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Toeplitz matrices in quasi Hilbert algebras I.

By BELA GYIRES (Debrecen)

The present paper is connected with the following theorem of GABOR SzEGH
([7], 206):

Let f(4) be a real valued function, with period 2z, bounded and measurable,
m=f(A)=M, and let f(1) have the Fourier expansion

fd)~ Saet (eop= 3.
Let
Tu(f) = (Cr - 'rl,s =0

the so called Toeplitz matrix of order n+ 1 constructed with the aid of the Fourier
coefficients ¢, have the eigenvalues A", ..., A{%,. Since the matrix 7,(f) is Hermitian,
its eigenvalues are real numbers. We write each of them a number of times correspond-
ing to its multiplicity. Szeg8 has shown that all of the eigenvalues A{™ fall into the
interval [m, M], and that for any function F(1), continuous in this interval, the
relation

n+1

M Jim o 2 FO) = 5 [ FU@)a
holds.

In his paper [5] the author has generalized this theorem for the case, when the
values of the function f(1) are Hermitian matrices of order p (p =1). In this case the
condition m =/f(A) = M is to be understood so that the range of the Hermitian form
belonging to f(4), taken on the unit shpere of the p-dimensional (complex) space
falls into the interval [m, M]. The Fourier coefficients ¢, will also be matrices of
order p, c_; =cf, where * denotes transpose-conjugate. The Toeplitz matrix 7,(f)
will then be a hypermatrix of order n + 1, consisting of blocks of order p, i. e. a matrix
of order (n+ 1)p, and clearly again hermitian; the eigenvalues of T,(f) will be
denoted by A{", ..., A" 4),-

In this paper above mentioned the author has proved that if the matrix-valued
function f(Z) of order p is a measurable bounded function of 4, then as a generalization
of (1) the following limit relation holds:

(n+1)p

(2) lim —l— Z FO{) = »- __{ trF(f(2)) d5.

H = oo n
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Here tr denotes the sum of the elements standing on the main diagonal of the matrix,
and F(f(2)) is defined by the formula

F(f(1) = UR)(F(L D), ..., F(A,(D))U*Q),

when f(4) is reduced to its diagonal form (A,(4), ..., 4,(4)) by the unitary matrix
UA) (i. e. f(2)=UR)(24(2), ..., A (D))U*(A)).

In his paper already mentioned, the author gives more general definition of
Toeplitz matrices; the limit theorem expressed by (2) is then obtained as a special
case of theorems on these more general Toeplitz matrices. The main feature of the
generalization is the following: starting with a matrix-valued function of order p,
defined on a arbitrary finite or infinite interval of the real line, square integrable
and bounded, Toeplitz matrices are defined with the aid of a full orthonormal
system of matrix-valued functions defined on this interval. The discussion of the
whole problem makes use of a generalization of Hilbert space, where the value
of inner product is a matrix of order p with complex elements. In formulating the
gencralized theorems, there occurs a condition, which for the case p =1 was considered
by U. GRENANDER, and called by him ,,trace complete” property ([1], 130). Finally,
it is to be mentioned that the limit (2) was given by the author also in the more
general case, when the trace of the Toeplitz matrix was defined as the sum of the
diagonal blocks of this hypermatrix, i.e. when the trace itself is a matrix of order p.

The present paper grew out from the authors observation that the main part
of the results set forth in his paper [5] retains validity if one starts with more general
normed algebras. The natural generalization is based on the so called quasi Hilbert
algebras, introduced first here. Our aim is to work out a theory of generalized
Toeplitz matrizes, from this point of view. In § 1 we give the axioms of the quasi
Hilbert algebra and we expose those consepts and facts about normed algebras,
which are used in the sequel. In § 2 we start from the axioms of quasi Hilbert space,
and formulate and prove those theorems which are needed in defining the generalized
Toeplitz matrices. In § 3 we deal with the generalized Toeplitz matrices generated
by the elements of a quasi Hilbert algebra; several propertics are established and
then the proof of the two theorems which form the main result of the paper are
presented. Finally § 4 treats the limit theorem expressed by (2) (which is a gene-
ralization of Szegd§’s theorem) as a special case of these theorems.

§ 1. Definitions

I. Let R be a normed algebra with unit element.!) We shall call the set
X a normed space over R, if
X is an R-module,
X is a normed space,
x| = | |x] (x€R, x€ X).

