Simultaneous equations in a finite field

By A. DUANE PORTER (Laramie, Wyoming)

1. Introduction. Let F=GF(q) be the finite field of ¢=p° elements, p odd.
Exact formulas for the number of solutions in F of certain types of equations and
pairs of equations have appeared in a number of recent papers [2], [3], [4], [5], [6].
In particular, Eckford Cohen [2; Th. 1] determined the number of simultaneous
solutions in F of a linear and a quadratic equation, and in [3] he considered a system
of two linear and one quadratic equation.

In this paper, we would like to consider a system of the form

n n n
(1.1) ;2'1 a; Xy ... xi* = a; Z; byxlly ... X ='b; Zn x5t ... X = ¢,
= J= Jj=
with a;, b;,¢;,a,b, c€ F, and ay,, ...,au,b;,, ..., by integers with 2=(a;y,...r ),

C;
1=(bj1s s by, all 1=j=n.
We remark that for k=1, a;; =2, b;; =1, | =j=n, the above system reduces
to the one considered by Cohen in [3]. As might be expected, the results of (1. 1)
are somewhat more involved, and we are not able to obtain complete results for
the case in which a;,, ..., a;., 1=j=n, are only subject to the above restriction.
However, we do obtain satisfactory results with some restrictions placed upon

aj| 4 sses ajt.

2. Notation and preliminaries. If F is as noted in Section 1 and € F, we define
2.1 e(x) = exp (2nit(@)/p); t(x) = a+oP+ ... +a”™",
so t(x) € GF(p). Hence, it follows that
@.2) e(+p) = e@e(B); 3 e@p) = {"’ g
7 0, a0,

where the indicated sum is over all f € F. If we let { denote the Legendre function
for F, so y(r)=0, 1, —1, according as =0, a non-zero square or a non-square
of F, we define

(2.3) v(@) = 1—y? ().
The well known Gauss sum G(x) is defined by

a=0,

q
(2.4 G(2) =’§e(aﬁz) = l%’u,b(ﬁ)e(a:ﬂ) = Y(@)G(), a=0,
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where
(2.5) G*(1) = y(—1)q.
The Cauchy—Gauss sum will be denoted by G(x, /) and has [1:§ 1] the values
q, a=0, ﬁ':O,
G, p) = Ze(ay*+2py) =10, =0, p=0,
(2.6) ’ e(—f0G@), x+0,
4
lG(cx. ﬁ)—jZ1 e@i+2Br)= 2 e(@y*+2py).
- Y=V ens Ve

We also find need for

{Q, = ¢~'~(g-1y"
R =(g—1)""

Finally, in view of (2. 2), (2. 3), it is clear that

(2.7)

f
(2.8) 2 e@f)=rv@q— 2 e(p).
P=Piy..., e j=1
3. Some preliminary results. It has been proven in [6; Lemma II] that
@.1) DAL T D T
XlyeeraXn Yisera¥n

when 1=(a,, ...,a,) and the indicated sums are over all x,, ... x, and y,, ... y,,
respectively, in F. Also, it was noted in [6, 3. 5] that with 1 =(a,, ..., a,)

(3.2) S e X = 3 e(yy .y
Xy Xn Msres¥n
since, in the proof of (3. 1), it was shown that the product on both sides of the equality

assumed every non-zero element of F exactly (g —1)"~' times.
For purposes of this paper we prove

Lemma 1. If 1=(b,.....b,) and a;=2b;, 1 =j=n, then

(3.3) 2 X ixpetat o= 2y Vit Yae

ProOOF. Let y,, ..., y, be arbitrary, but fixed, with y, ... y,#0 and y? ... y2 +
+¥, ...va =f€F. By (3.1) and (3. 2) there is some set x,,...,x, such that
P Xr=p ... 9. (And, a8 X, ..., Xy Y1y «oos Jp Vary over all clements of F,
this value is assumed exactly (¢ —1)"~' times by these products.). Then we have
25 . X=X =y . 3D =yP .. y2. Hence,

b L. RS N R SR RN I

so that fis also assumed by the left side of (3. 3). Also. in view of the above discussion,
fis assumed exactly the same number of times by x{' +... + x% +x}' + ... + x> and
Yid..+yi+y,+...+y,88x,,....x,and y,, ..., ), vary over the elements of F. The
above discussion could have also began with x§' 4+ ... +x% +xy' 4 ...+ x = f.
Hence both x§'+...+x+xb4...+xb and y3+...+p2+y,+...+y, assume
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exactly the same field elements an equal number of timesas x,, ..., x,and y,, ..., ¥,
vary over F, so the lemma is established.
In view of the above discussion and (2. 2), we have immediately

