Symmetric generalized topological structures 1.

By C. J. MOZZOCHI (New Haven, Conn.)

v

Uniform convergence and convergence in proximity

Let X be a set. Let (Y, §) be a symmetric generalized proximity space, and let
(Y, %) be a symmetric generalized uniform space. Let { f, |n € D} be a net of members
of ¥*, and let fc YX,

(4. 1) Definition. (S. LeADER [18].) f, converges to f in proximity with respect
to o iff for every A€ P(X) andB< P(Y)f[A]6B implies there exists m, such that if
n=m, then f,[A]0B.

(4. 2) Definition. f, converges to f uniformly with respect to U iff for every Uc U
there exists m, such that for every x<€Xf,(x)c U[f(x)] if n=m,.

(4. 3) Theorem. If f, converges in proximity to f with respect to 8, then f, con-
verges to f uniformly with respect to U, (9).

Proof. Let V' = (U4, ., (U4, 8)€E#,(5). It is sufficient to show that
Ja(x) is eventually in V[ f(x)] for all x< X. Clearly, if x< X and

S)eY-U{(4,UB)li=1,..., "}..

then V[f(x)]=Y. Let {E,, ..., E,} be the family of all residual intersections of
the A; and B; which have a non-void intersection with the range of f. For each
c =l mlet F, —-f—'(E) Let x€ F, where 1=c=m. Then f(x)€E,. We may
assume that b A o E = (A, N NA, N B; N---NB;) for some ky, ..., Ky; Jys oo
.»Jq» and E_ intersects no other A, “or B,. Consequently by Lemma (3 6) and
DeMorgans law we have that V(f(t)) = (Y—H,) where H.= By, U---UB; U
UA; U--U4;);: so that by Lemma (3.17) EZoH,. But then E, OH and since
f(F)CE,, we *have that SfIFJoH,. Thus by hypothesis there exists ng_ such that
for all n=ng_f,[F]dH,: so that f,[F] c (Y H)). Consequently for every n-’—"ﬂs
we have that f, (x) € V(f(x)) for every x € F,.. Choose n” such that n*=ng_for c=1.
,m. Then for every n=n" we have thatf,,(\)c V[ f(x)] for every x€X.

(4. 4) Remark. In [18] S. Leader has considered nets of functions on a set X
to a proximity space (Y, d), and has given a definition of uniform convergence of
such a net in terms of a certain family 22 of pseudometrics. It can be shown that the uni-
formity % generated by the totally bounded pseudometrics in this family 2 is in the
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proximity class 7% (d) of symmetric uniformities on X, and hence % =%,(d). Thus
Theorem 15 in [18] provides a converse of our Theorem (4. 3) when & is a classical
proximity. More precisely this result states that if (¥, d) is a proximity space and
{f,ln€ D} is a net of members of ¥Y* and f¢ Y*, then f, converges to f uniformly
respect with to %,(d) implies that f, converges in proximity to f with respect to 4.

Note that (4. 3) holds good also in the case if f,[4] B = @ is replaced by
/.[A]0B in the definition (4. 1) and this modified definition follows from the uniform
convergence of f, to f regarding certain % compatible with the 4.

v

Uniform continuity and P-continuity

(5. 1) Definition. Let (X, 4, and (Y, %,) be symmetric generalized uniform
spaces. A map f:(X, %,) ~(Y, U,) is uniformly continuous iff for every U€ %, there
is a V€%, such that ( f(x), f(y))€ U provided (x, y)€ V. f is a uniform isomorphism
iff it is 1—1, onto, and it, as well as its inverse, is uniformly continuous.

(5. 2) Definition. Let (X, d,) and (Y, d,) be symmetric generalized proximity
spaces. A map f:(X, d,) =~ (Y, d,) is p-continuous iff A5,B implies f(A)d,f(B) for
all A, Bin P(X). f'is a p-isomorphism iff it is 11, onto, and it, as well as its inverse,
is p-continuous.

(5. 3) Theorem. Let (X,d,) and (Y,d,) be symmetric generalized proximity
spaces. If f:(X,d,)—~(Y,d,) is p-continuous, then f:(X,(8,))—~(Y, 7 (d,)) is con-
tinuous.

PROOF. Let A  X. It is sufficient to show that f(4) Cf(4). Let x€ A. Then x3,4;
so that f(x)d, f(A4). Hence f(x)€f(A).

(5.4) Theorem. Let (X, %,) and (Y, U,) be symmetric generalized uniform spaces.
If f:(X, #,) ~(Y, U,) is uniformly continuous, then f:(X, 6(%,)) —~(Y, 8(%y)) is p-con-
tinuous.

PrROOF. Let A X, BC X. Suppose A6(%,)B. Let U be any member of %,.
Since f is uniformly continuous, there exists VE%, such that if (x, y)€V, then
(f(x), f(») € U. But since A6(#,)B we have by Theorem (2. 27a) that there exists
t; €A, t,€ B such that (,, 1,) € V. Consequently, ( f(,),f(1;)) € U: so that again by
Theorem (2. 27a) we have that f(A4)é, f(B).

(5. 5) Theorem. Ler (X, %,) and (Y, U,) be symmetric generalized uniform spaces.
If f:(X, U,) —~(Y, U,) is uniformly continuous, then f:(X, 5 (U,)) ~(Y, F(U,)) is con-

tinuous.

