Publ. Math. Debrecen 48 / 3-4 (1996), 367–370

Continuous multifunction from [-1,0] to \mathbb{R} having no continuous selection

By IVAN KUPKA (Bratislava)

Abstract. The paper presents an example of a continuous and Hausdorff continuous multifunction $F : [-1,0] \to \mathbb{R}$ with closed values which has no continuous selection.

1. Introduction

A classical condition in selection theory is the convexness of values ([5, 6]). Some papers dealing with the problem of existence of continuous and quasicontinuous selections considered multifunctions with compact values (see e.g. [2, 4]). But it is well known, that even finite-valued continuous multifunctions need not have a continuous selection. In 1976 CARBONE gave an example of a continuous multifunction F from a circle C onto the boundary of Möbius band such that for each x in C the set F(x) has exactly two points and F has no continuous selection ([1]).

But what can be said about continuous multifunctions $F: X \to Y$ when X and Y are extremely "nice"? Let us consider a Hausdorff continuous multifunction $F: \mathbb{R} \to \mathbb{R}$ with closed values. It is easy to see, that if there is a point t in \mathbb{R} such, that the value F(t) has an upper bound in \mathbb{R} then all values of F have this property. So, the function defined by $f(x) = \max F(x)$ for each x in \mathbb{R} would be a continuous selection of F.

Maybe a little trick could help us to prove that for every Hausdorff continuous multifunction F from \mathbb{R} to \mathbb{R} there is a Hausdorff-continuous

Mathematics Subject Classification: 54C65.

 $Key\ words\ and\ phrases:$ Continuous multifunction, Hausdorff continuous multifunction, selection.

Ivan Kupka

multifunction G with a bounded value and such, that $G(x) \subseteq F(x)$ for each x in \mathbb{R} ?

No such little trick exists. To see this, it suffices to present an example of a Hausdorff continuous multifunction $F : \mathbb{R} \to \mathbb{R}$ with closed values which has no continuous selection.

2. Result

For definitions of basic notions: multifunction, selection, l.s.c., u.s.c. and Hausdorff continuous multifunction, Hausdorff metric etc. see e.g. [3] and [7]. A multifunction F is called continuous, if it is l.s.c. and u.s.c. (lower and upper semicontinuous).

The following example presents construction of a continuous and Hausdorff continuous multifunction $F : [-1, 0] \to \mathbb{R}$ with closed values which has no continuous selection.

Example. Let $S : [-1, 0] \to \mathbb{R}$ be defined as follows:

$$S(0) = \mathbb{R}$$

$$S(x) = \left\{ \frac{n(n+1)}{2}x + \frac{k}{2^n}; \ k \in \mathbb{Z} \right\}$$

$$\cup \left\{ n(n+1)\frac{2^n + 1}{2^{n+1}}x + \frac{n+1}{2^{n+1}} + \frac{k}{2^n}; \ k \in \mathbb{Z} \right\}$$

for every positive integer n and every $x \in \left\langle -\frac{1}{n}, -\frac{1}{n+1} \right\rangle$ In other words: the intersection of the graph of S with the set

In other words: the intersection of the graph of S with the set $\left\langle -\frac{1}{n}, -\frac{1}{n+1} \right\rangle \times \mathbb{R}$ is the system of segments joining the following couples of points: the point $\left[-\frac{1}{n}, \frac{m}{2^n}\right]$ with the point $\left[-\frac{1}{n+1}, \frac{m}{2^n} + \frac{1}{2}\right]$ and $\left[-\frac{1}{n}, \frac{m}{2^n}\right]$ with the point $\left[-\frac{1}{n+1}, \frac{m}{2^n} + \frac{1}{2} + \frac{1}{2^{n+1}}\right]$ where m is an arbitrary integer.

Of course, S is Hausdorff continuous on [-1,0); so, it is l.s.c. on this set. Now, it suffices to show, that S is Hausdorff continuous in 0. But it is easy to see that for every $t \in \langle -\frac{1}{n}, 0 \rangle$ the following holds: if $s \in S(t)$ then $s + \frac{k}{2^n} \in S(t)$ for every integer k, so $H(S(t), \mathbb{R}) \leq \frac{1}{2^n}$, where H denotes the Hausdorff metric defined on $2^{\mathbb{R}}$. S has no continuous selection on \mathbb{R} while every continuous selection g of S defined on the set [-1,0) has the property $\lim_{t\to 0^-} g(t) = +\infty$.

