On Taylor series absolutely convergent on the circumference
of the circle of convergence 1.

By GABOR HALASZ (Budapest)

P. TurAN has initiated the following problem: How does the behaviour of
a Taylor series change at the periphery of its circle of convergence under conformal
mappings of the circle onto itself? To be precise, let

@)= 2 az
k=0
be regular for |z| <1 and let us make the substitution z=T(w):
AT w) = Zo b,w"
where T(w) is a conformal mapping of the unit circle onto itself the most general
form which is

w=—{
1—wl

z=T(wW)=c¢ (le] =1, [{| <1 are const).

The question is what the relation is between > az* and > bw" in terms of
k=0 n=0

convergence, summability, e.t.c. at corresponding points of |z]=1 and |w|=1.
The first theorem in this direction is due to P. Turan himself ([1]) and afterwards
L. ALPAR has obtained a great number of interesting results. One of them is that

absolute convergence is not always preserved: > |a| can converge without
k=0

> |b,| being finite (see [2]). Nevertheless, for all functions f(z) satisfying f}a,,l < +oo
k=0

n=0
3 b2 <+

by Parseval’s inequality since f(z) is then continuous on the closed disk |z|=1.
Therefore he raised the question in his same article [2]: Does there exist a function
Jfo(2) for which

o
2 la] <+
k=0
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- 5 (b2~ =+
n=0

however small the positive & should be? In this paper we shall construct such an
example f5(z) and at the same time the best possible one in this connection.

Theorem. Ler 0<|{|<1, |c|=1, O<w(n)—~ + = be given in advance. Then
there exists a function

Jo(2z) = j a,z*
k=0

such that

3l < +e

k=0
and if

£o@ o) =fo[e 755 = 3 b
then
o 2 2®)

(1) %[b,g 1088 — | oo,

On the other hand, it is an elementary fact that in case w(n) = O(1) the statement
is no longer true'. There is still a gap between w(n)— + < and w(n)=0(1), but
for the problem in question it is perhaps not very interesting. With slight modi-
fication, the proof of footnote ') could be applied to the case when instead of
@(n) = O(1) there exists a d such that

and probably our theorem is valid if such a constant does not exist.
Now, putting the Taylor series of 7T(w) into that of f(z), we obtain that the
relation between {a,} and {b,} is given by a linear transformation

bu = Z tkuak
k=0

1) PROOF. Z |b,|? = + <, while :_i_' Ib,,!" %" < o is to be proved.
n=0 n=2

const

1 Scast
If |b,] =< — then fb,.lz logn =< |p,| < —L for n = No(= 2).
n? n?

1 1 1 togn
If b, = — then b, ™" = b2 [_) = |b,l3e* <o,
ﬂz u’

Hence

const -

- 1 oo
2 ]b],‘z logn = 2' ;_i_elconn 2 Ib.12,‘+“_ Q- e. d.

n=No n=1 n=0
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where 1, is the nth coefficient of the kth power of T(w). First we give a sufficient
condition for a matrix [|z,|| to turn an absolutely convergent series 2 'a, into another
b, fulfilling (1) and then verify this condition in our case u, = #;,.

Lemma. Let 0<A,=A, |u, =M where A and M are independent of n, and k
and n respectively. Assume further that

@ U= 3 lualin 2 00) (k= )

In this case there exists an absolutely convergent series for which the transformed
sequence

b, = Z Uyn Gy,
k=0
satisfies
3 [byfin = +oo.

Here we strove but for giving a condition easily verifiable in our special case.
To find the necessary and sufficient condition may turn out difficult.

PROOF OF THE LEMMA. We can assume U, finite for each k, otherwise we could
choose a; =0 except for a single k with infinite U,.

We successively construct integers k,,, n,, and positive numbers A, in the
following way. Let kg=ny=0, 4, =1. Assume that they are already defined for
m-<m’. We choose A, subject only to the conditions

1 Memr =1

3) 0 < Aw < 5 Aw-1, 2, AmQMy- = 1.
n=0

With A, so fixed, the expression

’ A(m=-1
® o (2 v

has a well-determined finite value. U, is not bounded and therefore we can find
a k> k-, such that U, . exceeds this value. A partial sum of U,,, of large
enough index also does this and as a final step of this definition by induction we
determine n,, >n,,_, to be such an index.
Now we put g, =4, a=0 if k#k, (m=0,1,...) and prove that for the
transformed series
D |byfin = +o0 as m -+ oo,

From the first part of (3) Zw'lakl = > A, < + e trivially follows.
k=0

m=0

DS
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We shall use the elementary inequality