ProoF. We know by Theorem (2. 2) that there exist symmetric generalized
proximities §, on X and J, on Y such that #,€n(d,) and %,€ n(d,). By Theorem
(5. 3) and Theorem (5. 4) we have that f:(X, #(3,)) - (Y, #(J;)) is continuous. But
by Remark (2. 10) we have that J(%,)=5(d,) and J (%;)=F (;).
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(5. 6) Theorem. Ler (X, #,) and (Y, U,) be uniform spaces and let U, be totally
bounded. If f:(X, 6(#,)) —~(Y, 6(%y)) is p-continuous, then f:(X, U,) ~(Y, U,) is uni-
formly continuous.

(5.7) Remark. W. J. THRON on page 202 in [40] has given a proof of Theorem
(5. 6) which he ascribes to J. L. HURsCH. The next theorem is a partial generalization
of Theorem (5. 6). ;

(5. 8) Theorem. Ler (X, %) be a symmetric generalized uniform space. Let (Y, )
be a symmetric generalized proximity space with proximity class n(d). Let % ,(d) (as
constructed in Theorem (2. 23)) be the least element in n(8). If f:(X, 5(?{))»(]’, d)
is p-continuous, then f:(X, %)—~(Y, ¥,(d)) is uniformly continuous.

PROOF. Suppose U €4, (d). Since {Uc, p|Cd D} is a base for %,(d) there exist C,
Din P(Y) such that CdD and U> Uc, p. Since fis p-continuous, f~1 (C)d(#%)f~1 (D).
Let V'="Us-1(0, /-1 - Clearly, if (x. ) € V. then (f(x). (»)) € Uc. p. But V€2, (5())
and since % D%, (6(%)), it follows that £ is uniformly continuous.

(5.9) Remark. Let (X, %,) be a compact symmetric uniform space. Let (¥, %,)
be a correct uniform space. Then f:(X, 7 (%,)) =(Y, #(%,)) is continuous implies
fi(X, u,)—~(Y, %,) is uniformly continuous.

A proof of this fact can be given which is verbatim the same as the proof for
the well-known classical theorem in which (X, #,) and (Y, %,) are uniform spaces
(cf. [40] page 187). The reason for this is that a uniform space has a symmetric base
and that the proof does not use the fact that %, satisfies (M. 5).

VI
Completeness
In this chapter the concept of completeness is defined for a symmetric general-
ized uniform space. A number of theorems are proved to indicate that the defini-
tion is a proper one. Also, it is shown that every separated correct uniform space has
a completion.

We first list all of the relevant definitions. Unless otherwise noted, (X, %) will
denote a symmetric generalized uniform space.

(6. 1) Definition. A non-void family # of subsets of a set X is called a filter on X
iff it satisfies the three conditions:

(F.1) Aeg, Be g imply (AN B)ES.
(F.2) BDAc# implies B< 4.
(F.3) o4¢s.

(6. 2) Definition. xo is a limit of the filter # iff #D A (x,), the neighborhood
system of x,. If x, is a limit of the filter #, then we say that # converges to x, and
that _# is a convergent filter.

g+
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(6. 3) Definition. x, is a cluster point of the filter .# iff every neighborhood of x,
intersects every element of the filter.

(6. 4) Definition. A non-void family Z of subsets of a set X, is a filter base on
X provided # does not contain the null set and provided the intersection of any two
elements of # contains an element of 2.

(6. 5) Definition. Let (X, %) be a symmetric generalized uniform space. A filter
F on X is weakly Cauchy with respect to % iff for every U¢€ % there exists x € X such
that U[x]€ #. # is Cauchy with respect to % iff for every U€# there exists A€ #
such that (4X4) < U.

(6. 6) Remark. For a discussion of the history of the weakly Cauchy filter con-
cept see [39].

(6. 7) Definition. A Cauchy filter in (X, %) is an mfrcy‘il!er iff it does not properly
contain a Cauchy filter.

(6. 8) Definition. (X, «) is complete iff every weakly Cauchy filter on X has a
cluster point in X,

(6. 9) Definition. (X, ¥) is A-complete iff whenever (X, %) is uniformly iso-
morphic to a dense subspace (X,, #,) of (X,, %,), then X,=X,.

(6. 10) Remark. In a similar way we define a 4-complete (separated) correct
uniform space by taking %, and %, to be (separated) correct uniformities.

(6. 11) Definition. A symmetric generalized uniform space (X,, #%,) is a comple-
tion of the symmetric generalized uniform space (X, %) iff (X,, %,) is complete,
and (X, %) is uniformly isomorphic to a dense subspace (X,, %,) of (X, %,).

(6. 12) Remark. The reader should recall the following facts about convergence
theory. (A) If # is a filter base, then the family #(#) consisting for all sets A such
that 4 D B for some B<Z is a filter. (B) Every filter is contained in an ultrafilter.
(C) If # is an ultrafilter and J {4,/i=1, ..., n} € #, then at least one 4;€ #. (D) An
ultrafilter converges to each of its cluster points. (E) (X, .#) is compact iff every
filter on X has a cluster point in X. (F) (X, ) is compact iff every ultrafilter on X
converges to some point in X. (G) A Cauchy filter converges to each of its cluster
points if (X, %) is a correct uniform space.

