A dominance semigroup of the modular group1)

By DAREL HARDY²) (Fort Collins, Colo.) and ROBERT J. WISNER (Las Cruces, N.M.)

1. Introduction. We denote by Γ the multiplicative group of all 2×2 unimodular matrices with entries from Z, the ring of integers. The set U_2^0 of all elements of Γ with nonnegative entries forms a semigroup under matrix multiplication, and it was studied in [2], the main result being that U_2^0 is free on the two generators

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

which we denote by L and R, respectively. In number-theoretic language, U_2^0 has but two primes, L and R, and factorization into primes is unique. This is in sharp contrast to the result (also in [2]) that the semigroup U_2^1 of 2×2 unimodular matrices with positive integral entries has infinitely many primes and factorization is not unique.

In this paper, we study another semigroup contained in Γ , and this semigroup, very much unlike U_2^0 and U_2^1 , has unique factorization and infinitely many primes. The semigroup under consideration is suggested by the array of Farey fractions written, somewhat unusually, in decreasing order. This array is

(1)
$$\frac{1}{1} \frac{0}{1}$$

$$\frac{1}{1} \frac{1}{2} \frac{0}{1}$$

$$\frac{1}{1} \frac{2}{3} \frac{1}{2} \frac{1}{3} \frac{0}{1}$$

$$\frac{1}{1} \frac{3}{4} \frac{2}{3} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{0}{1}$$

and so forth, each row consisting of the proper reduced fractions with denominator limited by the number of the row. It is well known that if

$$\frac{a}{b}$$
 and $\frac{c}{d}$

2) Supported in part by NSF Grant GP377.

¹⁾ Presented to the American Mathematical Society April 9, 1966.

are adjacent fractions in the Farey array, then ad-bc=1, and so the associated matrix

 $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$

is an element of Γ .

Now let F be the set of all such matrices, along with the identity matrix I. Another description of F is: $A \in F$ if and only if A = I or $A \in U_2^0$ and the second row of A dominates the first. It is easy to check that F is a multiplicative semigroup within Γ .

In § 2, a characterization of \mathbf{F} in terms of L and R is given, and this is basic to most of the remaining ideas: a description of the primes in \mathbf{F} (also in § 2), a discussion of factorization (§ 2), a prime number theorem which naturally involves an ordering in \mathbf{F} (§ 3), and § 4 is concerned with further results on the order itself as applied to U_2^0 and in a hereditary manner to \mathbf{F} .

Further results on semigroups that are related to \mathbf{F} and on many other semigroups within Γ have been obtained and will be presented in a later study.

2. Primes in F. Let

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathbf{F}$$

where $A \neq I$, and since $F \subset U_2^0$, consider the complete factorization of A in U_2^0 . Since $b \geq a$ and d > c, we may write

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ b-a & d-c \end{pmatrix} = LB$$

as an equation in U_2^0 ; thus, every element in **F** has L as a left factor within U_2^0 . Conversely, if $C \in U_2^0$, then LC is unimodular with the second row dominating the first, so $LC \in \mathbf{F}$. We have, then, a characterization of **F** which we state as

Lemma 1. $A \in \mathbb{F}$ if and only if A = I or A has L as a left factor in U_2^0 .

Thus, $\mathbf{F} = \{LX | X \in U_2^0\}$. Now suppose again that A is an arbitrary element of \mathbf{F} with $A \neq I$. If A = L, it is surely prime since L is prime in U_2^0 (prime of course means that only trivial factorizations are possible within the semigroup in question). If $A \neq L$, then A = LB for $B \in U_2^0$. Factoring A completely in U_2^0 , we have

$$(2) A = L^{n_1} R^{m_1} L^{n_2} R^{m_2} \dots$$

where all exponents are uniquely determined [2]. By Lemma 1, A will fail to factor in **F** if and only if $n_1 = 1$ and $n_2 = m_2 = \cdots = 0$. Thus, we have

Proposition 1. P is a prime in F if and only if $P=LR^m$. This means that the primes in F are computed as follows:

$$P = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^m = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & m \\ 1 & m+1 \end{pmatrix}.$$

Thus, the primes are just those matrices which are obtained by running "down the left edge" in the Farey display (1).

