On the asymptotic behaviour of the solutions of

(p(Ox)+q(t)f (x) =0
By L. HATVANI (Szeged)

1. Introduction

In this paper we give conditions that either every oscillatory solution or every
non-oscillatory solution x(¢) of the differential equation

(E) (P()X') +q()f(x) = 0
satisfies the relation
(RI) lim JC(!) = (.

f==oo

Applying results concerning oscillatory properties of (E) ([8], [9]), by the aid
of our theorems conditions can be given which assure that every solution of (E)
satisfies the relation (R,). D. WiLLETT and J. S. W. WoNG have presented such a
condition in [1] (Theorem 1. 1). Our results are independent of the theorem mentioned
above regarding of both the method and the applicability of the theorems, as it will
be shown by the examples.

In our paper we present conditions even for global asymptotical stability (g. a. s.)
of the zero solution of (E), which means that every solution x(¢) of (E) satisfies the
relation
(S) limx(t) = limx’(t) = 0.

I—=~oa | ]

In Sec. 1 we study the continuation and boundedness of the solutions. In Sec. 2
we establish a necessary condition that every solution x(¢) satisfies (R,), and prove
that this condition is also sufficient for the same property for every non-oscillatory
solution. In Sec. 3 we investigate the oscillatory solutions. In Sec. 4 we give a necessary
condition for the g. a. s. of the zero solution of (E) and a sufficient condition for the
same property. In Sec. 5 we apply our results to the equation

(E) x"+a()x"+b(t)f(x) =0,

moreover we study the connections of our theorems with one another and with some
known theorems respectively.
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1. Notations and necessary lemmas

Suppose in the following that
(Ay) p (1)€C[T, =), q(t)€C'[T, «); p(1)=0, q(1)>0 on an appropriate interval
[Ts °°);
(A,) f(x)eC(—o, =); xf(x)=0 for all x=0, and lim F(u)=-, where F(u) =

u |u|+o=
= [ fxyax;
0

(A;) for arbitrary 1,(=T), x,, Xo (E) has a unique solution x(#)=x(; t5, Xo, X¢)
in an appropriate interval (¢, — &), 1o+ €), ((=>0) with x(7,)=x, and x"(1,)=x;.
Let x(¢z) be an arbitrary solution of (E) and introduce the following nota-

tions:
Vit, u,0) = 28 02 4 2F (),

q(1)

(1.1)

2 iy = 2O o

v(t) = V(t, x(1), x'(1)) = 7)) [ (O + 2F(x(2)).
Lemma 1. 1. If
(1.2) [ [(n(p(0)g@))y]-dt < =,
T

then

a) every solution x(1; 1y, Xo, Xo) of (E) exists in [T, =);

b) v(¢) is a function of bounded variation on [T, ==), and consequently it tends to a
finite limit as t—» .

c) x(1) and [p())}[q ()]~ *x'(1) are bounded.

Remark 1.1. Carry out the transformation

(1.3) u=fﬁds,

then the equation (E) becomes

2

d*x
(1. 4) o p(0g(f(x) =0,
which emphasizes the importance of the function p(7)g(¢) in the lemma and through

this paper. But the transformation (1.3) can be used only if f [p(s)]~'ds = =,
T

which is not supposed in our theorems, thus our results can’t be deduced in general
from known theorems concerning the equation of the type (1. 4).

PROOF. Suppose that x(z; 7o, X, Xp) is a solution of (E) and [z, T,) is the
maximum interval to the right in which the solution x(7) can be continued, (T=1,<
< T, = ). Using (E) it is easy to see that