(6. 13) Remark. In the usual statement of (6. 12G), (X, %) is taken to be a uni-
form space. However, the proof is the same if we assume that (X, %) is a correct
uniform space since the proof does not require (M. 5).

(6. 14) Theorem. Every Cauchy filter on (X, %) is weakly Cauchy.

PROOF. Let Uc#. There exists F<_# such that (FXF) < U. Let xo€ F. Then
Fc Ulxp]; so that Ulx,] € 2.

(6. 15) Theorem. If (X, ) is a symmetric, connected topological space, then there
exists a totally bounded symmetric generalized umformm U on X such that (U )=5,
and every filter in X is weakly Cauchy with respect to .
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ProoOF. We know by Corollary (1. 14) that there exists a symmetric generalized
proximity é on X such that #(8)=J. Let %,(5) be the uniformity on X that we
constructed in Theorem (2. 23). %, (3) € 7(3); so that #(%,(5))=S. Let UE¥,(3).
Then there exists sets 4 X and BCX such that UD Uy, 32 Uy, 5. But since S is
connected, there exists x,€(X—(4UB)); so that Uy n[«\'o] X. Hence every filter
on X is weakly Cauchy with respect to #.

(6. 16) Remark. Theorem (6. 15) points out that it is not reasonable to require
every weakly Cauchy filter in a symmetric generalized uniform space to converge
in order for the space to be “complete™.

(6. 17) Example. There exists a symmetric generalized uniform space (X, ) and
there exists a filter ,# on X such that # is weakly Cauchy with respect to %, but # is
not Cauchy with respect to #.

Proof. Let (X,.#) be any connected T, topological space with at least two
distinct points. By Corollary (1. 14) there exists a symmetric generalized proximity
6 on X such that #(d)=J. Since .# is T,, it follows by Theorem (2. 15) that é is
separated. Let %, (d) be the uniformity on X constructed in Theorem (2. 23). Con-
sider the filter #= {X} on X. As shown in the proof of Theorem (6. 15), # is weakly
Cauchy with respect to %,(d). Let x, and x, be any two distinct points in X. Con-
sider Uy, «,. Since 4 is separated X;0x,; so that Us,,x, €%, (6). Hence # is not
Cauchy with respect to %, (9).

(6. 18) Theorem. If (X, %) has an open base, then every convergent filter on X
relative to J () is a Cauchy filter.

PrROOF. Let U€%. Since % has an open base, there exists U, €% such that
Uo U, and U, is open in the product topology on (XX X). Suppose #is a filter
on X which converges to x,. Since U, is open, there exists an open set A4 €.47(x,)
the neighborhood system of x,, such that (4XA4) © U,. But A< _#. Hence £ is
Cauchy with respect to %.

(6. 19) Theorem. Every convergent filter on (X, %) is weakly Cauchy.

Proor. Let # be a filter on X. Suppose # converges to x, € X relative to J(%).
Let Ue%. By Corollary (2. 12) U(xy)€.A4"(x,), the neighborhood system of x,.
Hence U(xy) € 7.

(6. 20) Remark. Take the usual base # for the usual uniformity % on the reals
R and remove (except (0, 0)) the points that lie on the line y = —x from each ele-
ment in Z. #*, the collection of the modified elements of 4, is a base for a symmetric
generalized uniformity #* on R such that .# (#%*) is the real topology, and the neigh-
borhood system of 0 is a convergent filter which is not Cauchy.

(6.21) Let (X, %) be a correct uniform space. A filter /# on X is Cauchy with
respect to % if it is weakly Cauchy with respect to #.

Proof. Suppose # is weakly Cauchy with respect to #. Let U¢€%. There exist
Ve such that (Vo V) < U, and there exists x, € X such that V[x,] € #. Let (a, b) €
(VIxol X VIxo]). Then a€V[x,] and b€ V[x,]; consequently, (a, b)€(VoV) C U.
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(6. 22) Remark. The following facts about intrafilters are easily established.
Let # be an infrafilter and let #; be a Cauchy filter in the correct uniform space
(X, %). Let %(F,)={U[F]|F€#, and Ue#}. (A) %(#,) is an infrafilter that is
contained in #,. (B)#, is an infrafilter iff for every A€ #,, there exists a B¢ ¢,
and a U€ such that 4 > U[B]. (C) A4 (x), the neighborhood system of the point
x, is an infrafilter in (X, %). (D) # has an open base. (E) For every U, V in % there
exists a WE% such that if FE_# and (FXF) c W, then (FXF) c (UNV). (F) If
(X,, %,) is a dense subspace of the correct uniform space (X, %,) and if %, is an
infrafilter in (X,, %,) then # = {FNX,|F¢ 4, and U<%, is a base for an infra-
filter 4 in (X,, %,).

(6. 23) Remark. Note that in the proof of Theorem (2. 6) we actually only used
the following weak form of (M. 4):

(M. 4)* For every xéX and U, V in % there is a WE such that W[x] <
c Ulx] N V]x].

