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Rees factor lattices

By G. SZASZ (Nyiregyhaza)

To Professor A. G. Kuros on his 60 th birthday

1. Introduction

It is well-known that every lattice forms, with respect to the meet (or join)
operation, a commutative idempotent semigroup (i.e. a semilattice). Accordingly,
the concepts of the theory of semigroups may be applied to lattices, but many
of these yield only trivial results.

In the theory of semigroups, the following construction is very important.
Let S be a semigroup and 7 an ideal of S. Define an equivalence relation @ on S
as follows: let a=5(0) (a, b€ S) mean that either a=»b or else both a and b belong
to 1. Then O is, strictly speaking, a congruence on S, called the Rees congruence
of S modulo I. The factor semigroup of § modulo © is called the Rees factor semi-
group of S modulo I and denoted by S/I. Clearly, I is the zero element of S/I.

In this note the described construction will be applied to lattices. As the results
of Section 4 show, the concept of Rees factor lattices seems to be useful.

We use the notations of the books [1] and [3]. For any sets 4, B, the set of
clements of 4 which are not in B will be denoted by 4 — B.

2. Definition of the Rees factor lattice

Let L=(L, n, U) be a lattice with respect to the meet operation N and the
join operation u. Let, further, 7 be an ideal of L. Then [/ is, a fortiori, an ideal of
the semilattice (L, n) and the Rees factor semigroup (M, A)=(L, n)/] is a semi-
lattice again (where M denotes the set of equivalence classes of the Rees congruence
of (L, n) modulo 7). For convenience, any element {a} (a€ L) of M (i.e., any one-
element class {a}) will be identified with the element a of L.

Define, as usual, a=5b to mean in M that aa b=a. Then I will be the least
element of M and, for any elements a, b =1, a=b holds in M if and only if a=b
in L. Hence, the semilattice (M, A ) with this ordering may be described as the
result the ideal 7 of L collapsing into a single least element, while the other elements
of L remain invariant,

Let @ and b be any elements of L — 1. Then, by a well-known property of lattice
ideals, any upper bound of the set {a, b} lies also outside of /. Hence, in M we have

supyfa, b} =aub for a, b=l
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Moreover,
supy {a, I} =a forany acM.

Hence, any two-element subset of M has (not only an infimum, but) a supremum,
too. Thus the set M forms a lattice with respect to the operations A, v defined by

anb, if ab=Iin M and anbql,

Gohw [! otherwise

and
aub, iIf a,b#Iin M,
avb=1a, if b=1in M,
b, if a=JI i M.

The lattice M=(M, A, v) will be called the Rees factor lattice of L modulo I and
denoted by L/

L M,:

. m L

a4 d

Fig. I Fig. 2

Remark 1. The natural homomorphism of (L, n) onto (M, A) is, in general,
no join-homomorphism of L onto M. For example, the Rees factor lattice of the
lattice L,, represented by Fig. 1, modulo the principal ideal (c] is the lattice M,
in Fig. 2 and for the natural homomorphism ¢: L, -M, we have

obud)=p(u)=u
but
ob)v o(d)=Ivd=d.

Remark 2. By Remark 1, a Rees factor lattice of a distributive (or modular)
lattice is not necessarily distributive (modular).

Remark 3. Let L be a lattice and Da dual ideal of L. Then, by the dual of the
above procedure, we obtain again a lattice called the Rees factor lattice of L modulo
the dual ideal D and denoted likewise by L/D. If the ideal 7 and the dual ideal D
of the lattice L have no common element, then D is a dual ideal of L// and [ is an
ideal of L/D, too. Hence, both of the symbols (L/7)/D and (L/D)/I have then a meaning
and, clearly, these two lattices are isomorphic. Therefore, instead of these symbols
we write L/(Z, D) and call it the Rees double factor lattice of L modulo I and D.
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3. Some properties of Rees factor lattices

We complete our Remark 1 by the following

Theorem 1. Let M=(M, A, v) be the Rees factor lattice of L=(L, n, v)
modulo the ideal 1. The natural homomorphism ¢ of (L, n) onto (M, A) is a homo-
morphism of L ontoM if and only if a=b holds in L for each pair ac¢ L —1I and b€ I.

