On various Boolean structures in a given Boolean algebra

By ABRAHAM GOETZ (Notre Dame, Indiana)

HANNA NEUMANN proved in [1] the conjecture of A. KERTESZ concerning var-
ious group operations in a given group. In this note we solve a similar problem for
Boolean algebra.

1. Consider a Boolean algebra B=(B, v, A,”) with unity element 7 and zero
element 0, join x v y, meet x A y, and complement x’. Let @ be an arbitrary element
of B. Define two binary operations x |y and x )y by formulas

(1) xUy=[aan(xvylvaAaxnay]
and
) xNy=xUy) =[avixay)alavxvy).

Theorem 1. The algebra B*=(B, \J, N,") is a Boolean algebra with unity ele-
ment a, zero a’, join x\Jy, meet x(\y and complement x’. The mapping ®:B —~B
defined by formula

3) d(x) =(arx)v(@ax)=INx)UONX")
is an involutory isomorphism @:9B —~3B°,

ProoF. We shall prove first that @ is an involutory mapping, and therefore
one-to-one and onto. Indeed, we have

P[P(x)] = [an P(x)]v[a"AP(x)] =
=(@anllanx)v(@ax)v@allaanx)v(@ax)] =
=(@ax)vl@a@vx)a(avx)=(@ax)v(a anx) = x.

Then we prove that

4) D (x) =P(x")

and

(5) P(x)JP(y) = P(xVvy).
Indeed

P(x) =[(anx)v(@ax) =@vx)alavx)=(@ax)v(@ ax) = o).
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Further
P(x)UP(y) = (an[®(x)ve(y)])via APx)AD(y)] =
=(anf@anx)v@axyv@ay)a@ay)v
v(@al@aax)v@ ax)allanyyvia ay))) =
=[an(xvy)lv(@ax' aAy)= d(xvy).

Therefore, @ is an isomorphism of the algebra (B; v,’) onto (B, U, "). This
isomorphism sends the unit 7 into (@A l)v(a’Al’) = a, and consequently 0 —-a’.
Due to (2), we have also @(xAy) = ®(x)( P(y).

By a relatively simple computation one checks that ®(x) = (/N x)J(0Nx").

Indeed,
INx=[a'vx]alavIvx]=d vx,
0Nx"=[a"vOla(avx')=a Ax.
Now
INx)UONx) =@ vx)U@ Ax’) =
=(anf@vxv@Aax))vi@a@vx)aa Ax]=(arx)v(a@ Ax) = ®(x).
Corollary. The join and meet of the algebra®B can be expressed by the operations
of the algebra B* by formulae
(1) xvy=[IN@UyU0NxNy]
2) xAy=(x'vy)y =[0U@NyN[IUxUy]
PrOOF. Applying theorem 1 with 7 taking the place of a to the algebra B* we
obtain another algebra with join and meet
xvuy=[INEUIU0NxNy],
xny = [IUxUyINoUKN))
which is an isomorphic image of the algebra B under the isomorphism x —(a(1x) U
U(a"Ux’). But this isomorphism is nothing else than @ =@~ ', Therefore, the iso-

morphic image of B* coincides with B and xUy=xVvy,xNny=xA Yy, and so for-
mulas (17), (2°) hold.

Theorem 2. The binary operations v, A, \J, [ are distributive with respect to
each other.

The proof is a matter of simple computations.

2. The question arises whether or not the Boolean algebras B“ are the only
Boolean algebras on the set B whose operations can be expressed in terms of the
operations of B and constants. We shall give an affirmative answer to this question.

We start with the following lemmas.

Lemma 1. Any unary operation X in B which can be expressed in terms of the
original operations of B and constants, and which satisfies the identity X =Xx must be
of the form
(6) X=@WAx)v(vax’),
where v < B is some constant.
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ProOF. The most general word in one variable with constants is
X=wax)vivax)ve
(u, v, ¢ — constants). The condition x=y yields
x=Xx=UA[UAX)V@VXIVA) VAW VX)AQ VX)AL]VEe =
=WAX)VUALAX)VUA)VLAU AXAC)VE =
=(uvwacd)ax)vuavax)ve.

