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Points on the plane whose coordinates are
terms of recursive sequences

By KÁLMÁN LIPTAI (Eger)

Abstract. Let {Rn}∞n=0 and {Vn}∞n=0 (n = 0, 1, 2, . . . ) be sequences of integers
defined by Rn = ARn−1−BRn−2 and Vn = AVn−1−BVn−2, where A and B are fixed
non-zero integers. We give a condition when the distance from the points Pn(Rn, Vn)

to the line y =
√

Dx tends to zero. Moreover we show that there is no lattice point
(x, y) nearer than Pn(Rn, Vn) if and only if |B| = 1.

Let {Rn}∞n=0 and {Vn}∞n=0 be second order linear recurring sequences
of integers defined by

Rn = ARn−1 −BRn−2 (n > 1),

Vn = AVn−1 −BVn−2 (n > 1),

where A > 0 and B are fixed non-zero integers and the initial terms of the
sequences are R0 = 0, R1 = 1, V0 = 2 and V1 = A. Let α and β be the
roots of the characteristic polynomial x2−Ax + B of these sequences and
denote by D its discriminant. Then we have

(1)
√

D =
√

A2 − 4AB = α− β, A = α + β, B = αβ.

Throughout the paper we suppose that D > 0 and D is not a perfect
square. In this case, α and β are two irrational real numbers and |α| 6= |β|,
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so we can suppose that |α| > |β|. Furthermore, as it is well known, the
terms of the sequences R and V are given by

(2) Rn =
αn − βn

α− β
, and Vn = αn + βn.

From these equations it is not difficult to see that

(3) lim
n→∞

Rn+1

Rn
= α and lim

n→∞
Vn

Rn
= α− β =

√
D

(see, e.g. [3], [7]).
J. P. Jones and P. Kiss [4] considered the points Pn = (Rn, Rn+1),

from a geometric point on view, as lattice points on the Euclidean plane.
Using related results on the diophantine approximation of α they in-
vestigated, how the points Pn approach the line y = αx, as n → ∞.
They proved that the distance of the points Pn from this line tends to
zero as n → ∞ if and only if |β| < 1. They obtained similar results
in the three-dimensional case, too. G. E. Bergum [1] and A. F. Ho-
radam [2] showed that the points Pn = (x, y) lie on the conic section
Bx2 −Axy + y2 + eBn = 0, where e = AR0R1−BR2

0−R2
1 and the initial

terms R0 and R1 are not necessarily 0 and 1. For the Fibonacci sequence,
when A = 1 and B = −1, C. Kimberling [6] characterized conics satisfied
by infinitely many Fibonacci lattice points (x, y) = (Fm, Fn).

In this paper we investigate the geometric properties of the lattice
points Pn = (Rn, Vn). We shall use the following result of J. P. Jones and
P. Kiss [5]: If |B| = 1 and B + 5 ≤ A, then all rational solutions p/q of
the inequality ∣∣∣∣

√
D − p

q

∣∣∣∣ <
2√
Dq2

are of the form p/q = Vn/Rn for some positive integer n, if q is sufficiently
large.

Let us consider the points Pn = (Rn, Vn) (n = 1, 2, . . . ) on the plane.
Then (3) shows that the slope of the vector OPn tends to

√
D. But it is

not obvious that the points Pn approach the line y =
√

Dx, as n → ∞.
The following theorem shows a condition for this.

Theorem 1. Let dn be the distance from the point Pn = (Rn, Vn) to

the line y =
√

Dx. Then lim
n→∞

dn = 0 if and only if |β| < 1.

Proof. The distance dx0,y0 from a point (x0, y0) to the line y =
√

Dx
is given by

(4) dx0,y0 =

∣∣∣∣∣

√
Dx0 − y0√

D + 1

∣∣∣∣∣ .
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Thus, using (4), we have

(5) dn =

∣∣∣∣∣

√
DRn − Vn√

D + 1

∣∣∣∣∣ =

∣∣∣∣∣

√
D αn−βn

α−β − (αn + βn)√
D + 1

∣∣∣∣∣ =
2|β|n√
D + 1

,

from which the theorem follows.

We note that |β| < 1 holds when |B + 1| < |A|.
The previous theorem implies that the points Pn converge to the line

y =
√

Dx if |β| < 1, but these lattice points Pn are not necessarily the
nearest lattice points to y =

√
Dx in all cases. Let dx,y denote the distance

between the lattice point (x, y) and the line y =
√

Dx, and let dn be the
distance defined in the previous theorem. We prove

Theorem 2. If n is sufficiently large and B + 5 ≤ A, then there is
no lattice point (x, y) such that dx,y ≤ dn and |x| < |Rn| if and only if
|B| = 1.