Let X be a non-void set. Let % be a non-void subset of P(X' X X). % is a semi-
correct uniformity on X iff % satisfies (M. 2), (M. 3), (M. 4)*, (M. 7), and (M. 8).
By our above statement we have that if (X, %) is a semicorrect uniform space, then
the function g:P(X)—~P(X) defined by xcg(4) iff Ulx]NA = @ for all Uc%
is a Kuratowski closure function. By a straightforward computation it is possible
to show that if (X,, %,) is a dense subspace of the semicorrect uniform space (X,, %,),
then (X,, %,) is a separated correct uniform space iff (X, %,) is a separated correct
uniform space. Also, it is easy to show that £, a subset of P(X X X), is a base for
some semicorrect uniformity on X iff # satisfies (M. 2), (M. 3), (M. 4)*, and (M. 7).
We prove the former.

Fix Ac X, and U, V in %,. There exists a U,, V, in %,, such that U, =U!,
Vi=Vi!, U,oU,oU, c Uand V,0V,0V, c V. We let B=U,[A]INV,[4A]NX,
and choose to B considering the correctness of %, a set We#,, such that W, =W!
and W{[B] < Uf[B]INVy[B]. Where (*) denotes here the trace taken in X,XX,.
If in addition We %, W,€U, WoWo W C W, and y€ W[A], then there exists an
a€ A such that (a, y) € W, and there exists a b such that b€ W[a] N\ U, [a] N V,[a] N X,,
since X, is dense. In this case b€ B and there exists also an x, such that x€ W[y]M
NU, [NV, [»YINX,. Thus (b, x)€ Wy, x€ W [B], therefore xc U,[B]N V,[B] and
yeU,[x]cU,[U,[U,[A]]] = U[A]. Similarly, y€ V[4].

(6. 24) Theorem. Let (X, %) be a separated, correct uniform space. The follow-
ing are equivalent:

(a) (X, %) is A-complete.

(b) Every infrafilter is a neighborhood system of some point.
(c) Every Cauchy filter on (X, %) converges.

(d) (X, %) is complete.

PROOF. (a) ~(b). The neighborhood system of the point x will be denoted by
A" (x). Suppose there exists at least one infrafilter on X" which is not a neighborhood
system of a point in X. Let X}, be the family of all infrafilters on X. Let X, be the
family of all neighborhood systems of points in X. It is clear that X, X,. For
each Ue« welet U= {(P,, P,)|(FXF) < Uforsome FE P, P,}. Let #={U|Uc%}.
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We show that # is a base for a semicorrect uniformity %, on X,. By Remark (6. 23)
it is sufficient to show that # satisfies (M. 2), (M. 3), (M. 4)*, and (M. 7).

(M. 2): Suppose P,, P,€X,, P,#P, and (P,, P,)€U for every Ue#. Then
for every U €% there exists F€ (P, [ P,) such that (FXF) — U. Hence Py = (P, P,)
is a Cauchy filter; so that since Py P, and P; < P, we have by Definition (6. 7)
that P, =P, =P, which is a contradiction.

(M. 3): Since U=U""! for every U4, it is clear that U~ '=U for every UcA.

(M. 4)*: Let Pc X, and let U, V be in . By Remark (6. 22E) there exists Wc %
such that for all FEP if (FXF) < W then (FXF) < (UNV). We claim that
W[P] c U[PINV[P]. For suppose P,cW[P]. Then (P, P,)EW; so that there
exists F€(P(1P,) such that (FXF) — W and hence such that (FXF) c (UNV).
Consequently, P, cU[P]NV[P].

(M. 7): Suppose Uc#. There exists V€% such that Vc U and (Vo V) < U.
We claim that VoV < U. Suppose (P,, P,)€V and (P,, P;)€V. Then there exists
Fe(P, N P,)such that (FX F) — Vand there exists G € (P, [l P3) such that (GXG) <
C V. But this implies for some E€ (P, [\ P,) that (EXE) — U. Hence (P, P,)€U.
(Let E= GUF)

Consequently, %,={U|U=U-" and U>V for some V£#} is a semicorrect
uniformity on X,.

Consider the mapping /i: X — X, defined by h(x)=.4"(x). Since (X, %) is separated,
J () is Ty; so that h is 1—1. Clearly, 4 is onto X,. Let U€c#. There exists open
Ve such that VU and VoV < U. Suppose (x, y) € V. Then by a straightforward
calculation it can be shown that if F = (V[x]( V[y]), then (FXF) c U and F€
N (X)NA(¥); so that (A (x), 4 (¥))€U. Conversely, suppose (A" (x), 4 (»))€U.
Then it is immediate that (x, y) € U. Hence we have that (X, %) is uniformly iso-
morphic to (X,, #,) where %, is the relativization of %, to X,.

Suppose P, is any point in X,. Let U be any element of #. (P, P,)€U; so
that by Remark (6. 22D) there exists an open set F€ P, such that (FXF) c U.
Let xo€ F. Then Fe A (x,); so that (Py, /7 (x,))€U. Hence X, is dense in X,.
Consequently, by Remark (6. 23) we have that (X,, %,) is a separated correct uni-
form space.

Thus we see that if there exists at least one infrafilter which is not the neighbor-
hood system of some point in X, then it is possible to construct a separated correct
uniform space (X,, %,) such that (X, %) is uniformly isomorphic to a dense sub-
space (X,, %,) of (X,, %) and X,#X,. Consequently, (X, %) is not 4-complete.

