Publ. Math. Debrecen 49 / 1-2 (1996), 177–182

Points on the plane whose coordinates are terms of recursive sequences

By KÁLMÁN LIPTAI (Eger)

Abstract. Let $\{R_n\}_{n=0}^{\infty}$ and $\{V_n\}_{n=0}^{\infty}$ (n = 0, 1, 2, ...) be sequences of integers defined by $R_n = AR_{n-1} - BR_{n-2}$ and $V_n = AV_{n-1} - BV_{n-2}$, where A and B are fixed non-zero integers. We give a condition when the distance from the points $P_n(R_n, V_n)$ to the line $y = \sqrt{Dx}$ tends to zero. Moreover we show that there is no lattice point (x, y) nearer than $P_n(R_n, V_n)$ if and only if |B| = 1.

Let $\{R_n\}_{n=0}^{\infty}$ and $\{V_n\}_{n=0}^{\infty}$ be second order linear recurring sequences of integers defined by

$$R_n = AR_{n-1} - BR_{n-2} \quad (n > 1),$$

$$V_n = AV_{n-1} - BV_{n-2} \quad (n > 1),$$

where A > 0 and B are fixed non-zero integers and the initial terms of the sequences are $R_0 = 0$, $R_1 = 1$, $V_0 = 2$ and $V_1 = A$. Let α and β be the roots of the characteristic polynomial $x^2 - Ax + B$ of these sequences and denote by D its discriminant. Then we have

(1)
$$\sqrt{D} = \sqrt{A^2 - 4AB} = \alpha - \beta, \quad A = \alpha + \beta, \quad B = \alpha\beta.$$

Throughout the paper we suppose that D > 0 and D is not a perfect square. In this case, α and β are two irrational real numbers and $|\alpha| \neq |\beta|$,

Mathematics Subject Classification: 11 B 39.

Research supported by the Hungarian National Scientific Research Foundation, Operating Grant Number OTKA T 016 975 and the Foundation for Hungarian Higher Education and Research.

Kálmán Liptai

so we can suppose that $|\alpha| > |\beta|$. Furthermore, as it is well known, the terms of the sequences R and V are given by

(2)
$$R_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \text{ and } V_n = \alpha^n + \beta^n.$$

From these equations it is not difficult to see that

(3)
$$\lim_{n \to \infty} \frac{R_{n+1}}{R_n} = \alpha \quad \text{and} \quad \lim_{n \to \infty} \frac{V_n}{R_n} = \alpha - \beta = \sqrt{D}$$

(see, e.g. [3], [7]).

J. P. JONES and P. KISS [4] considered the points $P_n = (R_n, R_{n+1})$, from a geometric point on view, as lattice points on the Euclidean plane. Using related results on the diophantine approximation of α they investigated, how the points P_n approach the line $y = \alpha x$, as $n \to \infty$. They proved that the distance of the points P_n from this line tends to zero as $n \to \infty$ if and only if $|\beta| < 1$. They obtained similar results in the three-dimensional case, too. G. E. BERGUM [1] and A. F. HO-RADAM [2] showed that the points $P_n = (x, y)$ lie on the conic section $Bx^2 - Axy + y^2 + eB^n = 0$, where $e = AR_0R_1 - BR_0^2 - R_1^2$ and the initial terms R_0 and R_1 are not necessarily 0 and 1. For the Fibonacci sequence, when A = 1 and B = -1, C. KIMBERLING [6] characterized conics satisfied by infinitely many Fibonacci lattice points $(x, y) = (F_m, F_n)$.

In this paper we investigate the geometric properties of the lattice points $P_n = (R_n, V_n)$. We shall use the following result of J. P. JONES and P. KISS [5]: If |B| = 1 and $B + 5 \leq A$, then all rational solutions p/q of the inequality

$$\left|\sqrt{D} - \frac{p}{q}\right| < \frac{2}{\sqrt{D}q^2}$$

are of the form $p/q = V_n/R_n$ for some positive integer n, if q is sufficiently large.

Let us consider the points $P_n = (R_n, V_n)$ (n = 1, 2, ...) on the plane. Then (3) shows that the slope of the vector OP_n tends to \sqrt{D} . But it is not obvious that the points P_n approach the line $y = \sqrt{D}x$, as $n \to \infty$. The following theorem shows a condition for this.