; L P N
(1.5) V(1) = =S X' ()P (In (p(1)gq(0)))s



On the asymptotic behaviour... 227

whence by (1.1) we get

(1.6) v = v[(In(pq))]-.
From (1. 6) and (1. 2) it follows that
In f’(‘) = [[(n(pg))]-ds = [ [(In(pg))]-ds = C, < ==,
L(‘O) to T
which implies
(1.7 v(?) = v(tp) exp(Cy) = Cy(to) < ==,

i.e. v(r) is bounded on [t,, Ty).
Since v(7)=0, the estimate

Ty Ty
[ W)-ds = v(to)+ [ [, ds

holds, therefore, by virtue of (1. 6), we have

T, T, T,
(1.8) [ Io)ds = [ (v, +[v]-)ds = v(te)+2 [ [¢]. ds =

o

= Cz(’o)‘l‘zcz(fo)f [(In(pg))]-ds = Cy(to) (1+2C,) < ==,
T

i.e. v(z) is of bounded variation on [7,, T,), and consequently v(7) tends to a finite
limit as ¢ — T, —0; x(7) and x’(7) are bounded on every finite subinterval of [¢,, T),).

Applying Lemma 1 of [1], we get T, ==, i.e. a) is true. Then (1. 8) implies b),
from which it is easy to see, that also c) is true.

Lemma 1. 2. Any solution x(t) of (E) is either oscillatory or monotonic on an
appropriate interval [T, ==). '

ProoF. The zero solution of (E) obviously satisfies the statement of the lemma.
Suppose now that x(7)#0. Then, by virtue of the uniqueness of the zero solution
and the special type of (E), x(#) and x’(¢) have only zeros of multiplicity one and
these zeros constitute a discrete set in every finite interval. Therefore it is sufficient
to prove that between any two consecutive zeros of x’(z) there is one and only one
zero of x(1).

Let ¢’, t” be two consecutive zeros of x’(¢). Integrating (E) from ¢’ to 1" we
obtain

i
[ a()f (x(s))ds = —[p(s)x" () = 0.

But ¢(7)=0, so f(x(s)) changes its sign in (¢’, "), consequently, because of (A,),

x(¢) also has to change its sign in the same interval. Therefore x(7) vanishes at

some point of (¢, 7”). On the other hand, since ¢, #” are consecutive zeros of x'(r),
the solution x(7) vanishes at most once in (¢’, 1 ”), which completes the proof.

15*
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2. Non-oscillatory solutions

Theorem 2. 1. If (1. 2) holds and every solution of (E) satisfies (R,), then

Q2.1 f oF fq(s)dsa't—m

PROOF. Suppose the contrary, i.e.

oo 1 r
2.2 _ ds dt = o=,
2.2) [ 20 [ 1%
Then we shall prove that there exists a solution x,(¢) of (E) with
(2.3) lim inf |x, (¢)| = 0.

t—=o=

Integrating (E) from 7 to ¢ we obtain
, 1/
@49 X'(1) = (, >0 PO O30 f q()f (x(s))ds,

where 7 is an arbitrary fixed point of [T, =). Therefore the solution £(z)=x(t; 7, 1, 0)
of (E) satisfies the identity

(2.5 ) =1- j

7y f q(0f (% (1)) dr ds.

Using (1.7) for the function v(t)=V(t, £(r), £'(r)) we get 2F(.f(r))5v(t)5
=2F(1)exp (C,), from which, by virtue of (A,), it follows that there exists a con-
stant C such that for any 7 ff(x(t))l-ccC holds on [f, =), (C is independent of 7).
On the other hand, in view of (2. 2) and ¢ =0, there exists a number 7,= T such that

(2.6) f 0P fq(r)drdsq 216 (1=1o).

Set xo(t)=x(1; 14,1, 0), then (2.5), (2.6) and | f(xo(2))<C| imply the esti-
mation

1. 1
1xo (1) = 1—cf fq(ndrds_-l—é-zj, (t=ty),

i.e. the solution x,(7) has property (2. 3), which contradicts (R,), therefore (2. 2) is
false. The theorem is proved.

Remark 2. 1. In the preceding proof it has been also shown that (1. 2) and
(2.2) imply (E) to have a non-oscillatory solution. (By virtue of (2. 3) x,(¢) is non-
oscillatory.) .