Lemma 2. If | =(b,, .... b,) and a;=2b;, 1=j=n, then
(3.4) 2 e(xp..xptxp.xi)= 3 e(yi . YatPie P

Xy icay Xm Yip--sPn

Finally, we state
Lemma 3. When 2=(a,, ..., a,) then

g Zx e(xy' ... xzn) =

The proof is similar to the proof of (3. 1), (3. 2), (3. 3), and (3. 4) so will
not be repeated. The proof shows that as x,, ..., x, and y,, ..., », vary over the
elements of F, the product on both sides of the equation assumes every non-zero
element of F exactly 2(g —1)"~' times.

4. The main theorem. To simplify details of the proof, we only consider systems
(1. 1) such that a;b;¢; #0, 1 =j=n. We then rearrange the coefficients in the follow-
ing way: Let s,,...,s be non-zero integers such that s,+...4s5=n, and let
fis ... f; be distinct non-zero elements of F such that

2 e(i...y)
Yis s ¥n

—¢lby=f,, for si+.+5_1<j=8+..+s,
“4.1)

2=r=¢, and s_,=0 for r=l.
Then we may prove

Theorem. The number N of solutions in F of the system (1. 1) with 1=(b;,, ..., b;)
Cmd ajl =2b11 5 teey aﬁi———‘lbﬂ., ] fijn, iS givfn by

N=g"3+¢"0ie(b)g—1]+¢"* Zlv()g— 11+
+ 3 [ole+b)g— 140" Qi — Ol +

+ 2 @i 'Rilo;B;+ D, + E; + F}},

i=0

where O, and R, are defined by (2. 7); v(x) by (2. 3): f, and s, by (4. 1); a; by (4. 9);
B; by (4. 10) and (4. 11); D, by (4. 23); E, by (4. 30), and F; by (4. 39).

PrROOF. In view of (2. 2), it is clear that the number of solutions in F of (1. 1)
1s given by

N = q_as(l,n,le, ...,.\'ﬂ‘)ze{[!;; aj jil ---Xﬁ"—a ol .

4.2) " ==

el 2 i o) e Z2epp 2],
= ] j=

where S(1, n, x4, ..., x ;) indicates a summation in which each variable x;,, ..., x,
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1 =j=n, takes on all values of F independently, and the constants 2 have been
inserted in the second two equations to facilitate later application of the sum defined
in (2. 6). Clearly, since the characteristic of F is not 2, this does not change the
number of solutions. If we note (2. 2), interchange the order of sums and products,
and collect like terms, we obtain

N=g3 %’,’ e(—ax—2bp—2cy) ]]l SUsds X1 cees Xpp)*
LN J-

cefa; Xt .. X4 +2(b; B+ ;)X ... Xhik).

In view of (3. 4) and Lemma I, for each 1 =j=n. we have
SUids Xj1s woos Xpde{ap Xt .. X5 +2(0;8+¢;) 300 ... X} =
= S0 Js Yirs s yelayiy .. vie+2(b;B+¢; 1)y - Vi

If we substitute this value into (4. 2), and let an arbitrary one of the variables, say
Vj1» take on all values of F in accordance with (2. 6), we obtain

4.3 N = q-3 Ze(—aoc«-Zbﬁ—k;:) H SULisyjle ---9yjk)°
( . ) a B,y Jj=1
'G(aj}’fz .th(b;ﬁ‘l‘cj?)yjz }’;k)-

We now write (4. 3) as N= P+ R, where

“ 4 {P=sum of terms of (4.3) corresponding to a=0,

R=sum of terms of (4. 3) corresponding to a=0.

For each of P and R, we consider three cases as follows: =0, y=0; =0, y=0;
B arbitrary, y=0.

