Ann. of Math. 64 (1956), 562-580.
[7] S. B. Nadler, Hyperspaces of sets, Marcel Dekker, Inc., New York and Bassel, 1978.

IVAN KUPKA
KOMENSKY UNIVERSITY
FACULTY OF MATHEMATICS AND PHYSICS
MLYNSKA DOLINA
84215 BRATISLAVA
SLOVAKIA
(Received August 7, 1995)

[^0]: Mathematics Subject Classification: 54C65.
 Key words and phrases: Continuous multifunction, Hausdorff continuous multifunction, selection.