Proposition 2. If $A \in \mathbb{F}$, then A = I, A is a prime, or A factors uniquely as a product of primes. (In other words, F is a free semigroup on the generators L, LR, LR^2, \ldots)

PROOF. We write in U_2^0 , as in (2),

(3)
$$A = L^{n_1} R^{m_1} L^{n_2} R^{m_2} \dots$$

where the exponents are uniquely determined. By Proposition 1, if A is neither I nor a prime, we may factor A in F into primes as follows (where the product sign indicates the indicated number of prime factors):

$$A = \left(\prod_{i=1}^{n_1-1} L \right) (LR^{m_1}) \left(\prod_{i=1}^{n_2-1} L \right) (LR^{m_2}) \dots$$

If this factorization into primes were not unique, then the representation (3) would not be unique in U_2^0 , in contradiction to the results of [2].

A question which arises in parallel with [2] is: if we look only at that subsemigroup of F where the matrix entries are positive, do we still have unique factorization? The answer is negative by a simple example. We may look at LRLLR. In this subsemigroup, LR, LRL, and LLR are all irreducible, and

$$LRLLR = (LR)(LLR)$$
$$= (LRL)(LR)$$

gives two factorizations into irreducible factors.

Another question has to do with factorization in the semigroup $\mathbf{F} - \{P | P\}$ is prime in F}. That is, what happens in the semigroup obtained by leaving off the fractions $\frac{1}{1}$ in the Farey scheme? It is easy to check that

$$LRLLL = (LRL)(L^3)$$
$$= (LRL^2)(L^2)$$

and that, in this semigroup, the elements LRL, L3, LRL2, L2 are all irreducible.

3. A prime number theorem. Let $A = X_1 X_2 ... X_n$ and $B = Y_1 Y_2 ... Y_m$, where the X_i , Y_j are prime in U_2^0 . We put an ordering on U_2^0 by defining A < B if and only if either (i) n < m, or (ii) n = m and for some j, $X_i = Y_i$ for i < j, $X_j = L$, $Y_j = R$. Suppose $A \ne B$. Then n < m, n > m, or n = m and $X_k \ne Y_k$ for some k. In any case,

A < B or A > B, so U_2^0 is fully ordered.

Let U be a nonempty subset of U_2^0 and take p to be the least integer such that $X_1 X_2 ... X_p \in U$, where X_i is prime in U_2^0 . Let $U_p = \{A \in U : A \text{ has } p \text{ prime factors}\}$. Since there are only two primes, L and R, in U_2^0 , U_p is a finite set, is fully ordered, hence has a least element B. Clearly, B is a least element for U, so U_2^0 is well ordered. We now look at F with an ordering inherited as a subset of U_2^0 . With this ordering, F is well ordered, with the first few elements being I, L, L^2 , LR, L^3 , L^2R , LRL, L^2 , LR, L^3 , L^2R , LRL, L^2 , LR, L^3 , L^2R , LRL, L^3 , L^2R , LRL, L^3 , L^3

 LR^2 , L^4 , etc. Let N(A) be the number of elements of F which precede or equal A, $\pi(A)$ the number of primes which precede or equal A. We can now prove the following prime number theorem for F.

Proposition 3. Let $A \in \mathbf{F}$ and write $N(A) = 2^n + m$, where $0 \le m < 2^n$. Then $\pi(A) = n$.

