BV-solutions of some systems of nonlinear functional equations

By CZESŁAW DYJAK (Czȩstochowa, Poland)

Abstract

In the paper the solutions of bounded variation (BV-solutions) of the systems of functional equations $\varphi_{i}(x)=h_{i}\left(x, \varphi_{1}\left[f_{i, 1}(x)\right], \ldots, \varphi_{m}\left[f_{i, m}(x)\right]\right)$ and $\varphi_{i}[f(x)]=g_{i}\left(x, \varphi_{1}(x), \ldots, \varphi_{m}(x)\right), i=1,2, \ldots, m$, are considered. Under suitable hypotheses about given functions h_{i}, g_{i} and $f_{i, j}$ it is proved that he first system has in an interval $\langle a, b\rangle$ a unique BV -solutions and that BV -solution of the second system in an interval $(a, b\rangle$ depends on an arbitrary function.

Introduction. In this paper we consider the solutions of bounded variation (BV-solutions) of the systems of functional equations

$$
\begin{equation*}
\varphi_{i}(x)=h_{i}\left(x, \varphi_{i}\left[f_{i, 1}(x)\right], \ldots, \varphi_{m}\left[f_{i, m}(x)\right]\right), \quad i=1,2, \ldots, m \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{i}[f(x)]=g_{i}\left(x, \varphi_{1}(x), \ldots, \varphi_{m}(x)\right), \quad i=1,2, \ldots, m \tag{2}
\end{equation*}
$$

where φ_{i} are any unknown functions.
In our previous papers [1], [2] (with J. Matkowski) and [3] we have considered BV-solutions of the single functional equations (linear, nonlinear of first order and nonlinear of higher order). This is the first paper in which the BV-solutions of the systems of functional equations are considered. The special role in our considerations play some Lemmas and Theorems proved by Professor J. Matkowski in his habilitation work [4].

Let (X, d) be a metric space and $I \subset R$ an interval. By $P(I)$ we denote the set of all finite partitions $p: x_{0}<x_{1}<\cdots<x_{s}$ of the

Mathematics Subject Classification: Primary 39 B 30.
Key words and phrases: Functional equations, BV-solutions.
interval I, where $x_{i} \in I, i=0,1, \ldots, s$. Similarly as in the papers [2] and [3], for the function $\varphi: I \rightarrow M$ we denote by

$$
\begin{equation*}
\operatorname{Var}_{I} \varphi:=\sup _{P(I)} \sum_{i=1}^{s} d\left(\varphi\left(x_{i}\right), \varphi\left(x_{i-1}\right)\right) \tag{3}
\end{equation*}
$$

By $\operatorname{BV}(I)$ we denote the space of all functions $\varphi: I \rightarrow X$ such that $\operatorname{Var}_{I} \varphi<\infty$.
Also similarly as in [4] let us define the numbers $c_{i, k}^{(r)}$ as follows:

$$
c_{i, k}^{(r+1)}= \begin{cases}c_{1,1}^{(r)} c_{i+1, k+1}^{(r)}-c_{i+1,1}^{(r)} c_{1, k+1}^{(r)} & \text { for } i=k \tag{4}\\ c_{1,1}^{(r)} c_{i+1, k+1}^{(r)}+c_{i+1,1}^{(r)} c_{1, k+1}^{(r)} & \text { for } i \neq k\end{cases}
$$

$i, k=1,2, \ldots, m-r-1 ; \quad r=0,1, \ldots, m-2$.

1. In this section we assume the following hypotheses:
(i) (X, d) is a complete metric space,
(ii) $f_{i, k}:\langle a, b\rangle \rightarrow\langle a, b\rangle$ are continuous and strictly increasing in $\langle a, b\rangle, i, k=1,2, \ldots, m$,
(iii) $h_{i}:\langle a, b\rangle \times X^{m} \rightarrow X, i=1,2, \ldots, m$,
(iv) There are $H_{i} \in \mathrm{BV}\langle a, b\rangle$ and $\ell_{i, k} \in \mathbb{R}$ such that $0<\ell_{i, k}<1$, $i, k=1,2, \ldots, m$, and