Theorem 2. 2. (1. 2) and (2. 1) imply that every non-oscillatory solution of (E)
satisfies (R,).
To prove this theorem we need the following
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Proposition 2. 1. If the function h(t)c C'[T, =) is positive and satisfies

f [(ln h(f))’]-dl-::oo,
b &
then lim inf h(1)=0.

=

PRrOOF of Proposition 2. 1. Suppose that the statement is false. Then there exists
a sequence {f,}—, such that .

2.7 t,=T, limt,=, limhA(s)=0.

Since for arbitrary real number a the identity [a@]. = 1(la|—a) holds, we have
; , ; 1n 1(T)

(2.8) f [(n ()] dt = — ]f (nh@)dr = 512

for every n. Applying (2. 7) we see that (2. 8) contradicts our assumptions on A(1).
This concludes the proof.

ProOOF of Theorem 2. 2. Let x(7) be a non-oscillatory solution of (E). In view
of Lemma 1.1 and 1.2 x(r) is monotonic and bounded for 7 large enough, con-
sequently x(¢) —~v as t—-<. We are going prove that v=0.

Integrating twice (E) we obtain the identity

@9 X0 =xw) ¥ @ | ;%ﬁds— [+ [ a@7(x(@)de .

Suppose v=>0. Then there exists a T,=1, such that iv<=x(r)<3%v provided
1=T,. By virtue of (A,) we have

k= inf {f(u)}=0
1

V==V
2

2
From (2. 9) it follows that

@100 x() = x(t)+p(t) ¥ (1) [ ﬁds»k i) ﬁ [a@adzds

is valid for all 1=T,.
Now we distinguish two cases

I
9 | o7 S,

o

Ad a) Using assumption (2. 1), from (2. 10) we get x(z) = — == as ¢ —o=, which
contradicts the boundedness of x(7).
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Ad b) By Proposition 2. 1 p(1)q(t)=c=0 follows for t large enough, i.e. g(¢)>
=c[p(#)]~*, consequently f q(s)ds=-<=. Then t is easy to see (e.g. by L'Hospital’s

To

“‘“[K /5 f

-]

rule) that

oy ‘fq(r)dtds] = —oo

holds for every constant K. Hence (2. 10) contradicts the boundedness of x(f) in
this case too.

Similarly it can be proved that the assumption v <0 also contradicts the bounded-
ness of x(z).

So v#0 led to a contradiction, and this proves the theorem.

Remark 2. 2. Assumptions (1. 2) and (2. 1) permit (E) to have non-oscillatory
solution. This is shown by the following obvious example.
Consider the equation

(2.11) x"+ax’"+bx =0,

where a, b are positive constants. This equation can be written also into the form
(exp (ar)x’)’ +bexp (at)x = 0.

For arbitrary a, b we have (b exp (2at))'[b exp (2at)]~'=2a=0 and

fexp(—at)fbcxp (as)dsdt = %f[l —exp (a(T—1))]dr = =,
T T T

i.e. (1. 2) and (2. 1) are satisfied. On the other hand, a=2b implies for every solution
of (2. 11) to be oscillatory, a=2b however implies for every solution of (2. 11) to be
non-oscillatory.

3. Oscillatory solutions

In the present Sec. we suppose that q(r) & C?[T, =),

(3.1 (p(H)g()) =0
for =T, furthermore there exists a positive number 7 such that
3.2) () = 2F(x),  (—oo<x<o0).
Theorem 3. 1. If there exists a positive function d(t)c C*[T, =) such that
(3.3) d'(1) =0, limd(r) = =,
(.4) i = it lo OO

e [Ind(t)]
and

N((d(s)) ]] - %)
3.5 1_f[[[ 7(5) p(s) _dS = o(d(1)). (t—==°),
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then every oscillatory solution x(t) of (E) satisfies the relations (R,) and

