Weighted Nikolskiǐ-type inequalities II

By I. JOÓ (Budapest)

Abstract. In the paper is proved that the Nikolskiǐ-type inequality (2) below is sharp in the cases: $p \leq q ; p>q, m>1 ; p>q, 0<m<q$.

The present paper is a contribution to the investigations initiated by P. NÉvai, V. Totik and others (see [8], [9] and [1] for further references).

Let

$$
w(x)=w_{\alpha}(x)=|x|^{\alpha / 2} \cdot \exp \left(-|x|^{m}\right), \quad x \in \mathbb{R}, \quad m>0
$$

Given p, q and m such that $0<p, q \leq \infty, m>0$ define the Nikolskiǐ constant $N_{n}=N_{n}(m, p, q), n=1,2, \ldots$ by

$$
N_{n}(m, p, q)= \begin{cases}n^{1 / m(1 / p-1 / q)} & \text { if } p \leq q \tag{1}\\ n^{(1-1 / m)(1 / q-1 / p)} & \text { if } p>q \text { and } m>1 \\ (\log (n+1))^{1 / q-1 / p} & \text { if } p>q \text { and } m=1 \\ 1 & \text { if } p>q \text { and } 0<m<1\end{cases}
$$

For $0<p \leq \infty$ denote $\|f\|_{p}$ the expression

$$
\|f\|_{p}=\left(\int|f(t)|^{p} d t\right)^{1 / p}
$$

One of the results proved in [1] is the following.
Theorem ([1]). Suppose $0<p, q \leq \infty, \alpha \geq 0, m>0$. Then for any polynomial $p_{n} \in \Pi_{n}$ of degree $\leq n$ we have

$$
\begin{equation*}
\left\|p_{n} w_{\alpha}\right\|_{p} \leq c \cdot N_{n}(m, p, q) \cdot\left\|p_{n} w_{\alpha}\right\|_{q} \tag{2}
\end{equation*}
$$

where $c=c(m, p, q)$ is a positive constant independent of n, p_{n}.

The aim of the present note is to prove that this theorem is sharp in the cases $p \leq q ; p>q$ and $m>1 ; p>q$ and $0<m<1$. We think that this theorem is sharp also in the case of $p>q$ and $m=1$, but now we are not able to prove it. Namely, we show that in the mentioned cases there exist $c^{*}>0$ and polynomials $\left\{R_{n}^{*}\right\}_{n=1}^{\infty}$ with $\operatorname{deg} R_{n}^{*} \leq n$ such that

$$
\begin{equation*}
\left\|R_{n}^{*} w_{\alpha}\right\|_{p} \geq c^{*} N_{n}(m, p, q) \cdot\left\|R_{n}^{*} w_{\alpha}\right\|_{q} . \tag{3}
\end{equation*}
$$

for $n=1,2, \ldots$.
For the proof of (3) we need some lemmas. First we prove estimates for the Christoffel function of $w_{\alpha}(x)$. For the definition and other results see [2], Ch. 1.

Lemma 1 ([3], p. 338, Lemma (2.2)). Let

$$
v^{(\alpha)}(x)=\left\{\begin{array}{ll}
|x|^{\alpha}, & |x|<1 \\
0, & |x| \geq 1
\end{array} \quad \alpha>-1,\right.
$$

and denote $\lambda_{n}\left(v^{(\alpha)}, \xi\right)$ the n-th Christoffel function of $v^{(\alpha)}(x)$. Then

$$
\lambda\left(v^{(\alpha)}, \xi\right) \asymp n \begin{cases}n^{-2}, & 1-\frac{c_{4}}{n^{2}} \leq \xi^{2} \leq 1 \tag{4}\\ \frac{1}{n}|\xi|^{\alpha} \cdot\left(1-\xi^{2}\right)^{\frac{1}{2}}, & \frac{c_{5}}{n^{2}} \leq \xi^{2} \leq 1-\frac{c_{4}}{n^{2}} \\ n^{-\alpha-1}, & \xi^{2} \leq \frac{c_{5}}{n^{2}}\end{cases}
$$