Piroof (b) —(a). Suppose not. Then (X, %) is uniformly isomorphic to a dense
subspace (X,, %,) of (X,,%,) and X,#X,. Suppose Pe(X,—X,). Let #F=A"(P).
Since # is an infrafilter, by Remark (6. 22F) it induces in (X,, %,) an infrafilter #*
But by hypothesis #*=4"(P;) for some point P,€X,. Hence P¢€ N {F|F¢€ #}
and P € (\{F|F¢ #}. But since # is Cauchy, this means that (P, P, €U for every
Uew,, and since (X,, %,) is separated this is a contradiction.

. xTA

Proof (b) -(c). Let # be a Cauchy filter in (X, %). By Remark (6. 22A) #
contains an infrafilter #, in (X, %). But by hypothesis _#, =4"(x,) for some x, € X.
Hence # converges to x,.

Proof (c) ~(b). Let # be an infrafilter in (X, %). By hypothesis # D4 (x,)
for some x,€ X. But A"(x,) is a Cauchy filter in (X, %). Hence # =A4"(x,).
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Proof (c¢) —~(d). Let # be a weakly Cauchy filter with respect to %. By Theorem
(6. 21) # is a Cauchy filter with respect to %. But then # is convergent and hence
has a cluster point.

Proof (d) —~(c). Let # be a Cauchy filter with respect to %. By Theorem (6. 14)
# is a weakly Cauchy filter with respect to % and hence has a cluster point. By

Remark (6. 12G) # is convergent.
This completes the proof of Theorem (6. 24) which is essentially the same as

that given by Efremovi¢, Mordkovi¢, and Sandberg in [8].

(6. 25) Theorem. If (X, %) is totally bounded, then every ultrafilter on X is a
weakly Cauchy filter.

PRrOOF. Let # be an ultrafilter in (X, %). Let VE€%. There exist x,, ..., X, in
X such that X = V(x,)U--UV(x,). But then since X¢€ _#, we have by Remark
(6. 12C) that for some m where 1=m=n V(x,)€ 7.

(6. 26) Theorem. (X, %) is complete and totally bounded iff (X, 5 (%)) is compact.

PROOF. Assume (X,.# (%)) is compact. Let Ue#. Consider the family
{Ulx]|x€ X}. By Corollary (2.12) for each x€ X x€[U[x]]°; consequently, for each
x € X there exists an open set O, such that x € O, — U[x]. Hence since .# (%) is compact,
there exists x,, ..., X, such that X = U(xl)U--- U U(x,); so that (X, %) is totally
bounded. Let # be a weakly Cauchy filter. By Remark (6. 12E) since .# (% ) is compact,
# has a cluster point; so that (X, %) is complete.

Conveisely, let # be an ultrafilter on X. Since (X, %) is totally bounded we
have by Theorem (6. 25) that # is weakly Cauchy. But since (X, %) is complete,
# has a cluster point; so that by Remark (6. 12D) # is convergent. Consequently,
by Remark (6. 12F) # (%) is compact. This proof is essentially the same as that given
by Naimpally and Murdeshwar for Theorem (4. 14) in [35].

(6. 27) Corollary. Let (X, %) be a separated, correct uniform space. Then
(X, #(@)) is compact iff (X, %) is totally bounded, and every infrafilter on X is a
neighborhood system of some point in X,

Proof. This is an immediate consequence of Theorem (6.24) and Theorem
(6. 26).

(6. 28) Corollary. Every closed subspace (Y,¥") of a complete space (X, %) is
a complete space.

Proof. Let (Y,¥") be a closed subspace of (X, %). Let #, be any weakly Cauchy
filter on Y relative to ¥~ #, can be considered as a filter base for a filter #7 on X.
It is clear that #7 is weakly Cauchy on X, relative to % and hence has a cluster
point x, € X. But then X, is a cluster point of #,; so that x, is an accumulation point
of Y. Since Y is closed, x,€ Y. Hence (Y,¥") is complete.

(6. 29) Definition. Let (X, #) be a topological space. Let # be any structure
on X which generates a topology # (%) on X. Then % is compatible with (X, J) iff
SU)=7s.
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(6. 30) Theorem. A symmetric topological space (X, ) is compact iff it is
complete with respect to every compatible symmetric generalized uniformity U
on X.

Proof. Let (X, %) be compatible with (X, #). By Theorem (6.26) (X, %) is
complete.

Conversely, we know by Corollary (1. 14) that there exists a symmetric gen-
eralized proximity é on X such that .#(d)=.. Let %,(0) be the symmetrix generalized
uniformity on X constructed in Theorem (2. 23). We know that #(#%,())=7; so
that by hypothesis %, () is complete. But by Remark (3. 5) %, (d) is totally bounded.
Hence by Theorem (6. 26) .# is compact.

(6. 31) Remark. Note the analogy between Theorem (6. 30) and the theorem of
Niemytzki and Tychonoff which states that a metrizable topological space is compact
iff it is complete in every compatible metric (cf. [37]). Also, recall the theorem of
Doss which states that a completely regular topological space (X, .#) is compact
iff it is complete with respect to every compatible uniformity % on X (cf. [6]).

(6. 32) Theorem. (X, %) is totally bounded iff every filter on X is contained in a
weakly Cauchy filter.

Proof. Suppose (X, %) is totally bounded. Let # be a filter on X. By Remark
(6. 12B) # is contained in an ultrafilter #, which by Theorem (6. 25) is weakly
Cauchy.