The contribution to P from the terms corresponding to a=0, =0, y=0
is clearly

4.5) ' gadiiat’
When ##0, y=0, the contribution to P from (4. 3) may be written as

q_spé’]e(_zbﬁ) l]l S(j.J, Yij2s -'-ayjt)G(Oa bjﬁ)’jz yj.t)-
i

In view of (2.6) G(0,b;8y;; ... yi) =0 unless b; fy;, ... ¥, =0. Hence, the above
line will be zero expect when y;, ...y; =0, all 1=j=n. Clearly, this product
will be zero exactly Q, = ¢*~' —(¢g—1)*"! times as y;,, ..., y; vary over all
elements of F. Hence, the sum in this case simplifies to

a* 3 e(-26p) [] Oua
which equals
(4.6) Qv (b)g—1],

where v(b) is defined by (2. 3).
When a=0, y0, # is arbitrary then in view of (4.1) b; B+¢;y = 0 if and
only if f=f,y for some 1 =r=1. If in (4. 3), for arbitrary, but fixed y =0, we choose
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B=fy, then yj5,..,yn may be arbitrary for s, +... 48y <j=5;+... +85,,
but P o ﬁ—U for all other j or else G(0, (b;B+c;7)y)a - ),J,.) 0. With f
and y;,, ..., ¥; is defined above, the inner product in (4 3) equa s

(4_ 7) Qz S qn+(l l)s,,

where Q, us defined in (2. 7). Clearly, when f#f,y, all 1 =r=1, the value of the
inner product is

4.7y Qiq".

Now, for 2 #0, y #0, we break the sum over f in (4. 3) into f=/£,y plus sum
over B#£f,y, 1 =r=t, and for each case use (4. 7) or (4. 7)" as the value of the cor-
responding inner product, and obtain

T 2 Qg+ =% e{(—2bf, — 2c) 7} | +

%0 Lr=1
+q7° Je(=2cy) 2 e(—2bp)Qig"
7=0 B=fer 1=r=t

If we now make the substitution required by (2. 8), note (2.2), (2. 3), and
reairange terms, the above expression may be written as

@.5) 2 e+ b)g—1llg ¢~ 0 — = Ol + ¢~ Qe B) (v (©) g~ 1)

Hence, the value of P as defined in (4. 4) is given by the sum of lines (4. 5),
(4. 6), (4. 8).

Moving to a consideration of the value of R, we first consider those terms
corresponding to «#0, =0, y=0. Then, in view of (2. 6), the value of the inner
product in (4. 3) depends upon whether y;; ...y =0 or y;, ... y;#0. Clearly,
this product is zero Q, times and not zero R, times, see (2. 7), as Vjzs wees Yy Vary
over the elements of F. Hence, the sum of terms of (4. 3) correspondmg to this case
may be written as

¢ 3e(-an) [] 10ua+ Ry @G (@)

where Y(c) is defined above (2. 3); G(1) in (2. 4) and (2. 5). We let T= R(2)G(1)
so T is a complex number and the above line may be written as

q > 2e(-a)T" H (QuqT ™" +¥(a)).

ax0

The inner product above will clearly yleld a sum involving the elementary symmetric
functions [7; pp. 77—81] of ¥(a,), ..., ¥(a,). In particular, we define

oi = Z W(a“ L ;)

where the sum is over all j,, ..., ; such that for

4.9) VI =v=i v=j,=n—i+r, and for each term
in the sum j, <=j,<= ... <j;. Also, we define

0021’
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so that we obtain

:Zo Ot Riold3G'(1) 2") Yi(x)e(—an)).
- ax
In view of (2. 2), (2. 4), (2. 5), and the definition of , the value inside the brackets
in the above line depends upon whether i is even or odd.
For i even, the value is

(4.10) Wi (= 1)[v(a@)g—1)g3"-1-9)/2
and for i odd, the value is
4.11) Y2 (1) (a) g2 -i- 92,

Hence, the total contribution to R from the terms of (4. 3) corresponding to « #0,
f=0, y=0is
n

4.12) 2 Oi"'Rio;B;, where

i=0

O, and R, are defined by (2. 7), o; is defined by (4. 9), and B; by (4. 10) and (4. 11).

We now find the sum of terms of R corresponding to « =0, =0, y=0. This
case becomes more cumbersome to write down so we will omit 2 number of the
details in the proof. First, we note that in view of (2. 4), (2. 6), (2. 7), we may write
the sum of terms of (4. 3) corresponding to this case as

@13) g7 3 e(-ax—2bp) H [0q+ Ry ()G (1)e(— b} *a2) Y a))].