$$
\begin{gather*}
d\left(h_{i}\left(x, y_{1}, \ldots, y_{m}\right), h_{i}\left(\bar{x}, \bar{y}-1, \ldots, \bar{y}_{m}\right)\right) \tag{5}\\
\leq \sum_{k=1}^{m} \ell_{i, k} d\left(y_{k}, \bar{y}_{k}\right)+d\left(H_{i}(x), H_{i}(\bar{x})\right) \\
i=1,2, \ldots, m,\left(x, y_{1}, \ldots, y_{m}\right),\left(\bar{x}, \bar{y}_{1}, \ldots, \bar{y}_{m}\right) \in\langle a, b\rangle \times X^{m}
\end{gather*}
$$

and the numbers

$$
c_{i, k}^{(0)}=\left\{\begin{array}{ll}
1-\ell_{i, k} & \text { for } i=k \tag{6}\\
\ell_{i, k} & \text { for } i \neq k
\end{array} \quad i, k=1,2, \ldots, m\right.
$$

fulfil the conditions

$$
\begin{equation*}
c_{i, i}^{(r)}>0, \quad i=1,2, \ldots, m-r ; \quad r=0,1, \ldots, m-1, \tag{7}
\end{equation*}
$$

where $c_{i, k}^{(r)}$ are defined by (4).

Now we have the following:
Theorem 1. If hypotheses (i)-(iv) are fulfilled then the system of equations (1) has in the interval $\langle a, b\rangle$ a unique solution $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right)$, such that $\varphi_{i} \in \operatorname{BV}\langle a, b\rangle, i=1,2, \ldots, m$. This solution is given by the formula $\varphi_{i}=\lim _{n \rightarrow \infty} \varphi_{i, n}$ (uniformly in $\langle a, b\rangle$), where $\varphi_{i, n+1}(x)=$ $h_{i}\left(x, \varphi_{1, n}\left[f_{i, 1}(x)\right], \ldots, \varphi_{m, n}\left[f_{i, m}(x)\right]\right), x \in\langle a, b\rangle, i=1,2, \ldots, m$, $n=0,1, \ldots$ and $\varphi_{i, 0} \in \mathrm{BV}\langle a, b\rangle$ is arbitrarily choosen. Moreover

$$
\begin{equation*}
\underset{\langle a, b\rangle}{\operatorname{Var}} \varphi_{i} \leq \frac{\sum_{\substack{k=1 \\ k \neq i}}^{m} \ell_{i, k} \underset{\langle a, b\rangle}{\operatorname{Var}} \varphi_{k}+\underset{\langle a, b\rangle}{\operatorname{Var}} H_{i}}{1-\ell_{i, i}}, \quad i=1,2, \ldots, m . \tag{8}
\end{equation*}
$$

Proof. In view of Lemma 1.1 from [4], there exist the numbers $r_{i}>0, i=1,2, \ldots, m$ and $t, 0<t<1$, such that

$$
\begin{equation*}
\sum_{\substack{k=1 \\ k \neq i}}^{m} \ell_{i, k} r_{k} \leq t r_{i}, \quad i=1,2, \ldots, m \tag{9}
\end{equation*}
$$

Note that for every $\lambda>0$ the numbers $\lambda r_{i}, i=1,2, \ldots, m$, also satisfy (9). It follows that without any loss of generality we can assume that

$$
\begin{equation*}
\underset{\langle a, b\rangle}{\operatorname{Var}} H_{i} \leq(1-t) r_{i}, \quad i=1,2, \ldots, m \tag{10}
\end{equation*}
$$

Now let us define the system of functions spaces

$$
\begin{equation*}
X_{i}=\left\{\varphi_{i} \in \mathrm{BV}\langle a, b\rangle: \underset{\langle a, b\rangle}{\operatorname{Var}} \varphi_{i} \leq r_{i}, \quad i=1,2, \ldots, m\right\} \tag{11}
\end{equation*}
$$

with the metrics

$$
\begin{align*}
\varrho_{i}\left(\bar{\varphi}_{i}, \overline{\bar{\varphi}}_{i}\right)= & \sup _{x \in\langle a, b\rangle} d\left(\bar{\varphi}_{i}(x), \overline{\bar{\varphi}}_{i}(x)\right), \quad \bar{\varphi}_{i}, \overline{\bar{\varphi}}_{i} \in X_{i}, \tag{12}\\
& \text { for every } i=1,2, \ldots, m .
\end{align*}
$$

Evidently, the space $\left(X_{i}, \varrho_{i}\right)$ is a complete metric space, $i=1,2, \ldots, m$.