Proof. First suppose |B| = 1. In this case, obviously, |β| < 1 and α
is irrational as it was supposed. Assume that for some n there is a lattice
point (x, y) such that dx,y ≤ dn and |x| < |Rn|. Then, by (4) and (5)

∣∣∣
√

Dx− y
∣∣∣ < 2|β|n

follows.
From this, using (2) and the fact that |αβ| = |B| = 1, we obtain the

inequalities

(6)
∣∣∣
√

D − y

x

∣∣∣ ≤ 2|β|n
|x| =

2
|α|n|x| =

2
∣∣∣1−

(
β
α

)n∣∣∣
√

D|Rnx| <
2

∣∣∣1−
(

β
α

)n∣∣∣
√

Dx2
.

By the above mentioned result of J. P. Jones and P. Kiss and its proof
we get that (6) holds only if x = Ri and y = Vi for some i. So x = Ri is
a term of the sequence R. The sequence R is a nondegenerate one with
D > 0 and |B| = 1. So it can be easily seen that |Rt|, |Rt+1|, . . . is an
increasing sequence if t is sufficiently large. Furthermore by (5), dk > dj ,
if k < j.

Thus, i < n and di > dn follows, which contradicts di = dx,y ≤ dn.
So the first part of the theorem is proved.

To complete the proof, we have to prove that if |B| > 1, then there are
lattice points (x, y) such that dx,y < dn and |x| < |Rn| for any sufficiently
large n.
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Suppose |B| > 1. If |β| > 1, then, by (5), dn → ∞ as n → ∞, so
there are lattice points (x, y) such that dx,y < dn and |x| < |Rn| for any
sufficiently large n.

If |β| = 1, then dn is a constant and there are infinitely many n and
points (x, y) such that dx,y ≤ dn and |x| < |Rn|.

If |β| < 1, then by (2) and |B| > 1, we have

(7)
∣∣∣∣
√

D − Vn

Rn

∣∣∣∣ =
2|β|n
|Rn| =

2|B|n
∣∣∣1−

(
β
α

)n∣∣∣
√

DR2
n

>
Q

R2
n

for any fixed Q > 0 if n is sufficiently large. In this case,
√

D is an irrational
number.

It is known that if y/x is a convergent of the continued fraction ex-
pansion of

√
D, then

(8)
∣∣∣
√

D − y

x

∣∣∣ <
1

2|x|2 .

In (8) let y, and hence x, be large enough and let the index n be defined
by |Rn−1| ≤ |x| < |Rn|.

From (4), (5), (7) and (8) we obtain the inequalities

dn >
Q

|Rn|
√

D + 1
and dx,y <

1
2|x|√D + 1

.

So we have dx,y < dn with |x| < |Rn| because

Q

|Rn| =
Q

|Rn−1α|(1− (β/α)n)/(1− (β/α)n−1)
>

1
2|Rn−1| ≥

1
2|x| .

This completes the proof.

Lastly, we give equations that are satisfied by the lattice points (Rn,Vn).

Theorem 3. All lattice points (x, y) = (Rn, Vn) satisfy one of the

equations

(i) y =
√

Dx + c(x)|x|δ

or

(ii) y =
√

Dx− c(x)|x|δ,
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where δ = log |β|/log |α| and c(x) is a function such that lim
x→∞

c(x) =

2
(√

D
)δ

.

Proof. By (2), we have

(9) Vn = αn + βn = Rn

√
D + 2βn

and

(10) |Rn| = |α|n√
D

(1− (β/α)n).

From (10), we have

n =
log |Rn|+ log

√
D − εn

log |α|
where εn = log(1− (β/α)n) and εn → 0 as n → ∞ since |β/α| < 1. This
implies that

(11)
βn = ± exp

{
log |β| log |Rn|

log |α| +
log |β| log

√
D

log |α| − εn log |β|
log |α|

}

= ±|Rn|δ
√

D
δn

,

where δ = log |β|/ log |α| and

(12) δn =
log |β|
log |α| −

εn log |β|
log

√
D log |α| → δ as n →∞,

since εn → 0 as n →∞.
From (9), (11) and (12), the theorem follows.

Remark. The lattice points (Rn, Vn) satisfy (i) for every n if β > 0.
If β < 0, then the lattice points satisfy (i) and (ii) alternately.
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ESZTERHÁZY KÁROLY TEACHERS’ TRAINING COLLEGE
DEPARTMENT OF MATHEMATICS
H–3301 EGER, P.O.BOX 43
HUNGARY

(Received January 23, 1996)