The multifunction S is not u.s.c. To see this, define a set $U = \bigcup_{k \in \mathbb{Z}} \left(\frac{k}{2} - \frac{1}{2^{|k|}}; \frac{k}{2} + \frac{1}{2^{|k|}}\right)$. Then U is an open neighborhood of the set S(-1)

368

and for every neighborhood V of the point -1 there exists $t \in V$ such that S(t) is not a subset of U. A problem of this kind will not appear when we make the set $\mathbb{R} - S(x)$ "sufficiently small", i.e., a subset of a compact interval.

Let $G: [-1,0) \to \mathbb{R}$ be defined as follows:

$$G(x) = \left(-\infty, \frac{1}{x}\right) \cup \left\langle-\frac{1}{x}, +\infty\right) \quad \text{for } x \in (-\infty, 0).$$

Now, let us define $F : [-1, 0] \to \mathbb{R}$ as follows:

$$F(x) = S(x) \cup G(x) \quad \text{ for } x \in [-1, 0)$$

$$F(0) = S(0) = \mathbb{R}.$$

It is easy to verify that F is u.s.c. and Hausdorff continuous at the point 0.

Since both S and G are Hausdorff continuous on the set [-1,0), $F = S \cup G$ is Hausdorff continuous, too. F is u.s.c. on [-1,0). For example let $x \in \left\langle -\frac{1}{n}, -\frac{1}{n+1} \right\rangle$ and let W be an open neighborhood of the set F(x).

Let us denote $A = F(x) - \left(\left(-\infty, \frac{1}{x}\right) \cup \left(-\frac{1}{x}, +\infty\right)\right)$. Let $A(\alpha) = \bigcup_{a \in A} (a - \alpha, a + \alpha)$ for $\alpha > 0$.

Then there exists an $\varepsilon > 0$ such that the set $Z = (-\infty, \frac{1}{x} + \varepsilon) \cup (-\frac{1}{x} - \varepsilon, +\infty) \cup A(\varepsilon)$ is a subset of W. Let I be the set of such indices $k \in \mathbb{N}$, that there exists $t \in \left\langle -\frac{1}{n}, -\frac{1}{n+1} \right\rangle$ for which the set

$$\left\{\frac{n(n+1)}{2}t + \frac{k}{2^n}, n(n+1)\frac{2^n+1}{2^{n+1}}t + \frac{k}{2^{n+1}}\right\} \cap \langle -n-1, n+1 \rangle$$

is nonempty.

Each of the functions $\frac{1}{x}$, $-\frac{1}{x}$, $\frac{n(n+1)}{2}x + \frac{k}{2^n}$ and $n(n+1)\frac{2^n+1}{2^{n+1}}x + \frac{n+1}{2^{n+1}} + \frac{k}{2^n}$ $(k \in I)$ is uniformly continuous on the interval $\langle -\frac{1}{n}, -\frac{1}{n+1} \rangle$. The set I is finite. So, considering the form of the set F(x), it is easy to see that there exists an $\delta > 0$ (i.e. $\delta = \frac{\varepsilon}{2(n+1)^2}$) such that for every $t \in \mathbb{R}$ satisfying $|t-x| < \delta, F(t) \subset Z \subset W$ holds.

So, F is Hausdorff continuous, l.s.c. and u.s.c. on the interval [-1, 0]. Of course, F has no continuous selection on [-1, 0].

References

 L. CARBONE, Selezioni continue in spazi non lineari e punti fissi, Rend. Circ. Mat. Palermo 25 (1976), 101–115.

- [2] I. KUPKA, Quasicontinuous selections for compact-valued multifunctions, Math. Slovaca 43 (1993), 69-75.
- [3] K. KURATOWSKI, Topologie I., PWN, Warszawa 1952.
- [4] M. MATEJDES, Sur les sélecteurs des multifonctions, Math. Slovaca 37 (1987), 1110-124.
- [5] E. MICHAEL, Continuous selections I, Ann. of Math. 63 (1956), 361–382.
- [6] E. MICHAEL, Continuous selections II, Ann. of Math. 64 (1956), 562–580.
 [7] S. B. NADLER, Hyperspaces of sets, Marcel Dekker, Inc., New York and Bassel, 1978.

IVAN KUPKA KOMENSKY UNIVERSITY FACULTY OF MATHEMATICS AND PHYSICS MLYNSKA DOLINA 84215 BRATISLAVA SLOVAKIA

(Received August 7, 1995)

370