where $c_{4}, c_{5} \in(0,1)$ are arbitrary fixed numbers and concerns n.
Lemma 2. Let $w_{\alpha}(x)$ be the function $w_{\alpha}(x)=|x|^{\frac{\alpha}{2}} \exp \left(-|x|^{m}\right)$ where $\alpha / 2>-1, m>0$. Then

$$
\begin{gather*}
\lambda_{n}\left(w_{\alpha}, x\right) \leq \tag{5}\\
K \exp \left(-|x|^{m}\right) \cdot \begin{cases}|x|^{\frac{\alpha}{2}} \cdot n^{\frac{1}{m}-1}, & c_{7} n^{\frac{1}{m}-1} \leq|x| \leq c_{6} n^{\frac{1}{m}} \\
n^{\left(\frac{\alpha}{2}+1\right)\left(\frac{1}{m}-1\right)}, & |x| \leq c_{7} n^{\frac{1}{m}-1}\end{cases}
\end{gather*}
$$

further
a) in the case of $m>1$:

$$
\lambda_{n}\left(w_{\alpha}, x\right) \geq K \exp \left(-|x|^{m}\right) \cdot \begin{cases}|x|^{\frac{\alpha}{2}} \cdot n^{\frac{1}{m}-1}, & c_{7} n^{\frac{1}{m}-1} \leq|x| \leq c_{6} n^{\frac{1}{m}} \\ n^{\left(\frac{\alpha}{2}+1\right)\left(\frac{1}{m}-1\right)}, & |x| \leq c_{7} n^{\frac{1}{m}-1}\end{cases}
$$

b) in case $m=1$ we have

$$
\lambda_{n}\left(w_{\alpha}, x\right) \geq K \exp (-|x|) \cdot \begin{cases}\frac{|x|^{\frac{\alpha}{2}}}{\log (n+1)}, & \frac{c_{8}}{\log (n+1)} \leq|x| \leq c_{6} n \\ {[\log (n+1)]^{-\frac{\alpha}{2}-1},} & |x| \leq \frac{c_{8}}{\log (n+1)}\end{cases}
$$

c) finally, in case $0<m<1$:

\[

\]

Proof. 1. First we prove the upper estimate. We need a suitable polynominal $P_{[n / 2]}(x) \in \Pi_{[n / 2]}$ which satisfies the following condition:

$$
\begin{equation*}
0<c_{3} \leq P_{[n / 2]}^{2}(x) \exp \left(-|x|^{m}\right) \leq c_{3}, \quad|x| \leq c_{5} n^{\frac{1}{m}} \tag{6}
\end{equation*}
$$

We will obtain the desired polynominal using Lubinsky's function G defined by

$$
\begin{equation*}
G(x)=1+\sum_{k=1}^{\infty}\left(\frac{e m}{2 k}\right)^{\frac{2 k}{m}} \cdot \frac{1}{\sqrt{k}} \cdot x^{2 k} \tag{7}
\end{equation*}
$$

([4], (17)) which originates from a function introduced by Mittag-Leffler cf. [5].

According to [4] Theorem 6 we have $G(x) \asymp \exp \left(|x|^{m}\right), x \in \mathbb{R}$. If we choose r_{n} to be the $[n / 4]$-th partial sum of the power series in (7) then

$$
\begin{equation*}
0<r_{n}(x) \leq c \exp \left(|x|^{m}\right), \quad x \in \mathbb{R} \tag{8}
\end{equation*}
$$

Moreover, examination of the remainder term $G-r_{n}$ shows that there exists $b_{0}>0$ (absolute constant) such that $G(x) \leq r_{n}(x)+o(1)$ uniformly for $|x| \leq b_{0} n^{1 / m}, n=1,2, \ldots$ where $\lim _{n \rightarrow \infty} o(1)=0$. Hence we have

$$
\begin{equation*}
\exp \left(|x|^{m}\right) \leq c r_{n}(x), \quad|x| \leq b_{0} n^{1 / m} \tag{9}
\end{equation*}
$$

