Points on the plane whose coordinates are terms of recursive sequences

By KÁLMÁN LIPTAI (Eger)

Abstract

Let $\left\{R_{n}\right\}_{n=0}^{\infty}$ and $\left\{V_{n}\right\}_{n=0}^{\infty}(n=0,1,2, \ldots)$ be sequences of integers defined by $R_{n}=A R_{n-1}-B \bar{R}_{n-2}$ and $V_{n}=A V_{n-1}-B V_{n-2}$, where A and B are fixed non-zero integers. We give a condition when the distance from the points $P_{n}\left(R_{n}, V_{n}\right)$ to the line $y=\sqrt{D} x$ tends to zero. Moreover we show that there is no lattice point (x, y) nearer than $P_{n}\left(R_{n}, V_{n}\right)$ if and only if $|B|=1$.

Let $\left\{R_{n}\right\}_{n=0}^{\infty}$ and $\left\{V_{n}\right\}_{n=0}^{\infty}$ be second order linear recurring sequences of integers defined by

$$
\begin{aligned}
R_{n} & =A R_{n-1}-B R_{n-2} \\
V_{n} & =A V_{n-1}-B V_{n-2}
\end{aligned} \quad(n>1),
$$

where $A>0$ and B are fixed non-zero integers and the initial terms of the sequences are $R_{0}=0, R_{1}=1, V_{0}=2$ and $V_{1}=A$. Let α and β be the roots of the characteristic polynomial $x^{2}-A x+B$ of these sequences and denote by D its discriminant. Then we have

$$
\begin{equation*}
\sqrt{D}=\sqrt{A^{2}-4 A B}=\alpha-\beta, \quad A=\alpha+\beta, \quad B=\alpha \beta . \tag{1}
\end{equation*}
$$

Throughout the paper we suppose that $D>0$ and D is not a perfect square. In this case, α and β are two irrational real numbers and $|\alpha| \neq|\beta|$,
so we can suppose that $|\alpha|>|\beta|$. Furthermore, as it is well known, the terms of the sequences R and V are given by

$$
\begin{equation*}
R_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad \text { and } \quad V_{n}=\alpha^{n}+\beta^{n} \tag{2}
\end{equation*}
$$

From these equations it is not difficult to see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{R_{n+1}}{R_{n}}=\alpha \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{V_{n}}{R_{n}}=\alpha-\beta=\sqrt{D} \tag{3}
\end{equation*}
$$

(see, e.g. [3], [7]).
J. P. Jones and P. Kiss [4] considered the points $P_{n}=\left(R_{n}, R_{n+1}\right)$, from a geometric point on view, as lattice points on the Euclidean plane. Using related results on the diophantine approximation of α they investigated, how the points P_{n} approach the line $y=\alpha x$, as $n \rightarrow \infty$. They proved that the distance of the points P_{n} from this line tends to zero as $n \rightarrow \infty$ if and only if $|\beta|<1$. They obtained similar results in the three-dimensional case, too. G. E. Bergum [1] and A. F. HoRADAM [2] showed that the points $P_{n}=(x, y)$ lie on the conic section $B x^{2}-A x y+y^{2}+e B^{n}=0$, where $e=A R_{0} R_{1}-B R_{0}^{2}-R_{1}^{2}$ and the initial terms R_{0} and R_{1} are not necessarily 0 and 1 . For the Fibonacci sequence, when $A=1$ and $B=-1$, C. Kimberling [6] characterized conics satisfied by infinitely many Fibonacci lattice points $(x, y)=\left(F_{m}, F_{n}\right)$.

In this paper we investigate the geometric properties of the lattice points $P_{n}=\left(R_{n}, V_{n}\right)$. We shall use the following result of J. P. Jones and P. Kiss [5]: If $|B|=1$ and $B+5 \leq A$, then all rational solutions p / q of the inequality

$$
\left|\sqrt{D}-\frac{p}{q}\right|<\frac{2}{\sqrt{D} q^{2}}
$$

are of the form $p / q=V_{n} / R_{n}$ for some positive integer n, if q is sufficiently large.

Let us consider the points $P_{n}=\left(R_{n}, V_{n}\right)(n=1,2, \ldots)$ on the plane. Then (3) shows that the slope of the vector $O P_{n}$ tends to \sqrt{D}. But it is not obvious that the points P_{n} approach the line $y=\sqrt{D} x$, as $n \rightarrow \infty$. The following theorem shows a condition for this.

Theorem 1. Let d_{n} be the distance from the point $P_{n}=\left(R_{n}, V_{n}\right)$ to the line $y=\sqrt{D} x$. Then $\lim _{n \rightarrow \infty} d_{n}=0$ if and only if $|\beta|<1$.