Setting x=0 we obtain 0 = (u A v) v ¢, which implies ¢=0 and u A v = 0. Setting
x=1, ¢=0, we obtain uv v = I. Consequently u=v" which proves (6).

Lemma 2. Any binary operation x'Jy in B, which can be expressed in terms
of x, y, the operations of B and constants, and which satisfies the conditions

(7 0U0=0, OUI=1 IUO0=1 and IUI =1,
coincides with the operation x v y.
ProoOF. The most general binary operation which can be so expressed is
xUy=avBAax)v(eay)vdax)v(eay)v(fAaxAy)v
VEAX'AYIVIIAXAY)IV(JAX AY)

with constants a, b, ¢, d, e, f, g, h, j.
The condition 0/J0 = 0 implies that

a=d=e=j=0,
whence
xUy=0BAxX)vVXAY)V(fAXAY)VEAXAY)V(RAX AY).

One can easily check by computations that
BAX)V(EAYIVAXAY) =(BAX)IV(CAYI V(A A AXAY),
BbAx)VgAxAY)=bBAX)Vv(EgAb AxAY),
(cAX)V(RAX'AY)=(cAX)V(RACAX AY).

Therefore the constant f can be replaced by f'A b" A ¢” disjoint with b v ¢, g can
be replaced by g A b” disjoint with b, and /& can be replaced by /& A ¢’ disjoint with c.
Thus we can assume that

(8) fAabve)=0, ganb=0, hac=0

without loss of generality.
The conditions 7 J0 =1, 0L =1 and 1 U1 = I imply

bvg=1 cvh=1 bvevf=I
which together with (8) yields
g=b, h=c, = B AZ.
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Consequently we have

xUy=GBAX)VEAY) VO AAXAYIVIE AXAY)V(EAX AY).

But
BACAXAYIVD'AXAY)=bAXA[(AY)VY] =
=B AXIA(CVY)=bB"AX)A(cAY),
and
B'ACAXAYIVEAXAY)=("AY)A(bAX).

Further

BAX)VIXANABAX)]=(BAX)V(CAY),

(cAVVIBE AX)IA(cAY)]T=(cAY)V (D AX).
Consequently,

xUy=bBaAx)vic'Ay)v(eAay) v(D'AX) =xVy,

Theorem 3. Any two Boolean structures on B, with coinciding zeros, and such
that the Boolean operations of one of them can be expressed in terms of the Boolean
operations of the other and constants, coincide.

PrROOF. We can assume without loss of generality that one of the Boolean struc-

tures is the original algebra B. Let the other algebra be B8=(B, U, N, ) with

join xJy, meet xy and complement X. Since 0 is assumed to be the zero of B,
the identities (7) will be satisfied, and therefore, by lemma 2,

xUy=xvy.
Now, by lemma 1,
X=@WAx)v(ax).

Since 0 is the zero of the algebra B, its unity willbe 0 = (v" A0) v (v A 0") = v. Con-
sequently v must satisfy the condition v[Jx = v for every x in particular

v=vUv  =ove' =I.
Thus
X='Ax)vIax) =X,

This proves the theorem.
Now we are ready to prove the main result of the paper:

Theorem 4. Every Boolean algebra B* with the underlying set B whose opera-
tions can be expressed in terms of the operations of the Boolean algebra B and constants
coincide with one of the algebras B of theorem 1.

Proor. Consider the algebra 8* and let ¢” be its zero element. By theorem I,
the algebra B is then another Boolean algebra on B with the same zero element a’.
Since the operations of B can be expressed in terms of the operations of B by the
corollary to theorem 1, also the operations of B* are expressible in terms of the
operations of B* and constants. By theorem 3 the two algebras B and B* with
coinciding zero element @” must coincide. This proves the theorem,
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Remark. Theorem 3 is a strengthening of Theorem 1 of T. TraczyYK [2] in
which the assertion of theorem 3 is obtained under the additional assumptions that
the expressions for the operations do not involve constants other than I and 0, and
that / is the unity of both algebras.
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