Proor. Let a, b be any elements of L. If a,b€ L—1, then aube L -1, too,
whence p(aub)=avb=avb=p(@)v @b). If a,bel, then aub<l, too, whence
elaub)=I=IvI=q@(a)v @(b). Finally, if acL—1I and b€l, then aubeL—1,
too, whence

plaub)=avub

and
ola)v ob)=av I=a.

Hence, @(a wb)=@(a) v ¢(b) for any a, b€ L if and only if aub=a for each pair
acL—1I bel in L. Thus Theorem 1 is proved.

In contrast to Remark 2 we prove

Theorem 2. The Rees factor lattice modulo a prime ideal of a distributive
(modular, semimodular) lattice is likewise a distributive (modular, semimodular)
lattice.

Proor. Let L be a distributive lattice and P a prime ideal of L. It suffices to
show (see [3], p. 80, Corollary 1) that

(N avibac)=(avbya(avec)

holds for any elements a, b, ¢ of L/P.

If a= P, then (1) is trivial. If 5= P or ¢= P, then (1) holds by the absorption
identity of the join. Finally, suppose that none of the elements a, b, ¢ is equal to P.
Then, P being a prime ideal in L, bneq P and thus bAac=bne. A fortiori,
au(bnc)€ P. Hence, in this case we have

av(bac)=au(bne) = (aub)n(auc) =(avb)a(avec),
indeed.
Next, let L be a modular lattice and P a prime ideal of L. We have to show that
(1) holds for the elements a, b, ¢ of L/P whenever a=c. But, it is not hard to see
that the preceding consideration can be applied also in this case.
Finally, let L be a semimodular lattice and P a prime ideal of L. Let, further,
a, b and x be any elements of L/P such that

anb=x<a and ad|b.

Then a# P and b= P (in L/P) whence anb¢ P (in L) and aA b=anb. It follows
that the interval [a nb, b] of L belongs entirely to L — P. But, by the semimodularity
of L, there exists an element 7 such that anb<t=5b and (xur)na=x. Since
x, t, xut and a all belong to L — P, we get

(xvi)aa=(xut)na=x,

completing the proof of the semimodularity of L/P.
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In the rest of this section we deal with Rees factor lattices of relatively comple-
mented lattices. First we prove the following generalization of a well-known
proposition (see, e.g., [3], p. 157, Exercise 11):

Theorem 3. Every Rees factor lattice of a relatively complemented modular
lattice is semimodular.

Proor. Let L=(L, n, u) be a relatively complemented modular lattice and
I any ideal of L. Let, further, a, b and x be any elements of the Rees factor lattice
M=(M, A, v)=L/I such that

(2) aAb<x<a and alb.

We have to find an element ¢ such that

(3) anb<t=b and (xvi)Aa=x.

We distinguish two cases according as @ nb<x holds in L or not.

Case 1: anb=<=x.
By (2), the elements a, b, x and, a fortiori, x Ub and (x Ub) na(=x) belong
to L—1. Hence, in this case we get, using also the modularity of L,

(xvb)ara=(xub)na=xu(bna)=x,
i.e. that (3) is satisfied by r=b.

Case 2: anb<x does not hold.

By (2), a A b+#anb in this case. Hence, by the definition of the meet operation
in L/I, anbél (and an b=1).

Let r denote a relative complement (in L) of a nb with respect to the elements
u=xn(anb) and b. Then r¢ I, for in the contrary case anb¢el and rel would
imply that also b=(anb)urcl, in contradiction to our assumption (2) by which
bé 7. But r¢ I and an b=1imply that r#a A b and thus

anb=r=b

in M, Moreover, by the modularity of L, by the inequality r=b and by the definition
of r,
(xvr)aa=(xvur)na=xu(rna)=xu(rnbna)=xvu=x,

i.e., (3) is satisfied by r=r. Thus Theorem 3 is proved.