Proof. The distance $d_{x_{0}, y_{0}}$ from a point $\left(x_{0}, y_{0}\right)$ to the line $y=\sqrt{D} x$ is given by

$$
\begin{equation*}
d_{x_{0}, y_{0}}=\left|\frac{\sqrt{D} x_{0}-y_{0}}{\sqrt{D+1}}\right| . \tag{4}
\end{equation*}
$$

Thus, using (4), we have

$$
\begin{equation*}
d_{n}=\left|\frac{\sqrt{D} R_{n}-V_{n}}{\sqrt{D+1}}\right|=\left|\frac{\sqrt{D} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}-\left(\alpha^{n}+\beta^{n}\right)}{\sqrt{D+1}}\right|=\frac{2|\beta|^{n}}{\sqrt{D+1}}, \tag{5}
\end{equation*}
$$

from which the theorem follows.
We note that $|\beta|<1$ holds when $|B+1|<|A|$.
The previous theorem implies that the points P_{n} converge to the line $y=\sqrt{D} x$ if $|\beta|<1$, but these lattice points P_{n} are not necessarily the nearest lattice points to $y=\sqrt{D} x$ in all cases. Let $d_{x, y}$ denote the distance between the lattice point (x, y) and the line $y=\sqrt{D} x$, and let d_{n} be the distance defined in the previous theorem. We prove

Theorem 2. If n is sufficiently large and $B+5 \leq A$, then there is no lattice point (x, y) such that $d_{x, y} \leq d_{n}$ and $|x|<\left|R_{n}\right|$ if and only if $|B|=1$.

Proof. First suppose $|B|=1$. In this case, obviously, $|\beta|<1$ and α is irrational as it was supposed. Assume that for some n there is a lattice point (x, y) such that $d_{x, y} \leq d_{n}$ and $|x|<\left|R_{n}\right|$. Then, by (4) and (5)

$$
|\sqrt{D} x-y|<2|\beta|^{n}
$$

follows.
From this, using (2) and the fact that $|\alpha \beta|=|B|=1$, we obtain the inequalities

$$
\begin{equation*}
\left|\sqrt{D}-\frac{y}{x}\right| \leq \frac{2|\beta|^{n}}{|x|}=\frac{2}{|\alpha|^{n}|x|}=\frac{2\left|1-\left(\frac{\beta}{\alpha}\right)^{n}\right|}{\sqrt{D}\left|R_{n} x\right|}<\frac{2\left|1-\left(\frac{\beta}{\alpha}\right)^{n}\right|}{\sqrt{D} x^{2}} \tag{6}
\end{equation*}
$$

By the above mentioned result of J. P. Jones and P. Kiss and its proof we get that (6) holds only if $x=R_{i}$ and $y=V_{i}$ for some i. So $x=R_{i}$ is a term of the sequence R. The sequence R is a nondegenerate one with $D>0$ and $|B|=1$. So it can be easily seen that $\left|R_{t}\right|,\left|R_{t+1}\right|, \ldots$ is an increasing sequence if t is sufficiently large. Furthermore by (5), $d_{k}>d_{j}$, if $k<j$.

Thus, $i<n$ and $d_{i}>d_{n}$ follows, which contradicts $d_{i}=d_{x, y} \leq d_{n}$. So the first part of the theorem is proved.

To complete the proof, we have to prove that if $|B|>1$, then there are lattice points (x, y) such that $d_{x, y}<d_{n}$ and $|x|<\left|R_{n}\right|$ for any sufficiently large n.

Suppose $|B|>1$. If $|\beta|>1$, then, by (5), $d_{n} \rightarrow \infty$ as $n \rightarrow \infty$, so there are lattice points (x, y) such that $d_{x, y}<d_{n}$ and $|x|<\left|R_{n}\right|$ for any sufficiently large n.

If $|\beta|=1$, then d_{n} is a constant and there are infinitely many n and points (x, y) such that $d_{x, y} \leq d_{n}$ and $|x|<\left|R_{n}\right|$.

If $|\beta|<1$, then by (2) and $|B|>1$, we have

$$
\begin{equation*}
\left|\sqrt{D}-\frac{V_{n}}{R_{n}}\right|=\frac{2|\beta|^{n}}{\left|R_{n}\right|}=\frac{2|B|^{n}\left|1-\left(\frac{\beta}{\alpha}\right)^{n}\right|}{\sqrt{D} R_{n}^{2}}>\frac{Q}{R_{n}^{2}} \tag{7}
\end{equation*}
$$

for any fixed $Q>0$ if n is sufficiently large. In this case, \sqrt{D} is an irrational number.