T
R lim|—=| x(¢) =0.
( 2) s [q(‘) ( )
ProOOF. Let x(r) be an oscillatory solution of (E) and consider the positive
function v(t)=V(t, x(¢), x'(t)). In view of (3. 1), it follows from (1.5) that v(r)
decreases, consequently it tends to a finite limit A as 7 —<- and A=0. The theorem will

be proved if we show that A=0.
Suppose A=0. Then for an arbitrary £¢=0 there exists a 7, =T, (¢) such that if

t=T, then
3.6) iA=v(t)=(1+e)A
Further, by virtue of assumption (3. 4) there exists a 7, such that

dit) (p(g@) _ v+nu _
G-7 @)y p(g) ~ 2

provided t=T,. Let Ty=max {T,, T,}.
x(t) being oscillatory, there exists a sequence {f,},., having the properties

Y

(3.8) =Ty, x(t)=0, @®=1,23,..), lim t, = .

n-—-oo

Now introduce the following notation

2
Applying (E), a simple differentiation shows that

(3.9 w=dvo+7y %—pxx’ B> [%] px3.

W= —z-(x')2 [(1 +y)d’ —d -(%)—] o ; [l%] p] X2 +d’(2F (x) — yxf(x)).

Integrating this inequality from 75 to 7, and using (1. 1), (3.2), (3.8) and (3.9)
we have

d(t)o(t) = o)+ f"d’[l+?—;%£ udH—% f"[[[g] p]] x*dt,
T, i T, i
(n—=2),

whence, by virtue of (3. 5), (3. 6), (3. 7) and the boundedness of x(¢), it can be ob-
tained that

(3.10) M(.-,,)gou)+[1+y—"—?‘_] (l+s)}.d(r,.)+K%o(d(r,,)), Gasion),

where K is a constant such that x2< K. Dividing both sides of the inequality (3. 10)
by Ad(1,) and letting n —==, in view of (3. 3) we have the estimation

e AL TR
l_[l p ]+(l+s).
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This yields the desired contradiction with arbitrary ¢=0 if u—y = 2, and with
e=<@E—R-@u-pI~" if p—y < 2.

Therefore 2=0, and this proves the theorem.

The following corollaries illustrate the scope of Theorem 3. 1. They are ob-

4 T
tained from this one by taking d(z)=1, d(1) = f p*qdsand d(1)= f qds respec-
T T

tively.

Corollary 3. 1. If
(3.11) “E‘.inf [t(In(p(1)q(@®)))] =7
and

53] R
T -

then every oscillatory solution satisfies (R,) and (R,).

Remark 3.1. D. Willett and J. S. W. Wong have obtained a result ([1],
Corollary 2. 1) according to which (3. 10) already implies (R,) and (R;), but that
result is not correct. :

Corollary 3. 2. If there exists a positive number o such that

fp‘qdr = <, liminf[ln(p:(’)q“ )] e

" i [Infp’qu]'
T
and p*** is convex, then every oscillatory solution of (E) satisfies (R,) and (R,).
Corollary 3. 3. If

- [ (pq@) [
!qu = oo, lu:x’:enf -%—?(—552(!) ]fqu] > 7,

then every oscillatory solution of (E) satisfies (R,) and (R,).

4. Global asymptotic stability of the zero solution

In this Sec. we suppose that

.. o P(t)
4.1 liminf > 0.
s AT
So for an arbitrary solution x(7) of (E) relation (S) is implied by v(z) =0 as £ —e=.

Theorem 4. 1. If there exists a solution % (1) # 0 of (E) such that V(t, £(t), £'(1))=
=v(t) =0 as t -, then

f [(In(p(1)q(®))) ], dt = ==.
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Proor. From (1. 1) and (I.5) it follows that

v’

==t L@ pa)) =~ [ (pa)) ..

Sice v(1)—~0 as 1—- we have

f[(ln (pg))],ds = — f "t_:ds S v(T)
r T

v(r) P

as 1 — <, which was to be proved.
Theorem 4. 2. Suppose that (1.2), (2. 1) and (4. 1) are satisfied. If

(e jf [(n(p()q())) ], dt = =

holds on every set S = \J (a,,b,) such that
1 ;

T=a, &<b=<d,i, b—a =35>0 r=1,23,...),
then the zero solution of (E) is g. a. s..