Let $P_{[n / 2]}(x)$ be

$$
P_{[n / 2]}(x)=r_{n}\left(\frac{x}{\sqrt[m]{2}}\right) .
$$

Then from (8) and (9) we get

$$
0<c \exp \left(|x|^{m}\right) \leq P_{[n / 2]}^{2}(x) \leq c \exp \left(|x|^{m}\right), \quad|x| \leq b_{0} \sqrt[m]{2} n^{\frac{1}{m}}
$$

i.e. $P_{[n / 2]}$ satisfies (6). It is well known that

$$
\begin{equation*}
\lambda_{n}\left(w_{\alpha}, x\right)=\min _{\substack{T_{n-1} \in \Pi_{n-1} \\ T_{n-1}(x)=1}} \int_{-\infty}^{\infty}\left|T_{n-1}(t)\right|^{2} w_{\alpha}(t) d t \tag{10}
\end{equation*}
$$

Applying [6], Theorem 4.16.2, we obtain

$$
\begin{align*}
& \lambda_{n}\left(w_{\alpha}, x\right) \leq \tag{11}\\
& \leq c \min _{\substack{[n / 2]}} \prod_{[n / 2]} \int_{-\Pi_{[n / 2]}(x)=1} \int_{-c_{1} n^{1 / m}}^{-c_{1} n^{1 / m}}\left|T_{[n / 2]}(t)\right|^{2} \cdot\left|P_{[n / 2]}(t) / P_{[n / 2]}(x)\right|^{2} w_{\alpha}(t) d t
\end{align*}
$$

Thus by (6) we have

$$
\begin{equation*}
\frac{\lambda_{n}\left(w_{\alpha}, x\right)}{\exp \left(-|x|^{m}\right)} \leq c \min _{\substack{T_{[n-2]} \in \Pi_{[n / 2]} \\ T_{[n / 2]}(x)=1}} \int_{-c_{1} n^{1 / m}}^{c_{1} n^{1 / m}}\left|T_{[n / 2]}(t)\right|^{2} \cdot|t|^{\frac{\alpha}{2}} d t \tag{12}
\end{equation*}
$$

where $|x| \leq b_{0} \sqrt[m]{2} \cdot n^{1 / m}$.
By a change of variables $s=\frac{t}{c_{1} n^{1 / m}}$ we obtain from (12)

$$
\begin{gather*}
\frac{\lambda n\left(w_{\alpha}, x\right)}{\exp \left(-|x|^{m}\right)} \leq c n^{\frac{1}{m}+\frac{\alpha}{2} \cdot \frac{1}{m}} \cdot \lambda_{[n / 2]+1}\left(v^{(\alpha / 2)}, \frac{x}{c_{1} n^{1 / m}}\right) \tag{13}\\
|x| \leq b_{0} \sqrt[m]{2} n^{\frac{1}{m}}
\end{gather*}
$$

From (13) the desired (5) follows.
2. Now we prove the lower estimate.
a) The case $m>1$. There exists a polynomial $P_{n}(x)$ of degree at most n for which

$$
P_{n}^{2} \asymp \exp \left(-|x|^{m}\right), \quad|x| \leq B n^{\frac{1}{m}},
$$

([7], Theorem 1). Using these polynomials we can prove the estimates.

From (10)

$$
\begin{gathered}
\lambda_{n}\left(w_{\alpha}, x\right) \geq k \min _{\substack{T_{n-1} \in \Pi_{n-1} \\
T_{n-1}(x)=1}} \int_{-B n^{1 / m}}^{B n^{1 / m}}\left|T_{n-1}(t)\right|^{2} w_{\alpha}(t) d t \\
\geq k \exp \left(|x|^{m}\right) \cdot \min _{\substack{T_{n-1} \in \Pi_{n-1} \\
T_{n-1}(x)=1}} \int_{-B n^{1 / m}}^{B n^{1 / m}}\left|T_{n-1}(t)^{2} \cdot\right| P_{n}(t) /\left.P_{n}(x)\right|^{2} \cdot|t|^{\frac{\alpha}{2}} d t \\
\geq k \exp \left(|x|^{m}\right) \cdot \min _{\substack{T_{2 n-1} \in \Pi_{2 n-1} \\
T_{2 n-1}(x)=1}} \int_{-B n^{1 / m}}\left|T_{2 n-1}(t)\right|^{2} \cdot|t|^{\frac{\alpha}{2}} d t
\end{gathered}
$$