We define §,=i-th elementary symmetric function of e(—h?p?/a,a)(a,), ...
voes €(— b2 B? a2 )(a,) so that

6 = _ 2] "(_b_:z'.ﬁzfajia) e(“bi‘.ﬁzlaj,- 0 (aj, ... a;),

J1s0een

where the sum over j,, ..., j; is defined as in (4. 9). To simplify writing J;, we also
define

a” == ajl e aj‘,
.14
g {bu = —[b./aj, + ... + b} /a;]},

so that, in view of (2. 2), we may write J; as

(4.15) 0; = _ 2 'J’(“U)e(buﬂz.’i),

with the sum over j,, ..., j; as defined in (4. 9). Hence, by defining d,= 1, we may
write (4. 13) as

g 3 e(—ax—2bp) 3 O1-'q" ' RLG' ()W (2)3,.
i=0

a%0,fx0

If we note (4. 15), recombine terms and sum over f#0 in accordance with (2. 6),
we obtain

@.17) g7 Se(-an) 30T RG Y@ 3 [Gbyla—b)~ 11 @)
ax j== Juaees Ji
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We now divide the sum over j,, ..., j; as

D =M@ 1)+M(,2)
Jipeen Ji

(4.18) where M (i, 1) = sum over all j,, ..., j; such that b;;=0,
and M (i, 2) = sum over all j,, ..., j; such that b;;=0.

To simplify writing the results, we consider separate cases for »=0 and b =0.
Then in each case find values for the terms of (4. 17) when i is even and i odd.
If =0, (4.17) may be written as

VR

Qi 'Rig"'73G'(1) ZJ"(“)"(‘““)[M(‘., Dy (a; )G (b)) — 1]+

+M(i, 2)y(a;;) [q— ]])a

so that the valus of the above terms corresponding to i even is

R RGP IO 2 (— 1) (M (G, 1) (a;) [V (abyj) g — v(a) g + 1]+
+ M, )Y (a;)) (g—)[v(a)g—1]),

and the value for terms corresponding to i odd 1s

Q7' Rig®=i= 924+ D2 (— 1) [M G, 1) (a;) X
X (W (biplv(@g— 11—y (—a))+ [ M, )¢ (a;) v (—a)[g—11],
where we have used (2. 2), (2. 3), (2. 4), (2. 5), and the definition of ¥ in the evaluation

of these terms.
If b0, (4. 17) may be written as

4.19) {

(4.20) {

i::; 01" Rig" 3G (1) 3 Y (@)e(—an)[M (i, 1) (a;)) X

a0
X {e(—=b*a/b;))G (b;;/a) — 1} + M (i, 2)¥ (a;;) (—1)],
so as before, we have for i even

@.21) {QE“'RN”Z(— 1)g2n=1=92 (M (i, 1) (a;,) [¥ (@b,; + b*) g —
. —v(a)g+ 11— M (i, 2)y (a;)[v(a)g—1],

and for 7 odd,

IR YU V3 (1) g2t~ SN2 (M, DY (@) [{v(a+ b*/b;;)g—1} X
X 'nb(bu) —Y(—a)]—-M(, 2)"‘(_““(;))-

Hence, if we combine (4. 19), (4. 20), (4. 21), (4. 22) we have that the value of

(4.22) {
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(4. 17) and hence the sum of terms of R corresponding to « =0, f#=0 is given by

2": Qi 'RiD;,
i=0
where for i even
D; = g =02y 2 (1) (M (i, 1) (a;)[¥ (ab;;+b*) g+ v(@) g+ 1]+
+M (i, 2)y(a;)[v(a)g—1][v(b) g —1]).
and for i odd
D; = g i= M2y DR~ (M(E Dy (@) W (b ){v(a+b*[b;)g—1}
—y(=al+ M, 2)y(—aa;[v(b)g—1]),
with M(i, 1) and M (i, 2) defined by (4. 18); a;; and b;; by (4. 14).
Finally, we consider the sum of terms of R corresponding to « 0, f arbitrary,
y #0. We divide the sum over f in (4. 3) into f =/, | =r =1, plus sum ober f #/,7,
where f, is defined by (4. 1). If we make this substitution and note (2. 6), (2. 7),
we obtain

