Relative projectivity and a property
of Jacobson radical

By I. SINHA (East Lansing, Mich.) and J. SRIVASTAVA (Kanpur)

§ 1. Introduction

Let' RG denote the group ring of a group G over a commutative unitary ring R.
If H is a subgroup of G, and G = U x;H is a fixed coset decomposition, then each
element of RG can be written as > x;p; where p;€ RH. Then we say that (R, G, H)
has property ¢ with respect to the coset representation {x,}, if whenever > x;p; ¢
€rad RG then each p,€rad RH refers to the Jacobson Radical: {For several cha-
racterizations of this radical and its relations to the structure of rings we refer to
[4], [7). [10] and [11]}.

For normal subgroups H of G, we characterize property o by the fact that
every RG module induced by an irreducible RH module is completely reducible:
{Th. (3. 5)}. Some conditions for a subgroup to have this property, are obtained
in Th. (3. 6) and Cor. (3. 8).

Further, we say that (RG, RH) is a projective pairing if every G module is H
projective in the sense of [3] {see also [2], [6]}. For normal subgroups H of G, we
show that projective pairing implies Property ¢: {Th. (2. 4), (3. 3) and Cor, (3. 4)}.

§ 2. Generalities on modules

Let R be a ring with unity element 1 and P be a subring (all subrings of unitary
rings will be assumed to contain the unity element of the ring). Suppose that R
is a free right module over P with a basis {x;/i€ 7} where / is some index set. Every
element of R has the form > x;p; with each p;€ P.

Given a left R module M. we can obtain the restriction M, as a P module
merely by restricting the operatros to P. On the other hand, given any left P module
N. we can form the induced module N® =& 3 x;® N as an R module, where the
symbol x; @ N stands for the tensor product x;P®, N, and the direct sum is not
necessarily a module sum even over P. However, if any x; centralises P, i.e. x;p=px;
for all p€ P, then x;® N can be looked upon as a P module: and if this is the case
with each 7, then the above direct sum becomes a direct sum of P modules. We then
make the following:

Definitions 1. We shall say that {R, P} has property ¢ with respect to the
basis {x;} if > x;p,crad R implies that each p;crad P.
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2. We shall say that {R, P} is a projective pairing, if every exact sequence of
R-modules 0 -N —~L—~M -0, for which the associated sequence of restrictions
0—~Np—~Lp—~Mp—0 splits over P, is itself split over R.

Before analysing the above two properties further, we recall the following known
form of a standard result:

Lemma 2.1. Let R be a ring with minimum condition of left ideals. Then an
R module M is completely reducible if and only if rad R < annihilator of M in R.

(191 [51)

Next we recall that for finite cardinality of the index set /, it has been shown
in [8] that property ¢ with respect to one basis implies the same with respect to any
other basis, and that it is a transitive property.

Here we first of all show a relation between the two properties defined above.
Our result below contains Th, 3 of [8].

Theorem 2.4. Let R be a unitary ring which is a free right module over a sub-
ring P having minimum condition of left ideals, and let {x,} with x,=1, i€l, be a
finite P basis for R. If for each pc P and each icl, px;=x,; 6:(p), where i—p(i)
induces a permutation in the index set I, and o; are auromorphlsms of P, then projective
pairing for {R, P} implies property o for {R, P},

PrROOF, Let M be an arbitrary irreducible P module. Then we consider the
induced R module M® = @ > x;® M. Looking upon P as a set of permutations

i€l

on 7, let C(i) be the P cycle to which i belongs. Put W; =@ 3> x;®M. Then
JEC)

each W, is a left P module and M® =& > W, as a direct sum of P modules.

Now pé€rad P implies that pW, = '5’ x,,,,,@a (p)M = 0 since o;(p)erad P

and M is P irreducible. Thus rad PCanmhilator of W, in P for each i. Then by
(2. 1), each W, is completely reducible over P and hence, so is M® over P.

Now let 0 -N -M=® ~L 0 be any R exact sequence, Then this splits as a
P exact sequence since M® is completely reducible over P. But as {R, P} is a pro-
jective pairing, this sequence splits as an R exact sequence also. Then M*® is com-
pletely reducible as an R module.