Let us consider now the system of transformations

$$
\Psi_{i}=T_{i}\left[\varphi_{1}, \ldots, \varphi_{m}\right], \quad i=1,2, \ldots, m
$$

where $\Psi_{i}(x)$ is defined by the formula

$$
\begin{gathered}
\Psi_{i}(x)=h_{i}\left(x, \varphi_{1}\left[f_{i, 1}(x)\right], \ldots, \varphi_{m}\left[f_{i, m}(x)\right]\right), \\
x \in\langle a, b\rangle, \quad i=1,2, \ldots, m
\end{gathered}
$$

We shall show that $T_{i}: X_{1} \times X_{2} \times \cdots \times X_{m} \rightarrow X_{i}, i=1,2, \ldots, m$. Let $\varphi_{i} \in X_{i}$. We shall show that $\underset{\langle a, b\rangle}{\operatorname{Var}} \Psi_{i} \leq r_{i}, i=1,2, \ldots, m$. For this purpose, let us take into account the set of all partitions $P\langle a, b\rangle$ of interval $\langle a, b\rangle$ and estimate $\underset{\langle a, b\rangle}{\operatorname{Var}} \Psi_{i}$.

In virtue of hypotheses (i)-(iv) and inequalities (9) and (10), we have

$$
\begin{aligned}
& \operatorname{Var}_{\langle a, b\rangle} \Psi_{i}= \sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(\Psi_{i}\left(x_{j}\right), \Psi_{i}\left(x_{j-1}\right)\right) \\
&= \sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(h_{i}\left(x_{j}, \varphi_{1}\left[f_{i, 1}\left(x_{j}\right)\right], \ldots, \varphi_{m}\left[f_{i, m}\left(x_{j}\right)\right]\right),\right. \\
&\left.h_{i}\left(x_{j-1}, \varphi_{1}\left[f_{i, 1}\left(x_{j-1}\right)\right], \ldots, \varphi_{m}\left[f_{i, m}\left(x_{j-1}\right)\right]\right)\right) \\
& \leq \sup _{P\langle a, b\rangle} \sum_{j=1}^{s}\left\{\sum_{k=1}^{m} \ell_{i, k} d\left(\varphi_{k}\left[f_{i, k}\left(x_{j}\right)\right], \varphi_{k}\left[f_{i, k}\left(x_{j-1}\right)\right]\right)\right. \\
&\left.+d\left(H_{i}\left(x_{j}\right), H_{i}\left(x_{j-1}\right)\right)\right\} \\
& \leq \sup _{P\langle a, b\rangle} \sum_{j=1}^{s} \sum_{k=1}^{m} \ell_{i, k} d\left(\varphi_{k}\left[f_{i, k}\left(x_{j}\right)\right], \varphi_{k}\left[f_{i, k}\left(x_{j-1}\right)\right]\right) \\
&+\sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(H_{i}\left(x_{j}\right), H_{i}\left(x_{j-1}\right)\right) \\
& \leq \sum_{k=1}^{m}\left\{\begin{array}{l}
\left.\ell_{i, k} \sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(\varphi_{k}\left[f_{i, k}\left(x_{j}\right)\right], \varphi_{k}\left[f_{i, k}\left(x_{j-1}\right)\right]\right)\right\}
\end{array}\right. \\
& \quad+\sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(H_{i}\left(x_{j}\right), H_{i}\left(x_{j-1}\right)\right) \\
&= \sum_{k=1}^{m} \ell_{i, k} \operatorname{Var}_{\left\langle f_{i, k}(a), f_{i, k}(b)\right\rangle}^{\varphi_{k}}+\operatorname{Var}_{\langle a, b\rangle} H_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{k=1}^{m} \ell_{i, k}{\underset{\langle a, b\rangle}{\operatorname{Var}} \varphi_{k}+\underset{\langle a, b\rangle}{\operatorname{Var}} H_{i} \leq \sum_{k=1}^{m} \ell_{i, k} r_{k}+(1-t) r_{i}}^{\leq t r_{i}+(1-t) r_{i}=r_{i} .}
\end{aligned}
$$

Next, we shall prove that the transformation Ψ_{i} is a contraction map, $i=1,2, \ldots, m$.