Zx(]S!‘Zx‘ (=0, x;,=0).
i=1 i=1

For =1 even with 1, for « =1 with /*~! instead of /* so that it holds in any case.
Let m’ be fixed and n=n,,. We have

= 2“ 2 i,..il 2 ul’...n m+uk..,llA & Z ut,,.nAm‘
k=0 m=0 m=m+1
Using the inequality with a=A,, /=m’+2 and the fact that A4, ., <44,=
lthnl = M, we obtain

oo I"ll'l

m =1 |
lukmmAm'IA" — }bn'"' Z ul...nAm'— Z Ug,.n Am‘

m=m"+1

An
s [Ibl+ |u.,..1+2MA,..H]
= (m'+2) [|b.|*~+ 5 thaltn-+ QMY A3 ]

[ - J. Nm Ba?
bt = 1 B b= 2 Una— 3 (s @MY

The sum in the first term is greater than (4) so that the first term exceeds the second
one by at least m” while the third term is less than 1 in view of (3) applied for m” + 1
in place of m’. Hence

3 b= —1 > oo

n=0

and our lemma is proved.

w(n)

PROOF OF THEOREM. ?) Let us put in the lemma wu, =1, 4,=2— T where
we recall 7,, is the nth coefficient of T%(w):

k(oi8
® —hf T .

0<4,=2 since we can assume o(n)<logn. Also |,,|=1 since |T(e'*)|=1. Hence
all suppositions of our lemma are trivially fulfilled except for (2). To prove this,
first of all we show that
1
o)

?) The proof follows that of BAJSANSKI (see [4], Theorem 3).

uniformly in k.
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Let us introduce the notation
T(e?) = oiF®)
where F(9) is monotonically increasing with derivative

1 —r2

F@) = 1_-_2rcos(9—¢)+r2 r=1¢, ¢=argl)

and maps (0, 2n) onto an interval (¥, ¥ +2x). Denoting the inverse function of
F(9) by G(t) we get

¥4+ 2n

2=
(6) e = 2_115 f ekF@®)-ind 49 — 2% f eikt=inGO G’ (1) dt.
0 ¥

Now, the second derivative of F(3) only vanishes for 3 =¢ and 3 = ¢ + n and there-

fore that of its inverse only for F(¢) and F(¢ +x). Also F”(3) does not vanish

for ¢ and ¢ + 7 and neither does G”(¢t) for F(p) and F(¢ +x). Omitting from
. 1 1 1

(Y, ¥ +2nr) the intervals [F((p)-—m , Flo)+ W] A [F((p:l: n)— T Foxn)+

const

+ "—{;3], at the points of the remaining at most three intervals |G"(7)| > i To these

intervals we can apply the following lemma of VAN DEr CorpuT (see [3], p. 116—117.):
If u”(¢) is continuous, |[u"(t)|>¢ in (a, b) then

b
: : . 8
f e"'(”dti = Qi
a

Let u(t) =kt —nG(t) where |u"(t)| =n|G"(t)| = const "%3 independently of k on the

remaining intervals. Hence

const
nl/3 ?

’feilr—inc(t)dt‘ =

the integration is over the remaining intervals. But for the intervals omitted of total
length at most 4/n'/3 the same estimation is trivially satisfied and so

V+2=
1
=0 ;1-5

I_l__ ikt = inG(r)
> f ekt O dt
v

even for negative k. ¢, is the (—k)th Fourier coefficient of ¢~"¢ and denoting

defl
|Ctnl S

that of G’(t) by d, where ' |d;| = + == since G’(¢) is twice continuously differen-
k

tiable, we get finally for the Fourier coefficients of the product e~"®G’(r)

- '- 1 - 1
B et = 0[] 3 1ai = o[

what we wanted to prove.

|rh|| -
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Using this bound in the series to be estimated from below

w(n) win) logn w(n)

-4 z__ == Lt W o ——
D tal 18" = const 3 |2 €8 3 = const D i)l * =
n=0 n=1 n=1

K
= conste® 3 |4,]%
n=1
w(mn=K

Here K can be any number. Since w(n) -~ + <= the number of terms missing in this
last sum is finite for each K. But for all fixed n #,,, -0 as we learn from (6) by Riemann’s
lemma, while by Parseval’s equality

2n
iln..[’ = -2%[|T*(e-‘8)|2d.9 |
0

from which we conclude
i (n) K
3

lim 3 |twl  '°®" = conste
k—oop=0

for all K and letting K— + <, condition (2) of the lemma in a slightly stronger
form than required is also verified. Q.e.d.
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