Conversely, suppose every filter on X is contained in a weakly Cauchy filter.
Let U< %. For every finite subset £ c X, assume that U[E]# X so that (X— U[E]) #
# @. The family {X— U[E]|E a finite subset of X} is easily shown to be a base for
a filter, which by hypothesis is contained in a weakly Cauchy filter #. For some
point x, € XU[x,] € #. On the other hand, since {x,} is a finite set (X— U[x,]) € 7.
But since U[x,] (X —Ul[x,]) = @; we have that @ € # which is a contradiction.
This proof is essentially the same as that given by Sieber and Pervin for Theorem
(1. 1) in [39].

(6. 33) Theorem. If (X, %) is a totally bounded, dense subspace of (X,,%,),
and if every element of every weakly Cauchy filter on X, has a non-void interior (rela-
tive to J(,)), and if every weakly Cauchy filter (relative %) on X has a cluster point
in X,, then (X,, «,) is complete.

ProoF. Let # be weakly Cauchy on X, such that for every F¢e # F°= .
Since X is dense X,, (FNX) # @ forevery F¢ #. Let # = {F(\ X |F¢ #}. Clearly,
2 is a base for a filter #; on'X which by Theorem (6. 32) is contained in a weakly
Cauchy filter #, on X. But by hypothesis ##, has a cluster point x,€ X,. Let Uc %,
and let Fc #. Then Ulx, ] (FNX) # @&; so that U[x,] N F # @. Hence x, is a
cluster point for #, and (X,, %,) is complete.

(6. 34) Theorem. If (X, %) is separated, and A-complete, then every weakly
Cauchy filter on X is the neighborhood system of some point in X.

ProoF. The neighborhood system of the point x will be denoted by .4 (x).
Suppose there exists at least one weakly Cauchy filter on X which is not a neigh-
borhood system of a point in X. Let X, be the family of all weakly Cauchy filters
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on X. Let X, be the family of all neighborhood systems of points in X. It is clear
that X, X,. To construct the uniformity %, on X, in the proper way we assign
to each filter P in the set X, a point xp € X in the following way: xp=x, if P=4"(x,),
and xp is any point in X if P#=.A4"(x) for every x€X. For each Uc% we let U=
={(Py, P,)|(xp,, xp,) € U}. Let # equal {U|Uc#}. We show that # is a base for a
symmetric generalized uniformity %, on X,. By Theorem (2. 22) it is sufficient to
show that # satisfies (M. 1), (M. 3), M. 4), and (M. 6).

(M. 1): Let Uc®. Since (xp, xp)€ U for every P€X, we have that (P, P)cU
for every P€X,.

(M. 3): Since U=U""! for every U, we have that U-1=U for every Uc4.

(M. 4): Let A*c X, and let U, V be in #. Let A={x,|P€ A*} .There exists by
(M. 4) a We such that W[A] < U[A4] N V[A]. Let PIEF%[A*] Then (P,, P,)eW
for some P,€A%; so that (xp,, xp )€ W. Consequently, xp € W[A]; so that xp €
U[A] (" V[A]. But this means that theie exists xp €4 and xp €A such that
(xp,, xp)EU and (xp_, xp)EV; so that P, cU[4*]NV[A*]. Hence, there exists a
W €# such that W[A*] C U[A“]QV[A"‘]

(M. 6): Let A*C X, and B*C X,. Let Uc# and let V4. Suppose V[4*]N
NB* # &.

Let A={xp|P€A*}. Let B={xp|PcB*}. Let P.c V[A*]N B*. Then P_cV[A4*]
and P.€ B*; so that for some P,€ A* we have (P,, P,,)GV and hence (xp_, xp )€ V.
Consequently, since V is any element in # V[4]NB = @ for all Veu. But by
(M. 6) there exists a W% and an element xp, € B such that W{xp]< U[A]. Let
P, €W |[P,). Then (xp,, xp )€ W and xp € W[r,J so that there exists xp, € A such
that (xp,, xp)EU or equwalently (P‘,,P )€U and P,cU[A*]. Hence W[P,]C
c U[A"). Consequently, #,={U|U=U "' and UDV for some V € #} is a symmetric
generalized uniformity on X;,.

Consider the mapping /1: X - X, defined by A (x)=.4"(x). Since (X, %) is separated,
J(U) is T,: so that h is 1—1. Clearly h is onto X,. Let U€%. Let (x, y)€ U. Then
(A (x), /() €U. Conversely, suppose (A (x), #°(y))€U. Then (x, y)€ U. Hence
we have that (X, %) is uniformly isomorphic to (X,, %,) where %, is the relativiza-
tion of %, to X,.

Suppose P, is any point in X,. Let U be any element of #. (P,, P,)<U: so
that (xp,, xp )€ U. Hence (P,, # (xp))€U; so that X, is dense in X,.

Thus we see that if there exists at least one weakly Cauchy filter which is not
the neighborhood system of some point in X, then it is possible to construct a sym-
metric generalized uniform space (X}, %,) such that (X, %) is uniformly isomorphic
to a dense subspace (X,, %,) of (X,, %,) and X,#X,. Consequently, (X, %) is not
A-complete.