Theorem 1. Let d_n be the distance from the point $P_n = (R_n, V_n)$ to the line $y = \sqrt{Dx}$. Then $\lim_{n \to \infty} d_n = 0$ if and only if $|\beta| < 1$.

PROOF. The distance d_{x_0,y_0} from a point (x_0,y_0) to the line $y = \sqrt{D}x$ is given by

(4)
$$d_{x_0,y_0} = \left| \frac{\sqrt{D}x_0 - y_0}{\sqrt{D+1}} \right|$$

178

Thus, using (4), we have

(5)
$$d_n = \left| \frac{\sqrt{D}R_n - V_n}{\sqrt{D+1}} \right| = \left| \frac{\sqrt{D}\frac{\alpha^n - \beta^n}{\alpha - \beta} - (\alpha^n + \beta^n)}{\sqrt{D+1}} \right| = \frac{2|\beta|^n}{\sqrt{D+1}},$$

from which the theorem follows.

We note that $|\beta| < 1$ holds when |B + 1| < |A|.

The previous theorem implies that the points P_n converge to the line $y = \sqrt{D}x$ if $|\beta| < 1$, but these lattice points P_n are not necessarily the nearest lattice points to $y = \sqrt{D}x$ in all cases. Let $d_{x,y}$ denote the distance between the lattice point (x, y) and the line $y = \sqrt{D}x$, and let d_n be the distance defined in the previous theorem. We prove

Theorem 2. If n is sufficiently large and $B + 5 \leq A$, then there is no lattice point (x, y) such that $d_{x,y} \leq d_n$ and $|x| < |R_n|$ if and only if |B| = 1.

PROOF. First suppose |B| = 1. In this case, obviously, $|\beta| < 1$ and α is irrational as it was supposed. Assume that for some *n* there is a lattice point (x, y) such that $d_{x,y} \leq d_n$ and $|x| < |R_n|$. Then, by (4) and (5)

$$\left|\sqrt{D}x - y\right| < 2|\beta|^n$$

follows.

From this, using (2) and the fact that $|\alpha\beta| = |B| = 1$, we obtain the inequalities

(6)
$$\left|\sqrt{D} - \frac{y}{x}\right| \le \frac{2|\beta|^n}{|x|} = \frac{2}{|\alpha|^n |x|} = \frac{2\left|1 - \left(\frac{\beta}{\alpha}\right)^n\right|}{\sqrt{D}|R_n x|} < \frac{2\left|1 - \left(\frac{\beta}{\alpha}\right)^n\right|}{\sqrt{D}x^2}.$$

By the above mentioned result of J. P. JONES and P. KISS and its proof we get that (6) holds only if $x = R_i$ and $y = V_i$ for some *i*. So $x = R_i$ is a term of the sequence *R*. The sequence *R* is a nondegenerate one with D > 0 and |B| = 1. So it can be easily seen that $|R_t|, |R_{t+1}|, \ldots$ is an increasing sequence if *t* is sufficiently large. Furthermore by (5), $d_k > d_j$, if k < j.

Thus, i < n and $d_i > d_n$ follows, which contradicts $d_i = d_{x,y} \leq d_n$. So the first part of the theorem is proved.

To complete the proof, we have to prove that if |B| > 1, then there are lattice points (x, y) such that $d_{x,y} < d_n$ and $|x| < |R_n|$ for any sufficiently large n.

Kálmán Liptai

Suppose |B| > 1. If $|\beta| > 1$, then, by (5), $d_n \to \infty$ as $n \to \infty$, so there are lattice points (x, y) such that $d_{x,y} < d_n$ and $|x| < |R_n|$ for any sufficiently large n.

If $|\beta| = 1$, then d_n is a constant and there are infinitely many n and points (x, y) such that $d_{x,y} \leq d_n$ and $|x| < |R_n|$.

If $|\beta| < 1$, then by (2) and |B| > 1, we have

(7)
$$\left|\sqrt{D} - \frac{V_n}{R_n}\right| = \frac{2|\beta|^n}{|R_n|} = \frac{2|B|^n \left|1 - \left(\frac{\beta}{\alpha}\right)^n\right|}{\sqrt{D}R_n^2} > \frac{Q}{R_n^2}$$

for any fixed Q>0 if n is sufficiently large. In this case, \sqrt{D} is an irrational number.

