Note on differential equations with constant coefficients
By RAHMI IBRAHIM IBRAHIM ABDEL KARIM (Cairo)

In a previous paper [1], we studied the resonance case in the differential equa-
tion of the ™ order

(@) L[x] = x"+a,()x" V4a,(t)x" D+ .- +a,_;()xPD =f(t) (1=j=n-1),
where the coefficients a,(f) (u = 1, 2, ..., n—j) and f(¢) are continuous and periodic
functions of the same period p and

) a,-;(t) # 0.

In this note we shall assume that all the coefficients a,(t) in (a) are constants
and f(t) has the period p. The main results in [1] will be reduced in this case to
interesting results.

Setting £(¢)=x"(7) in (a), we obtain the reduced differential equation of order

(n—j)

(@) L[£] = £0-D g, #=I=D .. y-a,_;% = f(0).

The homogeneous and adjoint equations corresponding to (4) are

®) Lis) = 9P +a, 5" I"V+ - +a, ;5 =0

and

© L] = 1p-ge-d+ (- 1y-i-tay 2 i- D o a2 =0
respectively.

We state the following lemma, which can be proved easily.

Lemma 1. Under the assumption (1), all the p-periodic solutions of (b) and (¢)
have the mean value zero.

We solve now the equation () by means of the substitution j(z)=e*". Let a¥
(v=1, ..., 5) be the pairwise distinct roots of the characteristic equation correspond-
ing to (b) with the multiplicities #,. Equation (b) has p-periodic solutions iff be-
tween the characteristic roots o (for v=1, ..., s) there exists integral multivalues

2ni v .
of T Let the characteristic roots be arranged such that o7, ..., a; be integral

; 2mi z 5
multivalues of _p —, while the others are not. We notice that o« +=0, other-
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wise the equation (b) possesses a constant solution, which contradicts with the
assumption (1) (Lemma 1). We set of = a,+if, (v=1, ..., 0, ..., 5). The general
solution of (b) is

s -1
— Z Z’o eﬂ:t"eﬂtu’

where “c, are arbitrary constants. Accordingly the first row of the fundamental
matrix solution ¥ () of (b), which represents the n linear independent solutions of
(6), has the form

(2) j'{(’) "__(j:lr.l(t)!_{ﬁ (t)’---s_j:'l,s(t))'
Here (v=1,...,8)
=1
aT — plbf,t 8
3) Jis@) =e [1,:, i P =1 e
y P th,—1
, 1, '2_!! e | (Pﬁ‘,—‘l)!
,—2 Z
i (ei"ts 02: Olﬁv)' 1’ {3 seey '(’:-1—_;_'2_)"' Ll _}'.'(t)exvt’
i

where—as it can be easily verified (see e.g. [2] or [3]) —
A |
@) B=| - - | and ¢1,()=(",0;,..., 0n).
‘a

Consequently the fundamental matrix solution ¥(¢) of () is obtained in the required
form

® V(1) = & (1)ek
(see [1], § 2), where the matrix &(¢) is p-periodic and the constant matrix K is in
the Jordan canonical normal form with the submatrices K, (v=1, ..., 5) of order i,.

Dcnotmg the elements of the first row of &(7) by {(},,(t) (for ;1 =), (»)+1,.
o (W +m,—1; v=1, ..., 0,...,5), where the index (y) is defined by

© 0 ="3 m+1,

p=1
we see from (4) that

D P =5, ¢, =0 for u=@)+1,...,0)+m—1; v=1,..,0.

The fact that j,,(1)= @m(r) (v=1, ..., 0) possesses the mean value zero is also al-
ready proved in Lemma 1
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Thus we have proved the following

Theorem 1. In the case of differential equations wirh canstant coefficients, all
the p-periodic functions ¢,(t) for p = (v), ..., () +m,—1; v=1, ..., ¢ (see (5) and
() have the mean value zero, where §,(t) denotes the elements of rhe first row of the
matrix ®(t).

We turn now to the question of the power order of the solution x(7) of (a) and
its first (n—1) derivatives.

It is well known [1], that in the resonance case'), under the essential condition
(1), the solution £(z1)=x"(z) of (4) and its derivatives xU+1 . x™-1 take on
— independent of the initial values — values of the same minimal order

(8) W= Max (m,).
(v Ee:onance

Further it is also shown in [1], that the minimal order of the solution x(¢) of (a) is

9 m= Max (m,),

(u Resonance

va=0,1,...,0
where?) the resonance indices v=1, ..., ¢ are in both equations (a) and (4) the same
and m,=m,(j) is obtained from the formula

m, = m,+Min(j,i,,,)—Min(j,i) for (v=1,...,4-1)
(10) m; = n,;+j—Min(j, i;)
m,=m, for (v=1+1,...,5), mg=Min(j, i,).

The same statement holds also for the derivatives x®(¢) (k =1, ..., j—1), if the
index j is replaced by j—k in the formula (10).

Referring to theorem 1 and the definition of the index i, and A (see [1], § 3), we
obtain the following corollaries:

1. In the case of differential equations with constant coefficients, there do not
exist such indices i,.

2. m,=m, (for v=1,...,0,...,5), my=j. This folows from (10) and corol-
lary 1.

Referring to (9), it is required for j=m to know whether the index v=0is a
resonance index or not.

We state the following

Lemma 2. v=0 is a resonance index of the differential equation (a) iff the
p-periodic function f(¢) has a mean value different from zero.

We evaluate the additional p-periodic solution z,(7) of the adjoint equation
corresponding to (a) ([1], § 6). This p-periodic solution satisfies the inhomogeneous
adjoint reduced differential equation

(an Lia] = (=1)r-Iae=-D 4 (=1)-i-1g, 4¢-i= 4 ... +a,_;i=1

') For the definition of the resonance case or resonance index see [1], § 7.
2) For more investigations on the index v=0, see [1], § 2 theorem 1 and § 6 theorem 8.

7
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determmed up to an additive linear combmatlon of the p-periodic solutions 2(z) of
(¢), which have — by virtue of Lemma 1 — the mean value zero. However it can be
shown that z, is a constant.

Referring to the formula (9), corollary 2 and lemma 2, we obtain the following

Theorem 2. If f f(t)dt=0, then the solution x(t) of (a) and all its first (n—1)
derivatives take on m the resonance case — independent of the initial Lalues the

same minimal power order, i.e. t™ withm = i =  Max (). Further if f S(t)dt #
(v‘Re:?nmce

#0 and simultaneously j>m, then the minimal power order of the derivatives x®(t)
(k = 0,1, ..., j—m) decreases monotonically by 1 starting from x(t) with the minimal
power order t till xXU=™(t) with the minimal power order t™, and remain from this

4
value constant and equal t™. Finally if f f(t)dt =0 and j=m, then the first statement
0
holds.
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