(6. 35) Remark. If (X,,%,) as constructed in the proof of Theorem (6. 34)
is complete, then (X, %) is complete. For suppose # is weakly Cauchy on X. Let
Fr={h(F)|Fe #}. #* is clearly a base for a filter #1cX,. #7 is weakly Cauchy
with respect to %,. Thus #7 has a cluster point P, € X,. P, is also a cluster point for
F*. Let F€ # and let F*=h(F). Let Uc%. Then there exists 4 (x,)€ U[P,]N F*;
so that x, € U[xp ]/ F. Consequently, xp, is a cluster point for #, and (X, %) is
complete. Thus we see that the construction used in the proof of Theorem (6. 34)
does not yield a completion for (X, %).
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(6. 36) Theorem. Every separated correct uniform space has a unique com-
pletion.

Proor. We show that (X, %,) as constructed in the proof of Theorem (6. 24)
is complete. The proof is essentially the same as that given by Efremovi¢, Mord-

kovi¢, and Sandberg in [8]. Let U< 4. Let # be an infrafilter in (X,, %,). By Remark

(6. 22F) # induces in X, the infrafilter #* in (X,, %,) which is the natural image
under the map / (as defined in the proof of theorem (6. 24)) of filter # in (X, %).

We now show that #, which of course is an element of X}, is a cluster point for s
By Remark (6. 22D) there exists an open G € # such that (GXG) < U. Let G* =
= GNX,. Let G=h~'(G*). It is clear that G is open in X, GE€ # and (GXG) < U.
Hence for every x € G we have that 4" (x) € U[#]; so that G*c U[#]. But by Remark
(6. 22F) every element of # meets G*. Hence_j is a cluster point for J. But by
Remark (6. 12G) fDJV(f) so that since # is an infrafilter f =N (f). Con-
sequently, by Theorem (6. 24) (X,, %,) is complete.
That the completion is unique is shown in a straightforward manner.

(6. 37) Remark. The existence of a completion for more general types of sym-
metric generalized uniform spaces is an open question.

Vil
Symmetric generalized topological groups

In this chapter we introduce the concept of a symmetric generalized topological
group and show its relationship to symmetric generalized uniform spaces. We then
extend regular Haar measure to locally compact Hausdorff symmetric generalized
topological groups, and show that this measure will be essentially unique if we require
that the groups be compact.

Throughout this chapter (G, -) will denote a group with identity & # will
denote a topology on G, and 4" will denote an open base at ¢. If 4 and B are sub-
sets of G, AB={ablac A, bc B} and A-'={a"'|ac A}.

(7. 1) Definition. (G, -,.#) is a symmetric generalized topological group iff the
following axioms are satisfied:

(A.1) For every xcG{xN|NcA"} and {Nx|NcA} is an open base at x.

(A. 2) For every NeA/ N=N-1,

(7. 2) Remark. If we require that the mapping f:(x, y) ~xy of (GXG) onto G
be continuous in each variable separately, then {xN|N€4"} and {Nx|NE.A} are
bases at x for every x€G. If we require that the mapping g:x ~x~*! of G onto G
be continuous, then for every Ne A~ N~'€.4". This latter fact implies that for every
New# (NNN-YHeN. But (NNN-H=' =(NNN-Y).

(7. 3) Remark. 1t is easily shown that if F is closed. P is open, and A4 is an
arbitrary subset of G and if x is an arbitrary point in G, then xF, F~! are closed and
XP, P~1, and AP are open subsets of G where (G, -, .#) is a symmetric generalized
topological group.
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~ (7.4) Theorem. If (G, -, .5) is a symmetric generalized topological group, ther
A=N{AN|Nex}.

PRrROOF. Let y€ 4 and NeA". Then YN~ 1N A = & ; so that y€ AN. Conversely,
suppose y€AN for every NeA'. Then ye AN~' for every N<.4"; consequently,
yNNA # @ for every NEA; so that y<A.

(7. 5) Theorem. Let (G, -, S) be a symmetric generalized topological group. For
each Ne N let Uy={(x,y)lx"'y€N}. Let #={Ux|NeN}. Then & is a base for a
symmetric generalized uniformity U(G), on G such that (% (G))=.7. Note that even
(M. 5) is true.

(7. 6) For every A, B of G and Ne N, if AMN\B = & for all MEN, then
there exists b€ B and there exists a We N such that bW C AN.

PROOF. AN = U {xN|x€A4}; so that by (A. 1) AN is open. But by hypothesis
there exists b€ AN B. Since AN is open, b is an interior point of AN; consequently,
by (A. 1) there exists We A" such that bW AN.

PROOF of Theorem (7. 5). Clearly, to show Z is a base for some symmetric gen-
eralized uniformity % on G it is sufficient to show that for every N¢.4" and for all
subsets A, Bof G, if Uy, [4] (1 B = & forevery M € 4", then there exists b € B and there
exists W e such that Uy, [b] © Uy[A]. But since we have that Uy[4] = U {xN|x€ A4} =
=AN for all Né A" and for each subset 4 of G, this is an immediate consequence of
Lemma (7. 6). It is clear that J(%(G))=J.

(7.7) Corollary. If (G, -, .5 ) is a symmetric generalized topological group and
A has a least element, say N,, then N C N for every NeA .