Let us take an arbitrary $\bar{\varphi}_{i}, \overline{\bar{\varphi}}_{i} \in X_{i}$ and, taking into account (ii), (5), (9) and (12), estimate

$$
\begin{aligned}
& \varrho_{i}\left(T_{i}\left[\bar{\varphi}_{1}, \ldots, \bar{\varphi}_{m}\right], T_{i}\left[\overline{\bar{\varphi}}_{1}, \ldots, \overline{\bar{\varphi}}_{m}\right]\right)=\varrho_{i}\left(\bar{\Psi}_{i}, \overline{\bar{\Psi}}_{i}\right) \\
& \quad=\sup _{x \in\langle a, b\rangle} d\left(\bar{\Psi}_{i}(x), \overline{\bar{\Psi}}_{i}(x)\right) \\
& = \\
& \sup _{x \in\langle a, b\rangle} d\left(h_{i}\left(x, \bar{\varphi}_{1}\left[f_{i, 1}(x)\right], \ldots, \bar{\varphi}_{m}\left[f_{i, m}(x)\right]\right)\right. \\
& \\
& \left.\quad h_{i}\left(x, \overline{\bar{\varphi}}_{i}\left[f_{i, 1}(x)\right], \ldots, \overline{\bar{\varphi}}_{m}\left[f_{i, m}(x)\right]\right)\right) \\
& \leq \\
& \sup _{x \in\langle a, b\rangle} \sum_{k=1}^{m} \ell_{i, k} d\left(\bar{\varphi}_{k}\left[f_{i, k}(x)\right], \overline{\bar{\varphi}}_{k}\left[f_{i, k}(x)\right]\right) \\
& \leq \\
& \sup _{x \in\langle a, b\rangle} \sum_{k=1}^{m} \ell_{i, k} d\left(\bar{\varphi}_{k}(x), \overline{\bar{\varphi}}_{k}(x)\right) \\
& \leq \\
& \leq \sum_{k=1}^{m} \ell_{i, k} \sup _{x \in\langle a, b\rangle} d\left(\bar{\varphi}_{k}(x), \overline{\bar{\varphi}}_{k}(x)\right)=\sum_{k=1}^{m} \ell_{i, k} \varrho_{k}\left(\bar{\varphi}_{k}, \overline{\bar{\varphi}}_{k}\right) .
\end{aligned}
$$

Thus, the first statement of the theorem results from Theorem 1.4 in [4].

To prove that the estimation (8) holds let us take the set $P\langle a, b\rangle$ of all partitions of the interval $\langle a, b\rangle$. Using succesively (1), (iv) and (ii) we obtain

$$
\begin{aligned}
\operatorname{Var}_{\langle a, b\rangle} \varphi_{i} & =\sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(\varphi_{i}\left(x_{j}\right), \varphi_{i}\left(x_{j-1}\right)\right) \\
& =\sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(h_{i}\left(x_{j}, \varphi_{1}\left[f_{i, 1}\left(x_{j}\right)\right], \ldots, \varphi_{m}\left[f_{i, m}\left(x_{j}\right)\right]\right),\right. \\
& \left.h_{i}\left(x_{j-1}, \varphi_{1}\left[f_{i, 1}\left(x_{j-1}\right)\right], \ldots, \varphi_{m}\left[f_{i, m}\left(x_{j-1}\right)\right]\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\leq \sup _{P\langle a, b\rangle} \sum_{j=1}^{s}\left\{\sum_{k=1}^{m} \ell_{i, k} d\left(\varphi_{k}\left[f_{i, k}\left(x_{j}\right)\right], \varphi_{k}\left[f_{i, k}\left(x_{j-1}\right)\right]\right)\right. \\
\\
\left.+d\left(H_{i}\left(x_{j}\right), H_{i}\left(x_{j-1}\right)\right)\right\} \\
\leq \\
\sup _{P\langle a, b\rangle} \sum_{j=1}^{s} \sum_{k=1}^{m} \ell_{i, k} d\left(\varphi_{k}\left[f_{i, k}\left(x_{j}\right)\right], \varphi_{k}\left[f_{i, k}\left(x_{j-1}\right)\right]\right) \\
\\
\quad+\sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(H_{i}\left(x_{j}\right), H_{i}\left(x_{j-1}\right)\right) \\
\leq \sum_{k=1}^{m}\left\{\ell_{i, k} \sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(\varphi_{k}\left[f_{i, k}\left(x_{j}\right)\right], \varphi_{k}\left[f_{i, k}\left(x_{j-1}\right)\right]\right)\right\} \\
\quad+\sup _{P\langle a, b\rangle} \sum_{j=1}^{s} d\left(H_{i}\left(x_{j}\right), H_{i}\left(x_{j-1}\right)\right) \\
=\sum_{k=1}^{m} \ell_{i, k}{ }_{\left\langle f_{i, k}(a), f_{i, k}(b)\right\rangle}^{\operatorname{Var}} \varphi_{k}+\operatorname{Var}_{\langle a, b\rangle} H_{i} \\
\leq \sum_{k=1}^{m} \ell_{i, k} \operatorname{Var}_{\langle a, b\rangle}^{\operatorname{Var}} \varphi_{k}+\operatorname{Var}_{\langle a, b\rangle} H_{i} .
\end{array}
\end{aligned}
$$