(4.23) 4

¢ Se-an) 3 3{(-2-297) [[ 10+ RV@GO)h,)+

(4.24) y
T 2 9(—ﬁ1—26?)ﬂ*f2 ‘8(-2513)_Q[QM-FRM(OE)G(UH;],

ax0,8%0 srs

where
hrj= w(ai), fOl’ Sl+'“‘ +Sr_l-l-‘-3j§_sl+___+sr,
h,; = Y(a)e{—(b;f,+c;))?y*|a;x}, otherwise
u; = Y(a)e{—(b;p+c;7)?a;a), all l=j=n.

We now define &, =i-th elementary symmetric function of #4,,, ..., 4, and
¢ =i-th elementary symmetric function of wu,, ..., u, so that

(4.25)

with the above sums over j,, ...,J; defined as in (4.9), and ¢,,=1=_,. We also
find use for the following definition:

(4 26) bijr — —(bjl.ﬁ+cj;)2}'aj1 + + *-(bﬁj:.+('h)2faji)
where clearly
b, fi+¢; )2 =0 for si+..+8_1<j.=85;+...+5,.

Hence, in view of the definition of /,;, (2.2), (4. 14), and (4. 25) we may write

(4.27) & = 2 W(aeb,y?).

J
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If we now use this value and multiply out the inner product in the top line of
(4. 24), recombine terms, and sum over y #0 in accordance with (2. 6), this line
may be written as

(4.28) =Z': ré; Qz—iRiqu—i—3Gl'(]) ;;¢f(1)8(—01)j ;}_[G(bfﬁh, 2bf,+2c)—- ]]l,l/(au).

We now divide the sum over j,, ..., j; as

2 =M, D+M,G2)
Ji

Jisaeen
(4.29) where M, (i, 1) = sum over all j,, ..., j, such that b,;, =0,

and M, (i, 2) = sum over all j,, ..., j, such that b;;,=0.

We can note the similarity between lines (4. 28) and (4. 29) with (4. 17) and
(4. 18). Hence, to evaluate (4. 28), we consider separately cases sorresponding to
bf,+c¢ = 0 and bf, +¢+#0, and so obtain results corresponding to (4. 19) through
(4. 22). If we carry out these details and combine the results, the sum of the terms
corresponding to (4. 28) may be written as

3o RLE,
where for 7 even
E = ‘;:‘1 g ORI (1) (M, (i, DY (a; ) [Y (aby; +[bf, + )P g —
—v(@)q+ 11+ M, (i, 2)¥ (a;)[v(@) g — 1] [v(bf, + ) g — 1)),
and for i/ odd

E = 3 qn=i= 0202 1) (MG, 1) (@) [ () X

r=]

X A{v(@+[bf, +cP}/bij)g—1—¥(—a)+ M, (i, 2)Y (—aa;;) +
+o®f +c)g—1)),

(4.30) 3

with M, (i, 1) and M,(i, 2) defined by (4. 29): b;;, defined by (4. 26); £, defined by
(4. 1). Hence, we have the value of the sum of terms in the first line of (4. 24).

If we multiply out the product over j in the second line of (4. 24) as we did in
(4. 25) through (4. 28), note (2. 2), (2. 6), and collect like terms, we obtain

S e(-ax+2e7) 3 QU RWI@G()X

a#=0,7=0

(4.31) J X .‘-_‘-:;;ﬁ'f’(ﬂu)f’("ij}'zfﬁ)[c(bijh, d; jy|a—b)—

Jis-

& Z. e (b f2 72+ 2[dyy y/x — b1 £)],
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2

where
¢;; =—[c3 ja; + ... +¢c3 fa;],
4.32 { if Sl Jil %
( ) df.l" = _[bfl chjajt + .. +bjlcji[aji]'
We also need the following definitions in which the operation denotes integral
multiple [7; pp. 36].

Xijp = —a+[bf, + /(b £, + cij + 2d;)),
(4.33) Vie = My-[—a+ Cubzfdf,z;u = 2bc/du,,],

zij = [dijblby;— cP[lc;;— d?[b; ]+ [a+ b%[b;}],
where, for 0=i=n, d,, | =u=w, is of multiplicity m, with d;;, #d;, for 1=u#
= v =w, and this set of w elements denotes the distinct elements among the dj;.