It is known that if y/x is a convergent of the continued fraction expansion of \sqrt{D} , then

(8)
$$\left|\sqrt{D} - \frac{y}{x}\right| < \frac{1}{2|x|^2}$$

In (8) let y, and hence x, be large enough and let the index n be defined by $|R_{n-1}| \leq |x| < |R_n|$.

From (4), (5), (7) and (8) we obtain the inequalities

$$d_n > \frac{Q}{|R_n|\sqrt{D+1}}$$
 and $d_{x,y} < \frac{1}{2|x|\sqrt{D+1}}$.

So we have $d_{x,y} < d_n$ with $|x| < |R_n|$ because

$$\frac{Q}{|R_n|} = \frac{Q}{|R_{n-1}\alpha|(1-(\beta/\alpha)^n)/(1-(\beta/\alpha)^{n-1}))} > \frac{1}{2|R_{n-1}|} \ge \frac{1}{2|x|}.$$

This completes the proof.

Lastly, we give equations that are satisfied by the lattice points (R_n, V_n) .

Theorem 3. All lattice points $(x, y) = (R_n, V_n)$ satisfy one of the equations

(i)
$$y = \sqrt{D}x + c(x)|x|^{\delta}$$

or

(ii)
$$y = \sqrt{D}x - c(x)|x|^{\delta},$$

180

where $\delta = \log |\beta| / \log |\alpha|$ and c(x) is a function such that $\lim_{x \to \infty} c(x) = 2(\sqrt{D})^{\delta}$.

PROOF. By (2), we have

(9)
$$V_n = \alpha^n + \beta^n = R_n \sqrt{D} + 2\beta^n$$

and

(10)
$$|R_n| = \frac{|\alpha|^n}{\sqrt{D}} (1 - (\beta/\alpha)^n).$$

From (10), we have

$$n = \frac{\log |R_n| + \log \sqrt{D} - \varepsilon n}{\log |\alpha|}$$

where $\varepsilon_n = \log(1 - (\beta/\alpha)^n)$ and $\varepsilon_n \to 0$ as $n \to \infty$ since $|\beta/\alpha| < 1$. This implies that

(11)
$$\beta^{n} = \pm \exp\left\{\frac{\log|\beta|\log|R_{n}|}{\log|\alpha|} + \frac{\log|\beta|\log\sqrt{D}}{\log|\alpha|} - \frac{\varepsilon_{n}\log|\beta|}{\log|\alpha|}\right\}$$
$$= \pm |R_{n}|^{\delta}\sqrt{D}^{\delta_{n}},$$

where $\delta = \log |\beta| / \log |\alpha|$ and

(12)
$$\delta_n = \frac{\log |\beta|}{\log |\alpha|} - \frac{\varepsilon_n \log |\beta|}{\log \sqrt{D} \log |\alpha|} \to \delta \quad \text{as} \quad n \to \infty,$$

since $\varepsilon_n \to 0$ as $n \to \infty$.

From (9), (11) and (12), the theorem follows.

Remark. The lattice points (R_n, V_n) satisfy (i) for every n if $\beta > 0$. If $\beta < 0$, then the lattice points satisfy (i) and (ii) alternately.

References

- G. E. BERGUM, Addenda to Geometry of a generalized Simson's Formula, Fibonacci Quart. 22 No. 1 (1984), 22–28.
- [2] A. F. HORADAM, Geometry of a Generalized Simson's Formula, *Fibonacci Quart.* 20 No. 2 (1982), 164–68.
- [3] D. JARDEN, Recurring Sequences, Riveon Lematematika, Jerusalem (Israel), 1958.
- [4] J. P. JONES and P. KISS, On points whose coordinates are terms of a linear recurrence, *Fibonacci Quart.* **31** No. 3 (1993), 239–245.
- [5] J. P. JONES and P. KISS, Some diophantine approximation results concerning linear recurrences, *Math. Slovaca* 42 No. 5 (1992), 583–591.

- 182 Kálmán Liptai : Points on the plane whose coordinates are terms ...
- [6] C. KIMBERLING, Fibonacci Hyperbolas, Fibonacci Quarterly 28 No. 1 (1990), 22–27.
- [7] E. LUCAS, Theorie des fonctions numériques simplement periodiques, American J. Math. 1 (1978), 184–240, 289–321.

KÁLMÁN LIPTAI ESZTERHÁZY KÁROLY TEACHERS' TRAINING COLLEGE DEPARTMENT OF MATHEMATICS H-3301 EGER, P.O.BOX 43 HUNGARY

(Received January 23, 1996)