Proof. Clearly, for every Uc#(G) we have that Uy cU. Consequently, by
Lemma (2.32) Uy, o Uy, < U forevery Uc%(G). Hence if (x,y) € Uy,,and (y,2) € Uy, »
then (x, z) € Uy for every NeA", That is to say for every NeA" if x~'y€ Ny and
y~1z€ Ny, then x~1z€N. Let peéN, and g€ N,. Then p~' is in N,; so that p~le
is in Ny and ¢~ 1q is in N,. Hence pq € N. Thus Ny N, C N.

(7. 8) Theorem. If (G, +,.%) is a locally compact symmetric generalized top-
ological group, then W (G) is complete.

PROOF. Let # be any filter in G that is weakly Cauchy with respect to (G).
Since (G, +,f) is locally compact, there exists a compact neighborhood N€A,
and since # is weakly Cauchy with respect to % (G), there exists an x, € G such that
Ux[xol=xoN€ #. By (A. 1) it is easily shown that x,N is compact. We now let

= {E|E = FNxyN for some F¢e _#). It is easily shown that # is a base for a filter
F1in xo N; but since x, N is compact, #, has a cluster point x, € xo N; which clearly
is a cluster point for #. Hence (G, %(G)) is complete.

(7.9) Theorem. If (G, +,.%) is a locally compact, T, symmetric generalized
topological group, then (G, «,5 ) is a (symmetric) topological group.

PRrOOF. This non trivial result is due to R. ELuis. Cf. Problem B page 41 in [13].
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Appendix T
Symmetric topological spaces

Let X be a non-void set with power set P(X). Let I be an index set. A family
{N,la€ I} of functions from X into P(X') which assign to each x < X a subset N,(x)c X
is an indexed system of neighborhoods for X which defines 5 iff the following condi-
tions are satisfied:

(i) For each x€X, x€ N{N,(x)lac1}.

(i) To each pair a€l, b€ l, there corresponds at least one c €/, such that for
all xeX, N.(x) € N,(x) N\ N,(x).

(iii) O €7 iff for each x€ O, there is an a€1, such that N,(x)CO.

(iv) Given a€1l, x€ X, and y€ N,(x), there is a b€ 1, such that N,(») = N,(x).

(v) For each a€l, x€N,(y) implies y€N,(x).

For each a< 7 we let N*={(x, y)| ¥ N,(x)}. If 4 and B are subsets of X, A is
said to be separated from B by an open set Cif AcC and BIC = .

In [5] A. S. DAvis essentially shows that the following statements for a top-
ological space (X,.#) are equivalent:

(i) 5 is symmetric.

(i1) Closed sets are separated from the points that they exclude.

(iii) Every open set contains the closure of each of its points.

(iv) There exists an indexed system of neighborhoods which defines .# and has
the additional property that for every a</ N* is open in the product.top-
ology on (XX X) derived from ..

(v) For all x€X, y€Y, XNy # @ implies X=F.

(vi) # is isomorphic (lattice-theoretically) to the topology of a T, space.

K. Morita in [30], [31], and [32] has defined the concepts of “completeness’™ and

“‘completion™ for a symmetric topological space, and he has shown that every such
space has a “completion”.

Appendix II

Precorrect uniform spaces

Let % be a subset of P(XXX). Let (M. 6)" be the axiom: for every 4¢P(X)
and for every U< % there exist ¥V, W in % such that (Wo V)(4) < U[A]
The following theorem is proved by Mordkovié in [28].

(A) Theorem. Suppose for each Uc# U=U""!. Define a relation 8(#) on
P(X) by A6(%)B iff U[A]"\B = @ for all Uc%. Then é(#) satisfies (P. 1), (P. 2),
(P. 3), (P.4), and (P. 5)" iff % satisfies (M. 1), (M. 4), and (M. 6)".

(B) Definition. U is a precorrect uniformity on X iff % satisfies (M. 1), (M. 3),
(M. 4), (M. 6)", and (M. 8). If % is a precorrect uniformity on X, then (X, %) 1s
called a precorrect uniform space.

It is easily shown that (M. 7) implies (M. 6)" and that (M. 6)" implies (M. 6).
Consequently, every symmetric uniform space is a precorrect uniform space, and
every precorrect uniform space is a symmetric generalized uniform space.
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The following theorems about precorrect uniform spaces are established in
virtually the same way as the corresponding theorems about symmetric generalized
uniform spaces if we substitute Theorem (A) for Theorem (2. 2).

Let (X, 0) be a proximity space, and let n(d) be a proximity class of precorrect
uniformities on X.

(C) Theorem. A, a subset of P(X X X), is a base for some symmetric genc}aiizcd
uniformity on X iff # satisfies (M. 1), (M. 3), (M. 4), and (M. 6)".

(D) Theorem. n(d) contains one and only one totally bounded symmetric uni-
formity.

(E) Theorem. mn(d) contains a maximum and minimum element.

(F) Theorem. If o is the usual proximity for the reals X, then 7 (é) contains
at least two distinct totally bounded precorrect uniformities that have an open base.

(G) Theorem. If (X, .#) is connected completely regular topological space, then
there exists a totally bounded precorrect uniformity % on X with an open base such
that 5 (% )=J and every filter in X is weakly Cauchy with respect to #.

(H) Theorem. A precorrect uniform space is compact iff it is complete and totally
bounded.

(I) Theorem. A completely regular topological space (X, 5 ) is compact iff it is.
complete with respect to every compatible precorrect uniformity on X.
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