Remark 4. 1. If (In (p(1)q(r)))’ is non-negative, periodic and does not vanish
identically on any subinterval of [7, =), then (4. 2) is obviously satisfied.

It is easy to prove that (4. 2) and the following statement are equivalent: for
every 6 =0

144

liminf [ [(In(p(s)q(s)))] ds = 0
is valid. l

ProOF. Let x(7) be a solution of (E). In view of Lemma 1. 1 x(¢) exists in [T}, =),
x(r) and u(1)=p(D)[q (1))~ *[x'(+)]? are bounded.

First, we shall prove that u(z) tends to 0 as 7.

Suppose the contrary, i.e.

4.3) limsupu(t) = 1= 0,

[ ==
and consider the open unbounded set

4.4) H:{r::g’r, u(r):*—;"-}.

By virtue of Lemma 1. 1 v(7) is of bounded variation on [T, =), consequently, apply-
ing (1. 5) and (4.4), we have

(“.3) <= [|v'|dt = [ul(in(pg))|dt = % [ l(n (pa)y|at.
0 H

H
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and therefore, as a consequence of (4. 2), H does not contain an interval of the type
(&, =), and hence

(4.6) liminfu(r) = %
(4.3) and (4.6) imply that there exists a sequence of intervals w,=(t,, t,) C H,
(n=1,2,3,...) such that

A

Q.7 n<ti<ty.., u(t))=u()) = 3 =123 ) lim 1, = oo,
and for every n there exists a 7, € @, with
(4.8) u(t) = %)..
From (4. 5) and (4. 7), by assumption (4. 2), we have
4.9) liminfm(w,) =0, lim [u|(In(pq)y|dr = 0.
Since u” = v"—=2[F(x)]", (4.7) and (4. 8) imply
;‘ ’ sl ’
(4.10) T & mf|u | dr émfu[(ln(pq)) :dr+2mf]x f(x)| dt

for every n. |x"f(x)| is bounded because x(7) and u(t) are bounded and (4. 1) holds.
Therefore from (4. 10), by virtue of (4. 9), we obtain the estimate A=o0(1) as n—+-o=,
which contradicts the fact that A=0, consequently u(¢) -0 as t—0. Then, using
(4. 1), we have

@.11) lim x’(t) = 0.

1—=oo

It remains to verify x(¢) -0 as t — =,

Lemma 1. 1 assures for v(7) to tend to a finite limit, hence from (5. 4) the same
property follows for F(x(7)). Consequently, taking assumption (A,) into considera-
tion, it is easy to see that lim x(7)=v exists too. If x(r) is oscillatory, then obviously

t==o00
v=0. On the other hand, by Theorem 2. 2 v=0 follows for non-oscillatory solutions
too. This completes the proof.

5. Applications and examples
1. Consider the equation
(E") x"+a(@)x +b()f(x) =0,

where a(t) € C[T, ==), b(1) € C'[T, ==); b(t)=0 on [T, ==) and f(x) satisfies (A,).
Using the notation

G.1) A(t) = exp(f'a(s)ds]
i
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(E’) can be written in the form

(.2) (A()X) +bO) AW X) = 0,
which is a special case of the equation (E), namely
(5.3) p(t) = A(t), q(t) = b(t)A(1).

So equation (5. 2) satisfies assumptions (A ;) and (A,): suppose that (A;) is satisfied,
too. Consequently our results are applicable for (E’). To illustrate thlS we establish
the following corollaries of Theorems 3. 4 and 4. 2.

Corollary 5. 1. Suppose that b(t)c C?[T, =),

(5.4 2a(t)+In(b(1)) = 0, (t=T),

and (3. 2) is satisfied. If there exists a function d(t)< C3[T, =) with (3. 3);
. 2a(0)+(Inb()) _
gt 7 1) .

and

1'f ! [[[%’]’_d' %”_"‘ = o(d(t)),  (t—~=°),

then for every oscillatory solution x(t) of (E)

, . T % I iy
(R) ']-I.T x(f) = '!_1-1'2 [btf)]”z X (f) =1

is valid.
Corollary 5. 2. Suppose that b(t) is bounded and (5. 4) is satisfied. If

2 ¢
(5.5 ,f 10 ;f b(s)A(s)dsdt = =
and for every 6=0

2 o O b(t+9)
(5.6) hm:,nf[f a(s)ds+In———= 10 =0,

then the zero solution of (E) is g. a. s..