It is quite natural to ask, whether the Rees factor lattices of a relatively comple-
mented semimodular lattice also are semimodular or not. The answer to this problem
is not yet known. We prove, however, the following

Theorem 4. Let L be a relatively complemented lattice satisfving the lower
covering condition. Then any Rees factor lattice of L also satisfies this condition.

Corollary. Every Rees factor lattice of a relatively complemented semimodular
lattice of finite length is itself semimodular.

ProoF. Let 7 be any ideal of L and M=L/l. Define a<b(a, bcL) [and
a-b (a, be M)] to mean that a is covered by b in L [in M, respectively].
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Let a, b be any elements of M such that aA b— b (and, consequently, b=1).
We have to prove that a—av b. This is evident if a=1.

In what follows we assume that a, b7 and we show that then aAb-b
implies @ nb < b, too. Suppose the contrary, i.e. that there exists an element u such
that anb<u—=»~b in L. Then ucl, because u¢ 7 would imply aanb<=u<=b in M,
in contradiction to our assumption aA b-{b. Let r be a relative complement of
u in L with respect to the pair of elements anb, b. Then anb<r<b.

Suppose rel. Then, by u€l, also b=wurel in L and this is in contradiction
to our assumption that b=17in M,

Suppose r¢ I. Then aA b<r<5bin M and this contradicts again the assumption
anb-b.

By the preceding paragraphs, anb<b indeed. Hence a<aub in L, by the
lower covering condition. But, by a, b1 we get av b=aub, and consequently,
a-iav b in M. This completes the proof of Theorem 4.

The corollary follows immediately from the theorem (see [3], p. 143, Corollary).

4. Applications

In this section we discuss two applications of Rees factor lattices.

Let L be a lattice with least element o and greatest element i. Let, further, e
be any element of L and denote by C, the set of all complements of e. It is well-
known that, for any element e of a distributive lattice, C, has at most one element
and, in case of a modular lattice, every set C, is either empty or completely un-
ordered (with respect to the ordering relation of L). If, however, L is only semi-
modular, then C, can contain subchains of more than one element. By a maximal
(minimal) complement of e we mean a maximal (minimal) element of the partly
ordered set C,.

Theorem 5. Let L=(L, n, U) be a modular lattice with least element o and
greatest element i. Let, further, I be any principal ideal of L and M=(M, A, v)
the Rees factor lattice of L modulo I. Then, for every element e of M, the set C, is
either empty or has a maximal element.

Remark. For lattices of finite length (and, more generally, for lattices satisfy-
ing the maximum condition) our assertion is, of course, trivial. The problem whether
every non-empty C, has a minimal element too, is open .

Proor. Clearly, it suffices to discuss only that case when e is no bound element
of M and the set C, is non-empty. Accordingly, consider an arbitrary inner element
e of M and let ¢’ be a complement of e in M. Then e, ¢’€ L —1 and thus eue’'=
=ev e’ =i. Hence, by the isomorphism theorem of modular lattices, the mapping
¢ defined by

o(y)=eny  (vele,i])

is an isomorphism of the sublattice [¢’, i] of L onto the sublattice [e ne’, ¢].

Let u denote the greatest element of the principal ideal 7. Then y€[e’, i] is a
complement of e in M if and only if eny=u in L.

Summarizing, we obtain that an element y of [¢’, /] is a maximal complement
of e if (and only if) the corresponding y is maximal in the subset [e ne’, e] N (u]
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of L. But ene’=u in L (because eA e’ =1 in M, by assumption) and this implies
that
[e ne’, e] N (u] =[e ne’, e Nnu].

Hence, the element y =¢~!'(e nu) is maximal in C,.

We conclude this note by constructing a complemented semimodular lattice
in which no inner element has either a maximal or a minimal complement.

Let S be any infinite set and P(S) the subset lattice of S. The family F of all
finite subsets of S is an ideal in P(S). Similarly, the family C of all subsets X of
S with S — X€F is a dual ideal in P(S). Clearly, F and C have no common element.
Thus, according to Remark 3, we can construct the Rees double factor lattice

R(S) = PO)/(F, O
which we shall call the reduced subset lattice of S. We prove

Theorem 6. The reduced subset lattice of any infinite set is semimodular, dually
semimodular and complemented, but none of its inner element has a maximal or a mini-
mal complement.