2. Let R be a symmetric Banach algebra ) where the norm is determined

) For the concepts used see [9] and [11].
2) A Banach algebra R with involution is said to be symmetric (in [11] completely symmetric)
if it has a unit element 1 and if (1+ax*)"! exists for all @€ R.
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by a positive functional.?) The normed space H over R will be called a quasi Hilber
space, if there is defined on it an inner product (x, y) taking values in R, and having
the following properties:

x+y, 2)=(x,2)+(,2) (x,y z€H),
(ax, y)=a(x,y)  (2€R),
(x, ») =y, )%,
(x,x)>0, if x»0,
x| =(x, x)*].

3. Let R be a symmetric Banach algebra in which the norm is determined
by a positive functional. The quasi Hilbert space H over R will be called a quasi
Hilbert algebra H*, if there is defined a multiplication and an involution on H,
in such a way that the following requirements are fulfilled:

H* is a normed algebra with involution with respect to these operations and
to the addition, scalar multiplication and norm defined originally on H, and more-
over (xy, z)=(x, zy*) holds for all elements x, y, z of H* and xx*#0 if x#0.

Now we remind of a few concepts concerning normed algebras. If R is an algebra
with unit element ¢ then by the spectrum (with respect to R) of the element x of
this algebra we mean the set of those complex numbers 4, for wich x— 4e has
no inverse in R. If R is an algebra with involution then the element x is said to be
Hermitian element, if x = x* holds. The element x € R is said to be a bounded element,
if x is a Hermitian element and its spectrum is contained in a finite (real) interval.
The elements of the form xx* of R are called nonnegative elerients. If R has a unit
element, then the nonnegative invertable elements of R are called positive elements.
It is known that if R is a normed algebra with involution, then for any positive
functional f defined on R the inequality |f(x, y)|> =/f(xx*) f(yy*) holds for any
elements x, y€ R. If ‘R is a symmetrical Banach algebra with unit element, then any
positive functional defined on R is bounded. If R is a normed algebra with involution
and the norm of the elements of R is determined by the positive functional f, then by
the trace of the element x € R we mean the number #r x =f(x). It can be shown that
if R is a symmetric Banach algebra in which the norm is determined by a positive
functional, then any nonnegative element x of R has a nonnegative square root,
and if x is positive then its square roots is also positive.

Let finally H* be a quasi Hilbert algebra with unit element over the symmetric
Banach algebra R, and let the norm of the elements of R be determined by the posi-
tive functional f. Then it is clear that H* is a (not necessarily complete) Hilbert
space with respect to the inner product (x, y)=f((x, y)). Moreover, for any element
¢ € H* the mapping x--cx is a bounded operator of H*. So it has a uniquely de-
termined extension to a bounded operator of H* the smalest (complete) Hilbert
space H* containing H*. If we make correspond to the element ¢ € H* this operator
of H*, then we get a *-isomorphism of the algebra H* into the algebra of bounded

*) If R is a normed algebra with involution then we say that the norm of the elements of R is

determined by the positive linear functional f defined on R, if |x| = Vf(a=*) holds for all ele-
ments o€ R.
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operators of the Hilbert space H*. This mapping is continuous in both directions.
Therefore it is clear that the spectrum of the operator corresponding (in the above
sense) the element ¢ € H* is contained in the spectrum (with respect to H*) of the
element c. So, if the element ¢ € H* is bounded, then the operator belonging to ¢

b
can also be written in the form f AdE(Z), where [a, b] is a finite interval containing

the spectrum of ¢ and E(A) is the spectral function belonging to the operator. So in
this case for any real continuous function F(1) (a=1=b) we can define F(c) by the
formula

F(e) = [ F(2)dE ().

If there is an element ¢’ € H* for which the corresponding operator comncides with
F(c), then we say that F(c)€ H* and F(¢)=c".
If F(c)€ H*, then for any y€ H*

f((F©@p ) = (FQp.y) = [ FOd(EG)y,y) =
= [ FGdr((E@yy, ).

§ 2. The quasi Hilbert space

In this section we give the foundation of the linear algebra of quasi Hilbert
spaces; moreover we investigate some metric properties of these spaces.