This completes the proof of the Theorem 1.
Remark. If in the hypothesis (iv), instead conditions (7), we assume that the characteristic roots of the matrix $\left[\ell_{i, k}\right]$ have absolute values less than 1 then Theorem 1 remain true. It follows from the Lemma 1.2 and Theorem 1.5 in [4].
2. Now let us consider the system (2) and assume the following hypotheses:
(i) (X, d) is a complete metric space,
(ii) $f:(a, b\rangle \rightarrow(a, b\rangle$ is continuous, strictly increasing in $(a, b\rangle$ and $a<f(x)<x$ for $x \in(a, b\rangle$,
(iii) $g_{i}:(a, b\rangle \times X^{m} \rightarrow X, i=1,2, \ldots, m$,
(iv) There are functions $G_{i} \in \operatorname{BV}(a, b\rangle$ and positive constants $\ell_{i, k}$, $i, k=1,2, \ldots, m$, such that

$$
\begin{gathered}
d\left(g_{i}\left(x, y_{1}, \ldots, y_{m}\right), g_{i}\left(\bar{x}, \bar{y}_{1}, \ldots, \bar{y}_{m}\right)\right) \\
\leq \sum_{k=1}^{m} \ell_{i, k} d\left(y_{k}, \bar{y}_{k}\right)+d\left(G_{i}(x), G_{i}(\bar{x})\right) \\
i=1,2, \ldots, m,\left(x, y_{1}, \ldots, y_{m}\right),\left(\bar{x}, \bar{y}_{1}, \ldots, \bar{y}_{m}\right) \in(a, b\rangle \times X^{m}
\end{gathered}
$$

(v) All the characteristic roots of the matrix $\left[\ell_{i, k}\right]$ have absolute values less than 1.
We shall prove the following:
Theorem 2. Let hypotheses (i)-(v) be fulfilled. Then the system of equations (2) has in the interval $(a, b\rangle$ a solution $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right)$, $\varphi_{i} \in \operatorname{BV}(a, b\rangle, i=1,2, \ldots, m$, depending on an arbitrary function. More precisely: for any system of functions $\left\{\varphi_{i, 0}\right\}:\langle f(b), b\rangle \rightarrow \mathbb{R}$, such that $\varphi_{i, 0} \in \mathrm{BV}\langle f(b), b\rangle, i=1,2, \ldots, m$, there exists the unique system of functions $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right), \varphi_{i} \in \operatorname{BV}(a, b\rangle$ satisfying the system of equations (2) in $(a, b\rangle$ and such that $\varphi_{i}=\varphi_{i, 0}$ in the interval $\langle f(b), b\rangle, i=1,2, \ldots, m$.

Proof. Let $I_{n}=\left\langle f^{n+1}(b), f^{n}(b)\right\rangle, n=0,1,2, \ldots$, where $f^{n}(x)$ denotes the n-th iterate of the function $f(x)$. In virtue of hypothesis (ii) we have $\bigcup_{n=0}^{\infty} I_{n}=(a, b\rangle$. In the interval $I_{0}=\langle f(b), b\rangle$ we define an arbitrary system of functions $\left\{\varphi_{i, 0}\right\}, i=1,2, \ldots, m$, fulfilling the conditions of the theorem. Notice, that if $x \in I_{1}$ then $f^{-1}(x) \in I_{0}$. So let us define the function $\varphi_{i, 1}: I_{1} \rightarrow \mathbb{R}$ in the following way:

$$
\begin{gathered}
\varphi_{i, 1}(x)=g_{i}\left(f^{-1}(x), \quad \varphi_{1,0}\left[f^{-1}(x)\right], \ldots, \quad \varphi_{m, 0}\left[f^{-1}(x)\right]\right) \\
x \in I_{1}, \quad i=1,2, \ldots, m .
\end{gathered}
$$