PROOF. In the sequence $I, L, L^2, LR, L^3, L^2R, \dots$, there are 2^{n-1} elements which factor in U_2^0 into exactly n prime factors, where n=1. Thus there are

$$1+1+2+2^2+\cdots+2^{n-1}=\frac{2^n-1}{2-1}+1=2^n$$

elements preceding the first element in the sequence having exactly n+1 primes in its factorization in U_2^0 . Hence, if A has n+1 prime factors in U_2^0 , then $N(A) = 2^n + m$, where $0 \le m < 2^m$. For each k=1, there is exactly one prime with k factors in U_2^0 , namely,

 $LR^{k-1} = \begin{pmatrix} 1 & k-1 \\ 1 & k \end{pmatrix}.$

Thus $\pi(A) = n$.

Let P denote the set of primes of F. The following proposition is in contrast to a well-known theorem in prime number theory.

Proposition 4. $\sum_{p \in P} \frac{1}{N(p)} < \infty$.

PROOF.
$$\sum_{p \in P} \frac{1}{N(p)} = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

4. U_2^0 and **F** as ordered semigroups. The terminology in this section is as in [1]. The ordering introduced in § 3 turns out to have some nice properties which are studied here.

Proposition 5. U_2^0 and F admit orderings under which they are fully ordered, positively ordered, archimedian, cancellative, and well-ordered semigroups.

PROOF. Let $A = X_1 X_2 ... X_n$, $B = Y_1 Y_2 ... Y_m$, and $C = Z_1 Z_2 ... Z_p$ be elements of U_2^0 written in their prime factorizations, and suppose A < B.

Case 1. Suppose n < m. Then n+p < m+p implies AC < BC and CA < CB.

Case 2. Suppose n=m, and let j be the least integer such that $X_j \neq Y_j$. Then n+p=m+p and $X_1 \dots X_n Z_1 \dots Z_p < Y_1 \dots Y_m Z_1 \dots Z_p$ since $X_i = Y_i$ for i < j and $X_j = L$, $Y_j = R$. Also, $Z_1 \dots Z_p X_1 \dots X_n < Z_1 \dots Z_p Y_1 \dots Y_m$ since $Z_i = Z_i$, $X_i = Y_i$ for i < j and $X_j = L$, $Y_j = R$. Hence A < B implies AC < BC and CA < CB, as U_2^0 is a partially ordered semigroup.

Since I is the least element, $I \neq A$ implies I < A, which in turn implies B < AB

and B < BA; hence, **F** is positively ordered.

Suppose $A^n < B$ for all positive integers n. Assume A has p prime factors and B has q prime factors. Then if $A^{q+1} < B$, $p(q+1) \le q$, which means that pq < q. Thus p < 1, making p = 0; i.e., A = I. Hence U_2^0 is archimedian.

 U_2^0 is cancellative since factorization is unique.

 U_2^0 is fully ordered and well ordered from statements in § 3.

It is immediate that \mathbf{F} with the ordering inherited as a subset of U_2^0 is a fully ordered, positively ordered, archimedian, well ordered semigroup. \mathbf{F} is cancellative since factorization in \mathbf{F} is unique.

Anomalous pairs are easy to classify in U_2^0 .

Proposition 6. $A \neq I$ and $B \neq I$ form an anomalous pair if and only if A and B have the same number of prime factors.

PROOF. Suppose A and B each have $n \ge 1$ prime factors. Then A^m has nm prime factors, B^{m+1} has n(m+1) prime factors, so $A^m < B^{m+1}$. Similarly, $A^{m+1} > B^m$, so A and B form an anomalous pair.

Conversely, if A and B form an anomalous pair and A has p prime factors and B has q prime factors, then $A^m < B^{m+1}$ for all m implies $pm \le q(m+1)$ for all m. Thus,

$$p \le \lim_{m \to \infty} q\left(\frac{m+1}{m}\right) = q.$$

Similarly, $p \ge q$, so p = q.

References

[1] L. Fuchs, Partially ordered algebraic systems, Oxford, New York, 1963.

[2] B. Jacobson, and R. J. Wisner, Matrix number theory I: Factorization of 2×2 unimodular matrices, *Publ. Math. (Debrecen)*, (1967), 67—72.

(Received June 18, 1969.)