It is known that if y / x is a convergent of the continued fraction expansion of \sqrt{D}, then

$$
\begin{equation*}
\left|\sqrt{D}-\frac{y}{x}\right|<\frac{1}{2|x|^{2}} \tag{8}
\end{equation*}
$$

In (8) let y, and hence x, be large enough and let the index n be defined by $\left|R_{n-1}\right| \leq|x|<\left|R_{n}\right|$.

From (4), (5), (7) and (8) we obtain the inequalities

$$
d_{n}>\frac{Q}{\left|R_{n}\right| \sqrt{D+1}} \quad \text { and } \quad d_{x, y}<\frac{1}{2|x| \sqrt{D+1}}
$$

So we have $d_{x, y}<d_{n}$ with $|x|<\left|R_{n}\right|$ because

$$
\frac{Q}{\left|R_{n}\right|}=\frac{Q}{\left|R_{n-1} \alpha\right|\left(1-(\beta / \alpha)^{n}\right) /\left(1-(\beta / \alpha)^{n-1}\right)}>\frac{1}{2\left|R_{n-1}\right|} \geq \frac{1}{2|x|}
$$

This completes the proof.
Lastly, we give equations that are satisfied by the lattice points $\left(R_{n}, V_{n}\right)$.
Theorem 3. All lattice points $(x, y)=\left(R_{n}, V_{n}\right)$ satisfy one of the equations

$$
\begin{equation*}
y=\sqrt{D} x+c(x)|x|^{\delta} \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
y=\sqrt{D} x-c(x)|x|^{\delta} \tag{ii}
\end{equation*}
$$

where $\delta=\log |\beta| / \log |\alpha|$ and $c(x)$ is a function such that $\lim _{x \rightarrow \infty} c(x)=$ $2(\sqrt{D})^{\delta}$.

Proof. By (2), we have

$$
\begin{equation*}
V_{n}=\alpha^{n}+\beta^{n}=R_{n} \sqrt{D}+2 \beta^{n} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{n}\right|=\frac{|\alpha|^{n}}{\sqrt{D}}\left(1-(\beta / \alpha)^{n}\right) . \tag{10}
\end{equation*}
$$

From (10), we have

$$
n=\frac{\log \left|R_{n}\right|+\log \sqrt{D}-\varepsilon n}{\log |\alpha|}
$$

where $\varepsilon_{n}=\log \left(1-(\beta / \alpha)^{n}\right)$ and $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ since $|\beta / \alpha|<1$. This implies that

$$
\begin{align*}
\beta^{n} & = \pm \exp \left\{\frac{\log |\beta| \log \left|R_{n}\right|}{\log |\alpha|}+\frac{\log |\beta| \log \sqrt{D}}{\log |\alpha|}-\frac{\varepsilon_{n} \log |\beta|}{\log |\alpha|}\right\} \tag{11}\\
& = \pm\left|R_{n}\right|^{\delta} \sqrt{D}^{\delta_{n}},
\end{align*}
$$

where $\delta=\log |\beta| / \log |\alpha|$ and

$$
\begin{equation*}
\delta_{n}=\frac{\log |\beta|}{\log |\alpha|}-\frac{\varepsilon_{n} \log |\beta|}{\log \sqrt{D} \log |\alpha|} \rightarrow \delta \quad \text { as } \quad n \rightarrow \infty \tag{12}
\end{equation*}
$$

since $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.
From (9), (11) and (12), the theorem follows.
Remark. The lattice points $\left(R_{n}, V_{n}\right)$ satisfy (i) for every n if $\beta>0$. If $\beta<0$, then the lattice points satisfy (i) and (ii) alternately.

References

[1] G. E. Bergum, Addenda to Geometry of a generalized Simson's Formula, Fibonacci Quart. 22 No. 1 (1984), 22-28.
[2] A. F. Horadam, Geometry of a Generalized Simson's Formula, Fibonacci Quart. 20 No. 2 (1982), 164-68.
[3] D. Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem (Israel), 1958.
[4] J. P. Jones and P. Kiss, On points whose coordinates are terms of a linear recurrence, Fibonacci Quart. 31 No. 3 (1993), 239-245.
[5] J. P. Jones and P. Kiss, Some diophantine approximation results concerning linear recurrences, Math. Slovaca 42 No. 5 (1992), 583-591.
[6] C. Kimberling, Fibonacci Hyperbolas, Fibonacci Quarterly 28 No. 1 (1990), 22-27.
[7] E. Lucas, Theorie des fonctions numériques simplement periodiques, American J. Math. 1 (1978), 184-240, 289-321.

KÁLMÁN LIPTAI

ESZTERHÁZY KÁROLY TEACHERS' TRAINING COLLEGE
DEPARTMENT OF MATHEMATICS
H-3301 EGER, P.O.BOX 43
HUNGARY
(Received January 23, 1996)