We shall show that $\varphi_{i, 1} \in \operatorname{BV}\left(I_{1}\right)$. Let $P\left(I_{1}\right)$ be the set of all finite partitions of the interval I_{1}. From the hypotheses (iv) and (ii) we get succesively

$$
\begin{aligned}
\operatorname{Var}_{I_{1}} \varphi_{i, 1}= & \sup _{P\left(I_{1}\right)} \sum_{j=1}^{s} d\left(\varphi_{i, 1}\left(x_{j}\right), \varphi_{i, 1},\left(x_{j-1}\right)\right) \\
= & \sup _{P\left(I_{1}\right)} \sum_{j=1}^{s} d\left(g_{i}\left(f^{-1}\left(x_{j}\right), \varphi_{1,0}\left[f^{-1}\left(x_{j}\right)\right], \ldots, \varphi_{m, 0}\left[f^{-1}\left(x_{j}\right)\right]\right),\right. \\
& \left.g_{i}\left(f^{-1}\left(x_{j-1}\right), \varphi_{1,0}\left[f^{-1}\left(x_{j-1}\right)\right], \ldots, \varphi_{m, 0}\left[f^{-1}\left(x_{j-1}\right)\right]\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sup _{P\left(I_{1}\right)} \sum_{j=1}^{s}\left\{\sum _ { k = 1 } ^ { m } \ell _ { i , k } d \left(\varphi_{k, 0}\left[f^{-1}\left(x_{j}\right)\right], \varphi_{k, 0}\left[f^{-1}\left(x_{j-1}\right)\right]\right.\right. \\
& \left.\quad+d\left(G_{i}\left[f^{-1}\left(x_{j}\right)\right], G_{i}\left[f^{-1}\left(x_{j-1}\right)\right]\right)\right\} \\
& \leq \sup _{P\left(I_{1}\right)} \sum_{j=1}^{s} \sum_{k=1}^{m} \ell_{i, k} d\left(\varphi_{k, 0}\left[f^{-1}\left(x_{j}\right)\right], \varphi_{k, 0}\left[f^{-1}\left(x_{j-1}\right)\right]\right) \\
& \quad+\sup _{P\left(I_{1}\right)} \sum_{j=1}^{s} d\left(G_{i}\left[f^{-1}\left(x_{j}\right)\right], G_{i}\left[f^{-1}\left(x_{j-1}\right)\right]\right) \\
& \leq \sum_{k=1}^{m}\left\{\ell_{i, k} \sup _{P\left(I_{1}\right)} \sum_{j=1}^{s} d\left(\varphi_{k, 0}\left[f^{-1}\left(x_{j}\right)\right], \varphi_{k, 0}\left[f^{-1}\left(x_{j-1}\right)\right]\right)\right\} \\
& \quad+\sup _{P\left(I_{1}\right)} \sum_{j=1}^{s} d\left(G_{i}\left[f^{-1}\left(x_{j}\right)\right], G_{i}\left[f^{-1}\left(x_{j-1}\right)\right]\right) \\
& =\sum_{k=1}^{m} \ell_{i, k} \underset{\langle f(b), b\rangle}{\operatorname{Var}} \varphi_{k, 0}+\underset{\langle f(b), b\rangle}{\operatorname{Var}} G_{i}=\sum_{k=1}^{m} \ell_{i, k} \operatorname{Var}_{I_{0}} \varphi_{k, 0}+\operatorname{Var}_{I_{0}} G_{i} .
\end{aligned}
$$

Hence $\varphi_{i, 1} \in \operatorname{BV}\left(I_{1}\right)$.
More generally, let us take the interval I_{n+1}. If $x \in I_{n+1}$ then $f^{-1}(x) \in I_{n}$. Let us define a function $\varphi_{i, n+1}: I_{n+1} \rightarrow \mathbb{R}$ in the following way:

$$
\begin{gather*}
\varphi_{i, n+1}(x)=g_{i}\left(f^{-1}(x), \varphi_{1, n}\left[f^{-1}(x)\right], \ldots, \varphi_{m, n}\left[f^{-1}(x)\right]\right), \tag{13}\\
x \in I_{n+1}, \quad i=1,2, \ldots, m .
\end{gather*}
$$