To evaluate (4. 31), we must divide the sum over j,, ..., j; as indicated in (4. 18)
as well as the divisions listed below.

[ We write M(i, 1) = M(i, 1, 1)+ M(i, 1, 2), where
(4. 34) 1 M(i, 1, 1) = sum of terms of M (i, 1) such that b;c;; —d;; #0,
| M(i, 1, 2) = sum of terms of M (i, 1) such that b;c;; —d;; = 0.

[ We write M(i,2) = M(i, 2, 1)+ M(i, 2, 2), where

(4. 35) 1 M(i,2,1) = sum of terms of M(i, 2) such that d;; 0,

| M(i, 2, 2) = sum of terms of M(i, 2) such that d;,=0.

We write M(i,2,2) = M(i,2,2, 1)+ M(i, 2, 2, 2), where

(4. 36) 1 M(i,2,2,1) = sum of terms of M(i, 2,2) such that ¢;=0.
M(i,2,2,2) = sum of terms of M(i, 2, 2) such that ¢;=0.

Finally, we write

—

4.37) jl.-u'd'i )
M(i, 0) = sum of terms such that b, f, +¢;;+2d,; # 0, l=<r=},

M(i, r) = sum of terms such that b;;f, +¢;;+2d;; = 0.

If we now proced to evaluate (4. 31) by considering the cases outlined in (4. 34)
through (4. 37), we obtain, after a very lengthy, but straightforward, calculation

r
> =MG0+ 3 M(,r),
Fe=]

(4.38) 3 iR,
=0
as the value of (4. 31), with F; given by
Fy=ya)[M@, 1, DY (bci;—dy) T+ M(i, 1, 2) K+
+M(i, 2, )2 (b) K- M (i, 2, 2)v(b) W, +

@4.30) 4 1M 62,2 Dod)B,+ M, 2,2, 0B g~ 115, —

= 3 (MG O by S+ 24,)V o MG, 1Yo, +) Vi
_ MG, )W),

& L
f1y000p i

Ji,




Simultaneous equations in a finite field

where Y(a;;) must be distributed inside the sums to be defined. and

g i= 91242 (~ ) [e(a) g — 1],
H, = gan=i=312y i+ )2 (_ 1)y (a),

(o {quu_idznzwuz(_l)w(cz+acu),
i q”"""”’zl{l”*‘”z(—l)g!;(cij)[v(cz/c,j-}-a)q— 1]
gAY (1) 3 oy —1)

q(Zn-—l—Sh’zw(H l)fz(_ 1) Zw‘ 'J’(J’.‘u)’
w=1

.

q(Zn-l'—Z).’z W(z (_ l)kb(ab.-; + bZ) U(dub/bu_ ¢l
q(zn- i-3)/2 ll,u+ 1)/2 (_ l)d’(hij)r(dijb/bij t C‘) X
| X[v(@+b%/b;)g—1],

gan-i=92y i+ DI2(_1)p(z,,q—1),
g3r—i= N2y U+ DI(_ 1)y (z;)),

(Zn i—ﬁ)f!wr’l( l)Il(a)q—l]

A
I

= g2 Y+ D12 (1) (a),
- g2y G+ 2 (_ 1)y (a),
i gn=i=92yii2 (< 1)y (b, a + b?),
;=

g ==y (b )Y V2 (= 1)v[(a+ b2 b)) g — 1),
gn=i=92yi2 (1) [e(a) g — 1),
gan-i=32yli+ 2 (_ 1)y (a),

v {q(2n—|:—4);“2 Y2 (=D (x5,
i q‘z""""“dl‘””"2(—1)v(.\',-j,q—1),

k
{
! qn=i=912yii2(—1)[v(a)g— 1],
|
ol

I

i
i

even,

odd,

even,
odd,

even,

odd,

even,

odd,

even,
odd,

even,
odd,

even,
odd,

even,
odd,

even,

i odd,

even,
odd.
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In the above Y(x) and v(x) are defined by (2. 3); a; and b; by (4. 14), and

Xijes Yius 2 bY (4. 33).

Hence, by combining (4.4). (4.5). (4.6). (4.8), (4. 12), (4.23), (4.30), and

(4. 38) the theorem is established.
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