Finally let 3 x;p;€rad R where each piéP Then from complete reducibility
of MR, we have (3 xp)M®=0. In particular (> x;p,}(l ®@m) =0or > x;®@p;m =0
for each m € M. This implies that p; M =0 for each i.

Since M was an arbitrary P irreducible module, so we conclude that each
pi€rad P. This gives property ¢ for the pair {R, P}. Q.E.D.

In this general setting a complete characterization of property ¢ is not obtained
here. In case of group rings we shall give a more satisfactory result in the next section.
Here we complement (2. 4) by:

Theorem 2.5. Let a ring R be a free right module over a subring P with a finite
P basis {x;} and let R have minimum condition of left ideals. Let {R, P} have pro-
perty o. Then for an R module M, if M, is completely reducible over P, then so is
M over R.
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ProOF, Let 0-N--M L -0 be any R exact sequence and > x;p,crad R.
Then by hypothesis each p;€rad P and M, is completely reducible over P. Hence
(2 x/pIM=3x;(p;M)=0. Thus rad R < annihilator of M in R, so that by (2. 1),
M is completely reducible over R. Q.E.D.

§ 3. Applications to group rings

In order to apply the above concepts to group rings, we begin with:

Definitions 3. Let G = Ux;H be a fixed coset decomposition of a group
G with respect to its subgroup H, and let each element of RG be expressed as > x; p;
where each p; € RH. Then we shall say that {R, G, H} has property ¢ with respect
to the coset representatives {x;}, if {RG, RH} has property ¢ with respect to the
basis {x;}.

Definition 4. The class C(H) of subgroups H,=(H;x; ,x;, ..., X;,), ge-
nerated by H and a finite number of coset representatives {x; }, will be called the
covering class of H in G.

If {T;} is any other coset representation in G over H, then each T; = X -A;,
for some X; in {X;} and /; € H. Hence we have

Lemma 3. 1. C(H) is independent of the choice of coset representation in G
over H.

For group ring, we can prove a stronger version of Th. 1 in [8]:

Theorem 3. 2. If {R, G, H} has property o with respect to one coset representa-
tion, then it has so with respect to any other coset representation.

PrOOF. Observe that each element of RG is a finite sum 3 r,-g with each

G
r,€ R, and the elements of R commute with those of G. Now let {x;} and {»} be
two coset representations in G over H. Then y;=x;h; for some x and some h;€ H.
Hence given > y;p;€ RG, we can write it as > x;/i; p; € RG.

Now if {R, G, H} has property ¢ with respect to the coset representatives
{x;}, and > y,p;€rad RG then > x;/;p,€rad RG whence each /; p;€rad RH. Since
each /; is a unit in RH, so this implies that each p,crad RH. Hence {R, G, H)
has property ¢ with respect to the coset representatives {y;} also. Q.E.D.

By virtue of this theorem, throughout this section, we shall drop mentioning
particular coset representation chosen, with respect to which {R, G, H} has pro-
perty ¢.

Now recall that a subgroup H of a group G is called subnormal if there is a
chain,

H=S,48,4...48,=G

of subgroups S; such that S;4S,,,: i.e. S; a normal subgroup of S,,,.
Then an immediate application of Th. (2. 4) and an obvious induction, gives us:

Theorem 3.3. Let H be a subnormal subgroup of finite index in a group G
and {S;} be as defined above. If {RS;, RS;_,} has projective pairing for each i,
then {R, G, H} has property g.
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Cor. (3.4). If HAG and [G: H] <<=, then projective pairing of {RG, RH} im-
plies property ¢ for {R, G, H}.
Next we give a characterization of property ¢ for certain types of group rings.

Theorem 3.5. Let HAG and R be a unitary ring such that RG is artinian.
Then {R, G, H} has property ¢ if and only if for every irreducible RH module M, the
induced RG module M is completely reducible.

PrOOF. Suppose firsly that for every irreducible RH module M, the induced
RG module M€ is completely reducible over RG. Let G = U x; H be a coset decomposi-
tion of G over H, and > x;p;€rad RG, where each p;€ RH. Then from the complete
reducibility of M%, we have (> x;p)M%=0.

In particular, if M is an arbitrary RH irreducible module, then for every me M,
(Sxip)(l@m) = Xx;@p;m = 0. Then from the independence of the {x;} over
RH. we conclude that for each i and each me M, p,m=0: i.e. p; M=0, whence each
p;€rad RH. This implies that {R, G, H} has property o. [Note that for this part
of the proof we have neither made use of the normality of A nor of the minimum
condition in RG.]