PROOF. By virtue of (5. 3) (In(pq))’ = 2a+(In b)’, therefore, applying Remark
4.1, the statements follow obviously from the two theorems mentioned above.
The following two corollaries illustrate the scope of Corollary 5. 1. They are

t r

obtained from this one by taking d(7) = f b(s)ds and d(t) = f b(s)[a(s)]~'ds,
T : 4

respectively.
Corollary 5. 3. Suppose that (3. 2) and (5. 4) are satisfied and a(t) € C'[T, ==). If

- ' 3 a(r) b’(t)
Fotra -, sm] froafa2 50,

| -]
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and
[lal,ds = o [b(s)ds),  (1~=),
T T

then (R”) holds for every oscillatory solution of (E’).
Corollary 5. 4. Suppose that (3. 2) and (5. 4) are satisfied, and a(t) € C*[T, <). If

b(t) o2 b(s) 2a2(r) a(t)b’ (1) :
rf an 4= ",‘I’.L“f[f b) T b2 ]]""’

e o= 5e). oo

then (R”) is valid for every oscillatory solution of (E").

R. A. SMITH [4] has given the following two results concerning the linear equa-
tion

(LE") x"+a()x'+x=0.
A) If (5. 5) is satisfied and a(r)=¢=0, then the zero solution of (LE") is g. a. s..
B) If a(r) is positive, decreasing and f a(t)dt= -, then the zero solution of
0

(LE") is g.a.s..
Corollary 5. 2 is a generalized and sharpened form of A). Using our results a
generalization of a somewhat weakened form of B) can be given.

Theorem 5. 1. If (3. 2) is satisfied; a(t) is positive, decreasing and

(5.7 limta(t) = -,
> 2
then the zero solution of the equation
x"+a()x"+f(x) =
is g.a.s..

ProOF. The assumptions of Corollary 5.3 are satisfied, so (R") is valid for
every oscillatory solution. Then, because of h(r)=1, these satisfy (S), too. So it is
sufficient to consider the non-oscillatory solutions.

First, we shall prove that (5. 5) holds. In view of (5.7) for 7 large enough
a(t)=>7y[2t]7", therefore A(t) > as 1t -<=. By L’Hospital’s rule we have

1
Iy f A = Jm G =

i.e. (5.5) is valid.

Now, as a consequence of Theorem 2. 2, (R,) holds for every non-oscillatory
solution x(7). It remains to verify that x’(r) -0 as ¢ - <. This can be obtained com-
bining identity (2. 4) by relations (R;) and q(1)=p(t)=A(t) - as t —~eco,

The proof is complete.
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II. The following two examples show the relation of our three theorems to
one another and to the theorem of D. Willett and J. S. W. Wong ([1], Theorem 1. 1).

Example 5. 1. Set p(¢)=1t1, q(t)=1—1%, and let f(x) be a function satisfying (A;)
and (3. 2). Then p(t)q(t)=t, so it is easy to verify that
(i) Theorem 4. 2 is not applicable;
(ii) Theorem 2. 2 is applicable;
(iii) Theorem 3. 1 is applicable taking d(7)=t;
(iv) Willet’s and Wong’s theorem is not applicable.

Example 5.2. Set p(r) = exp [+ (t—sin2t)], q(1)=exp(31), and let f(x)
be a function satisfying (A,) and (3. 2). Then (In (pg)) =sin? (7), so it is easy to
verify that

(i) Theorem 4. 2 is applicable;
(i1) Theorem 3. 1 is not applicable;
(iii) Willett’s and Wong’s theorem is not applicable.
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