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A note on a sieve method

By I. KATAI (Budapest)

1. Let P denote the set of primes, further Q,, and Q_, the set of those integers
g, of which all prime divisors are =1(mod 4) and = —1 (mod 4), respectively.

We can prove the following assertions.

1. Every sufficiently large even integer » can be represented in the form

n=p+4q,
where
pPEP, qEQ,.

2. Every sufficiently large odd integer n» can be represented as

n=p+2q,
where peP, g€Q.y.
3. There exist infinitely many solutions of the equality

p—2q=1
and of the equality
p—q=2
where peP, g Q,,.
We are unable to prove the analogous assertions with g€ Q_, instead of g€ Q. .
The proofs of 1., 2., 3., are based on the method of C. HooLEY [2] and a theorem
of E. Bomsierr [3] concerning the large sieve. In the quoted paper Hooley proved
on the basis of the extended Riemann hypothesis the conjecture of HARDY and
LitrrLewoob [1] for the number of representations of a number n as the sum of
two squares and a prime number. Later a very powerful, ingenious method was
elaborated by Ju. V. LINNIK for the proof of the conjecture of Hardy and Littlewood
without any hypothesis [4]. In 1965 E. Bombieri gave essential improvements of
the large sieve [3]. His results allow to replace the assumption in the proof of Hooley.

Theorem 1. The number N(x) of solutions of the equality

(1. 1) p—1=2q, p=x,peP, q€0,,

tends to infinity for x -, namely
X

(1.2) N(x)»[logvix)“"
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Theorem 2. Let N,(n) and N,(n) denote the number of solutions of the equalities

(1. 3) n=p+gq,
and
(1.4) n=p+2q,

respectively. Then for every sufficiently large integer n we have

n
(1. 5) Ny(n) = B(n)(Tog_njj ’
if n is even,

n
(1. 6) N,(n) = B(n) {logn)® ’

if n is odd, where
B(n) = (loglogn)~"'.

Theorem 1 is an easy consequence of the following

Theorem 3. Let T(x) denote the sum

(1.7 T(x) = 2 r(p=1)u(p—1)|
P=x
where r(n) denotes the number of representations of n as the sum of two squares.
We have
: - X
() 769 = o+ -gagagres

where & and A, are positive constants.

2. We give a short sketch of the proof of Theorem 3, and from Theorem 3
we deduce Theorem 1. The proof of Theorem 2 is very similar and can be omitted.

Lemma (E. Bombieri [3]).
L3
¢(D)

& X
(log x)*’

Z max max |m(x, z, [)—

p=y l(modD) z=x

if Y<=xi(logx)~8 B=24+23.
Let T(x, k) denote the sum
T, k)= 3 r(p—1).
p=1(modk)
From (1. 7) we have

T) = 3 w(d)T(x, ).

Let L=(logx)? L, =x%(log x)~€, L, =x*(log x)°, where C=0 is a constant.
It is evident that
T e 3 10— 3 k)< %—’9 xlog .

p=x kl=x
p= 1(modk)
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Hence

d? ]
Zu: lu(d)| T(x, d*) < xlogx >/ Tfﬁ )  xlog xLlog

Lsd=x d=L

— & x- (log x)—15,

and so

og x)" ’]
Let now k= L? and investigate the sum T(x, k).
Tok)= 2 2 20)= 2 x@n(x [k ul, 1)+

p=1(k) p-l=u u=Ly

+ 2 x@n(x, [k,u],1)+ Zx(u)x(r k,u.1) = ZP + 2P + IV,

Ly<u<lL2 us L2

169 = 3 )T+ 0o X

Using the Lemma we have

o 7(u) [ ¥ ]
2P =lix 2 —ikap + O |dog 3
if C=2A4-425.

For the estimation of X&' we have
P =2z,

v<Ly

L= 2 i
p=1=ur
- 1=0(modk)
vl <uv=x

where

In other words Z, is the difference between the number of the primes for which
p=x, p=1(mod k),

p=1+v (mod 4r)
and those for which
p=x, p=1(modk)

p=1—v(mod 4v)

holds.
So we have
k) _
¢ qvé’l e lz(mod{4u jld)lzr(\ [4o, k). 1)) —n(x, [40, k), 1,)| +
X
+u<2:_, b h(md“ min(;.{.z,[m kl,1,)—n(vL,, [4v, k), 1) ﬁ:(og o g
The investigation of Z§.
Let .
D= ZF 1, Piy= T zw), Kn L)=
Li<u<Lz ulm d=L
ulm Li<u<L2 d?|n
P = 23 Fp-1).

p=1(modk)
P=x
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Let
Iy = 3 I,
d=L
So we have
Ip< D |F(p—1)K(p—1, L) =( g K”(p—I,a"a))”’(ZJﬁ"“(P-l))”2 =
w0
= Y2 . I}
Further
}:U 4:(2 Kd-(P_ ]’ L))UZ( Z 1)111 s z:}!Z _ z!l);'z’
G i D(pp-élj)r#t)
and hence

Iy Zis-ZY4 Z)2,
Further we have
2 k. 3% o8 x
By< 2w ldi,didddi) ) < oo
i=1,2,3,4
Using the method of Hooley (see [2], p. 204—209) we have

X

x
e {JOg )7 | €l 2 log > €2,
Z,,ﬁ:logx(og x)~ 7" (log log x)<1, dea:]ogx(log 0g x)
where ¢,; ¢, depend on C only.
Hence
X
e -4 c3
PR S T (log x)~7'# (log log x)
follows.
Further
(d2) - A=
Ze = 2" = fogayi-2
Za= z¢0 =tix Sud) 5 X9 _.0 ———"——]‘
4= GMOIE =lix Z 1) 2 gz O og v

For the double sum on the right hand side

7(w) [ 1 ]
- B AT | L

2D 2 o = A0+ O\
holds and choosing 4 =4 in our Lemma we have

i e
24—A011x+0[log2x].

Hence (1. 8) immediately follows.



A note on a sieve method 73

Since
T?(x) < N(x) 3 r’(p—1) < N(x)- 2 r*(n),
and s )
> r3(n) < xlog x,
so from Theorem 3 2
X
N(X) = Eﬁ 5

i.e. (1.2) holds.
Using the large sieve we can prove a better lower estimation for N(x).
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