For the converse part, let {R, G, H} have property ¢. Then > x;p;crad RG
implies that each p,crad RH. Now let M be an arbitrary irreducible module over
RH. Then the induced RG module M¢ has the form M =@ 3 x;® M. Since H
is normal in G, so each x;® M is an irreducible RH module, [1].

Also for each i, h€ H implies hx; = x;-¢,(h) where ¢(h)=x; 'hx; induces an
automorphism of H, which can be extended by linearity to RH. Then > x;p,€rad RG
implies that

(2 xip)(x;@M) = Zxix;0,(p)OM = 2 X;;h; @ o;(p) M

where x;x;=x;;h; for some x;; in {x;} and some h;€ H.

Since each ¢;(p;)€rad RH and M is an irreducible RH module, so ¢;(p)M=0
for each 7 and .

This shows that rad RG is contained in the annihilator of M¢ in RG. Hence
M€ is completely reducible by (2. 1). Q.E.D.

We recall here the Theorem of Clifford, ([1]) which states that if HAG and
M is an irreducible RG module, then the restriction M}, is completely reducible over
RH. In this context the above Th. (3. 5) gives a criterion in the reverse direction,
i.e. a criterion as to when an irreducible RH module can be lifted to a completely
reducible RG module.

Finally, we use the notion of covering class defined above, in order to determine
some subgroups / in a group G such that {R, G, H} has property o.

Theorem 3. 6. Let R be a unitary ring and H be a subgroup of a group G. (1) If
{R. S, H} has property ¢ for each S in C(H), then {R, G, H} has property o. (i) If
R is a field and {R, G, H} has property ¢, then for each normal subgroup S in C(H),
{R, S, H} has property o.

PROOF. (i) Suppose {R, S, H} has property ¢ for each S in C(H). Let {x;} be
a complete system of coset representatives in G over H and r= > x;p;crad RG,
where each p;€ RH. Only a finite number of x; occur with non-zero coefficients in r.
Let these be {x;,...,x;.}, and put S=(H, x;,, Xi,, +.c5 X;,) in C(H).



Relative projectivity and a property of Jacobson radical 41

Let {y;} be a complete system of coset representatives in G over S, where y, =1.
Since r€rad RG, so it has a quasi-inverse r* in RG such that r* +r—r*r = 0, [4]. Let
r*= > y;q; where each ¢;€ RS. Then we have

Yis(gi+r—qyr)+ .2.: yilgj—q;r) =0
7

where r obviously belongs to RS. Then from the independence of {y;} over RS,
we obtain ¢; +r—¢q,r = 0 and ¢;(1 —r) = 0 for each j. Since 1 —r is a unit in RG
as rérad RG, so each ¢;=0 for j#1, while ¢, +r—gq,-r = 0. Hence r*=gq, € RS,
so that rerad RS. The property ¢ for {R, S, H} implies that each p, is in rad RH,
since X;,, ..., X;, can be taken as a part of coset representative system in S over .
From this we conclude property ¢ for {R, G, H}.

(ii) Next let R be a field, {R, G, H} have property ¢ and S be a normal sub-
group in C(H). If M is any irreducible RG module, then by Clifford’s Theorem
mentioned above, Mg is a completely reducible RS module.

Now let S = Ux;H be a coset decomposition of § over H, and extend this
to a coset decomposition G = [Uy; H]U[Ux;H] in G over H.

Suppose > x;p;crad RS where each p;€ RH. Then from the complete re-
ducibility of Mg, we conclude that (3 x;p;,)M=0. Since this is true for an arbitrary
irreducible RG module M, so > x;p; € rad RG as well. Then property ¢ for {R, G, H }
implies that each p;crad RH, whence property ¢ for {R, S, H} follows. Q.E.D.

From the latter part of the proof of the above theorem, we easily extract the
following results:

Cor. (3.7). If R is a field and S is a normal subgroup of a group G, then
rad RSSrad RG.

Cor. (3.8). If R is a field and {R, G, H} has property ¢ for some subgroup
H of a group G, then {R, S, H} has property ¢ for all normal subgroups S con-
taining H.
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