1. Let R be an algebra with unit element and with an involution. Let ¥V, be
the space of all sequences («,, ..., #,) formed of elements from R. (The addition
of sequences and their multiplication by elements of R are defined componentwise.
By inner product (a, b) of two such elements a=(x,, ..., &), b=(By, ..., B,) We
mean the element o, 7+ ... +a,Bs € R.

The matrices of order »n, formed by elements from R constitute a symmetric
algebra with unit element with respect to the following operations:

By the sum of two such matrices A =(ay), B=(fy) of order n we mean the
matrix

A+ B= (o + Pu).

By the product of x€ R and of 4 we mean the matrix
aAd = (ax,).
By the product of 4 and of B we mean the matrix

Al = [z x,“.ﬁ,,,].

v=1

By the conjugate of 4 we mean the matrix
A* =(Yx)s Y2 =%k

Now, among the finite matrices which can be built from elements of R we define
positive semidefinite and positive definite matrices.
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First of all by the product of the vector x=(¢,, ..., &,) €V, and of the matrix
A consisting of elements from R we mean the vector

A = [Z; évavly "-92; fvam]eym

We say the matrix 4 to be positive semidefinite if for any vector x¢€ V, the inner
product (x4, x) is a nonnegative element of the algebra R. If, on the other hand,
(xA, x) is always a positive element of the algebra R (the trivial case of x =0 exepted),
then we call 4 a positive definite matrix.

2. Let H be a quasi Hilbert space over a symmetric Banach algebra in which
the norm is determined by a positive functional. We say that the elements x, ¢ H
(k=1, ..., n) are linearly independent (with respect to R), if

oy X + ... +2,x,=0 (€R, k=1, ...,n)

can hold only for a; =...=a,=0. We say that the elements ¢,€ H (k=1,2, ...)
form an orthonormal system (with respect to R) if (¢, ¢,) is equal to the unit element
or to the zero element of R respectively, according as k =/ or k /. In investigating
independent respectively orthonormal systems of elements of H, the so called
Gram-matrices play a certain role.

By the Gram-matrix of the system of elements x; € H (k =1, ..., n) we understand
the matrix

(xl)xl)“'(xl'xn)
G(xl,..., n):: . wes .
(xu!xi)"'(xu$xu)
formed by elements of R.

Theorem 1. Let H be a quasi Hilbert space over a symmetric Banach algebra R,
in which the norm is determined by a positive functional. The Gram-matrix of any
finite system of elements of H is positive semidefinit and it is positive definite if and
only if the system of elements is independent.

PrOOF. Let x,€ H (k=1, ..., n) be an arbitrary system of elements. Then for
Gram-matrix G of this system and for any vector x=(¢,, ..., )€V,

(xG,x) = “Z:'l Eulx, X)) & = [hZ”; Ckxts‘é,; S Xk

is a nonnegative element of R, and so G is a positive semidefinite matrix.

In order to prove the second assertion of the theorem, we first consider a linearly
dependent system of elements x,, ..., x, of H; this means that for suitable elements
% €R (k=1,...,n) not all of which are equal to zero, a;x; +... +a,x,=0 holds.
If we form the inner product with a.x; of both sides of the equality and then adding
these relations we obtain with the vector a=(«,, ..., «,) #0 the relation

@G, 0) = 3 a(x,x)al =0,
k

i.e. G is not a positive definite matrix. Conversely, if the Gram-matrix G of the
elements x,,..., x, of H is not positive definite, then for a suitable vector a=
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=(0y, ..., %,) =0 of V, the relation

(aG,a) = [él rxkxk,é; a,xk] =0

holds, so o, x; +... +a,x,=0 and consequently the elements x,, ..., x, are linearly
dependent.

Theorem 2. Let H be a quasi Hilbert space over a symmelric Banach algebra R,
inwich the norm is determined by a positive functional. In the case of any linearly

independent system of elements x,€¢ H (k=1,...,n) there exists an orthonormal
system e, ¢ H (k=1, ..., n) such that e, can be linearly combined from x,, ..., x,,
and x,, can be linearly combined from e, ..., e,,.

Proor. If (x, x)=>0 then we denote by | x| the positive square root of the
element (x, x). Clearly, for the element e=| x| ~'x the equality |le|| =& holds.
Indeed, we have

(e @) =(llxl = o, [l = o) = [l¢l] =Gy ) (el = *)* = flell = * (llxll = *)*Cx, %) =,

since ||x||~! is also a positive element of R.