Corollary. The reduced subset lattice of an infinite set is not modular.

ProoF. Since R(S) is evidently self-dual and complemented, we need only
to show that it is semimodular, but none of its inner elements has a maximal
complement.

Let A be any inner element of R(S) and 4" a complement of A in this lattice.
Then any set of the form

A*=A"Ule,, €5, ..., 8} (e;€ A, n finite)

is again a complement of 4 in R(S). This shows that 4 has no maximal complement
in R(S), implying also the corollary.

In order to prove that R(S) is semimodular, consider the elements A4, B, X
of this lattice such that

4) AAB<X<A and A|B

in R(S) (A and v mean the meet and the join in R(S), respectively); by these
assumptions, 4, B, X and S—A4, S—B, S—X all are infinite subsets of S. We
have to find an element 7 in R(S) that satisfies the conditions

(5) AAB<T=B and (XvT)AA=A.
We distinguish the following three cases:

1. ANBER(S) and B— A4R(S).
2. ANBER(S) and B— A€R(S).
3. ANBER(S), i.e. ANB is a finite set.

Case 1. First we show that X JB€R(S) in this case. Let H=S—(4UB)=
=(S~—A4) N (S — B). Using the well-known set-theoretical identity B— A =B (S —A4)
we get

HUB—-A4) = (S—A)N(S—-B)UB) = S—A.
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Since S— A is an infinite set by assumption, this equality implies that either H
or B—A must be infinite. But B— A is finite in the present case. Consequently,
H is infinite and thus A4 JBeR(S). 4 fortiori, X JBeR(S).

Moreover, the assumption A () B€R(S) implies that AA B=AB and thus
the first part of (4) can be written as

(6) ANBcXcA.

Finally, by the inclusions X{UB2X and 42X, also (XY UB)N A belongs to R(S).
Consequently, we get
(XvB)AA=(XUB)NA=(XNAUBNA)=X.

Hence, (5) is satisfied by T'=B.

Case 2. The inclusions in (6) hold also in this case. Moreover, the set B— A=
=B — (A B) is infinite. Hence, one can find a set Y such that

(7 ANBcYcB
and the set B—Y is also infinite. For such ¥, XU Y€R(S). In fact,
S—(XUY)=(S-X)N(S-Y)2(S—-A)N(B-Y)

and, by (7), B—Y and A have no common clement so that B—Y & S—A.

Consequently, T

and thus the set S—(XUY) is infinite, i.e. XU YER(S), as asserted.

Moreover, (7) also implies the inclusions AMNB S AN Y S A B, whence
ANY=ANBKB.

Finally, by (XYUY)NA2X, also (YUY)NA belongs to R(S). Hence, in
this case we have

XVY)AA=(XUY)NA=(XNA)UX¥NA)=XU(4NB)=X,

the last equality being true by (6). This result together with (7) shows that the
conditions prescribed in (5) are satisfied by 7=Y.

Case 3. Since B=(B[)A)\J(B— A) for any sets 4 and B, the set B— A4 must
be infinite in this case. Choose an infinite subset Z of B— A such that also B—Z
be infinite. Since 4 A B is now the least element of R(S), the first part of (5) is
trivially satisfied by T'=Z. Moreover, the set Y=2Z1J(4 ) B) is infinite, it satisfies
(7), and B—Y is also infinite. Thus, by the same calculation as in Case 2, XU Y=
=XUZU(AN B) belongs to R(S). This implies, by XS XUZS XU Y, that also
XU ZeR(S). Hence

XVvZ)AA=(XUZ)NA=(XNAU(ZNA) =X,

because Z (1 A4 is empty by assumption. Thus we have obtained that (5) is satisfied
now by 7'=Z and this completes the proof of Theorem 6.

By the Corollary, R(S) isa semimodular and dually semimodular lattice which
is however not modular. The first example for such lattices is due to R. CROISOT
[2], but this has a more complicated structure than our R(S).
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