By similar calculation as above one can prove that $\varphi_{i, n+1} \in \mathrm{BV}\left(I_{n+1}\right)$ and that

$$
\begin{equation*}
\underset{I_{n+1}}{\operatorname{Var}} \varphi_{i, n+1} \leq \sum_{k=1}^{m} \ell_{i, k} \underset{I_{n}}{\operatorname{Var}} \varphi_{k, n}+\underset{I_{n}}{\operatorname{Var}} G_{i}, \quad i=1,2, \ldots, m . \tag{14}
\end{equation*}
$$

Now we introduce the following notations:

$$
\begin{equation*}
a_{i, k}=\operatorname{Var}_{I_{k}} \varphi_{i, k} \quad b_{i, k}=\operatorname{Var}_{I_{k}} G_{i} \tag{15}
\end{equation*}
$$

Using these notations we can write the inequality (14) as follows:

$$
\begin{equation*}
a_{i, n+1} \leq \sum_{k=1}^{m} \ell_{i, k} a_{k, n}+b_{i, n}, \quad i=1,2, \ldots, m \tag{16}
\end{equation*}
$$

In the interval $(a, b\rangle$ we define the function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ in the following way:

$$
\varphi_{i}(x)=\left\{\begin{array}{lll}
\varphi_{i, 0}(x) & \text { for } x \in I_{0}, & i=1,2, \ldots, m \tag{17}\\
\varphi_{i, n+1}(x) & \text { for } x \in I_{n+1}, & i=1,2, \ldots, m \\
& & n=0,1, \ldots
\end{array}\right.
$$

From (13) and (17) it follows that φ satisfies the system of equations (2). The uniqueness of the solution is obvious.

We have to prove that $\varphi_{i} \in \operatorname{BV}(a, b\rangle, i=1,2, \ldots, m$. From (15) and (17) it follows that

$$
\begin{aligned}
\underset{(a, b\rangle}{\operatorname{Var}} \varphi_{i} & =\sum_{n=0}^{\infty} \underset{I_{n}}{\operatorname{Var}} \varphi_{i}=\underset{I_{0}}{\operatorname{Var}} \varphi_{i}+\sum_{n=1}^{\infty} \underset{I_{n}}{\operatorname{Var}} \varphi_{i} \\
& =\operatorname{Var}_{I_{0}} \varphi_{i, 0}+\sum_{n=1}^{\infty} \operatorname{Var}_{I_{n}} \varphi_{i, n}=\operatorname{Var}_{I_{0}} \varphi_{i, 0}+\sum_{n=i}^{\infty} a_{i, n}
\end{aligned}
$$

Since, by hypotheses of the theorem, $\operatorname{Var}_{I_{0}} \varphi_{i, 0}$ is finite, and every component of the series $\sum_{n=1}^{\infty} a_{i, n}$ fulfils inequality (16), in view of Lemma 4.1 from the paper [4], this series converges. This completes the proof of Theorem 2.

References

[1] Cz. Dyjak, BV-solutions of a linear functional equation, Publicationes Mathematicae Debrecen 33 (1986), 83-85.
[2] Cz. Dyjak and J. Matkowski, BV-solutions of nonlinear functional equations, Glasnik Matematicki 22(42) (1987), 335-342.
[3] Cz. Dyjak, BV-solutions of a nonlinear functional equations of higher order, Demostratio Mathematica XXIII No. 2 (1990), 417-423.
[4] J. Matkowski, Integrable solutions of functional equations, Dissertationes Mathematicae, Vol. CXXVII, Warszawa, 1975, pp. 68.
[5] J. Matkowski and M. C. Zdun, Solutions of bounded variation of a linear functional equation, Aequationes Math. 10 (Fasc. 213), (1974), 223-235.
[6] M. C. Zdun, Solutions of bounded variation of a linear functional equation and some their interpretation for recurrent sequences, Prace Nauk. Uniw. Ślagsk. 87; Prace Mat. 6 (1975), 55-62.
[7] M. C ZDun, Solutions of bounded variation of a linear homogeneous functional equation in the indeterminate case, Aequationes Math. 14 (1976), 143-158.
[8] M. C. ZDun, Continuous solutions of finite variation of a linear functional equation, Ann. Polon. Math. 34 (1977), 179-196.

CZESEAW DYJAK
TECHNICAL UNIVERSITY
DEPARTMENT OF MATHEMATICS
DA̧BROWSKI STREET 73
42-201 CZȨSTOCHOWA
POLAND
(Received May 2, 1994; revised October 16, 1995)