Let e, =|x,||~*x,. In the expression y,=x, —«,e; we determine the element
a2y €R so that (y,, e;)=0 holds. Hence we get o, =(x,, e,). Clearly, (y,,y,) is
a positive element in R. Indeed, in the contrary case there would exist by Theorem 1
an element <0 of R, such that By, =pfx, —fo,[x,| ~'x, =0 thus contradicting
the linear independence of the elements x,. Let e, =| y,/| ~'y,. Suppose our assertion
to be true for m—1-<n. Let us determine the elements o€ R (k=1,...,m—1)
so that the element

(3) Y =X — Uy 1€y — -0 — 0y €y
should be orthogonal to the elements ¢, (k=1, ..., m —1), where by the induction
hypothesis e, ..., €,-; is an orthonormal system. The realtion (y,,, ¢)) =0 implies

o =(x,,, €). Similarly as in the case of (y,, y,), it can be shown also here that
(Vs Ym) 18 @ positive element of R. Let e, =| vl ~'Vm- Then (e,, €)=0 (k=1, ...,
...,m—1) and by (3) x,, can be expressed linearly by the vectors ¢; (j=1, ..., m).
If now, on the basis of our induction hypothesis, we express the vector ¢, (k=1, ...,
..., m—1) with the vectors x; (j=1,...,k), and put these expressions into the
equality (3) multiplied by || y| =, then we obtain that e, can be expressed by a linear
combination of the elements x, (k=1, ..., n).

3. Let H be a quasi Hilbert space over a symmetric Banach algebra R, in which
the norm is determined by a positive functional. By the Fourier-series of the element
x € H with respect to the orthonormal system ¢, (k=1, 2, ...) we understand the
series

where 2, =(x, e,).
The following Bessel-inequality holds:

4) 0= D auf = (xx).
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In fact the equalities

Zn’ &0, Zu' a,e,] = [x, Zn' a,e,] = [Zu' a,e,,x] = Zu' o, 0
v=1 v=1 v=1

imply

0= [x—- D 0,8, X— 2 a,e,] = (x, x)— J a,o,
v=1 a=1

v=]
and so (4) holds.
If x, y€ H and (y, ) is a positive element of R, then the following inequality
of Cauchy holds:

&) G, (s 70y ) =(x, X).
Indeed, iquality (5) results if we apply the Bessel-inequality (4) for n=1
to the element e, =(y, y)~#y.

We say the system ¢, € H (k=1, 2, ...) to be a complete orthonormal system,
if for any x € H the Parseval equality

(6) 3' a, &t = (x, x)

ve=]
holds.
Ife,€ H (k=1,2,...) is a complete orthonormal system, then it is easy to see
that the equality

oo

) (x3) = 2 o0py

v=1
holds, where «, and f, are the Fourier-coefficients of x € H and of y € H respectively.
4. Let H be a quasi Hilbert space over a symmetric Banach algebra R in which
the norm is determined by a positive functional. We say that the sequence x,€ H
(n=1,2,...) weakly converges to the element x¢€ H, if for any element y€ H, for
which (y, ») is a positive element of R, the relation (x, —x, ¥) -0 holds.

Theorem 3. Let R be a symmetric Banach algebra in which the norm is determined
by a positive functional. If the sequence of elements x, (n=1, 2, ...) of the quasi Hilbert
space H over the Banach algebra R converges to the element x € H, then the sequence
x, (n=1,2,...) weakly converges to x.

PROOF. Let first y be an element of H, such that (y, y) is the unit element of R.
Then from the Cauchy-inequality (5) the relation

ogé(xh"'x:}O(xu_'xrJa*gg(xn_-x~3&"x)

follows. So

0=|(x, —x y)|* = |x, —x[?,

and therefore, in view of x,—x, we have |(x,—wx, y)|> =0, and this can hold only
for (x,—x, y)—0. If now for the element y of H, which can otherwise be arbitrary,
(y, ») is a positive element of R. then the element (y, ¥)~*y ==z is such that (z, z)
is the unit element of R, and so by

(X — %, P) = (x4 — 2, 2)(y, Y)~H =20 —x, 2| (35 ¥)~H
we can infer from x,—x in view of (x,—x, z) -0, that (x,--x, y) -0.

( Received December 28, 1966.)