and so

$$
\begin{equation*}
\frac{\lambda_{n}\left(w_{\alpha}, x\right)}{\exp \left(-|x|^{m}\right)} \geq k n^{\frac{1}{m}+\frac{\alpha}{2} \cdot \frac{1}{m}} \cdot \lambda_{2 n}\left(v^{(\alpha / 2)}, \frac{x}{B n^{1 / m}}\right), \quad|x| \leq B n^{\frac{1}{m}} \tag{14}
\end{equation*}
$$

Now we prove that Lemma 2, (a) is valid for $|x| \leq c n^{1 / m}$ where c is an arbitrary large constant. Since $\lambda_{n}\left(w_{\alpha}, x\right)$ is a decreasing function of n we have

$$
\frac{\lambda_{n}\left(w_{\alpha}, x\right)}{\exp \left(-|x|^{m}\right)} \geq \frac{\lambda_{k n}\left(w_{\alpha}, x\right)}{\exp \left(-|x|^{m}\right)} \geq k n^{\frac{1}{m}+\frac{\alpha}{2} \cdot \frac{1}{m}} \cdot \lambda_{2 k n}\left(v^{(\alpha / 2)}, \frac{x}{B(k n)^{1 / m}}\right)
$$

$|x| \leq B(k n)^{1 / m}$, where k is arbitrary fixed integer. According to (4)

$$
\lambda_{2 k n}\left(v^{(\alpha)}, \xi\right) \asymp \lambda_{n}\left(v^{(\alpha)}, \xi\right)
$$

Consequently Lemma 2 (a) is valid for $|x| \leq c n^{1 / m}$.
b) Case $m=1$. The calculation is the same as in a) but we use $P_{L n[\log (n+1)]}(x)$ instead of $P_{n}(x)$. Here $P_{L n[\log (n+1)]}(x)$ is of degree at most $L n[\log (n+1)]$ and satisfies

$$
\begin{equation*}
P_{L n[\log (n+1)]}^{2}(x) \asymp \exp (-|x|), \quad|x| \leq B n, \tag{15}
\end{equation*}
$$

see [7].
Hence we get

$$
\begin{equation*}
\frac{\lambda_{n}\left(w_{\alpha}, x\right)}{\exp (-|x|)} \geq k \cdot n^{1+\frac{\alpha}{2}} \cdot \lambda_{c n \log (n+1)}\left(v^{(\alpha / 2)}, \frac{x}{B n}\right), \quad|x| \leq B n \tag{16}
\end{equation*}
$$

further

$$
\begin{gathered}
\frac{\lambda n\left(w_{\alpha}, x\right)}{\exp (-|x|)} \geq \frac{\lambda_{k n}\left(w_{\alpha}, x\right)}{\exp (-|x|)} \geq k n^{1+\frac{\alpha}{2}} \cdot \lambda_{c n \log (n+1)}\left(v^{(\alpha / 2)}, \frac{x}{B k n}\right) \\
|x| \leq B k n
\end{gathered}
$$

where k is arbitrary fixed positive integer. Consequently Lemma $2(\mathrm{~b})$ is valid for $|x| \leq c n$, where c is an arbitrary large constant.
c) Case $0<m<1$. In this case we have

$$
\begin{gathered}
\lambda_{n}\left(w_{\alpha}, x\right) \geq \min _{\substack{T_{n-1} \in \Pi_{n-1} \\
T_{n-1}(x)=1}} \int_{-B n^{1 / m}}^{B n^{1 / m}}\left|T_{n-1}(t)\right|^{2} w_{\alpha}(t) d t \\
=k \min _{\substack{T_{n-1} \in \Pi_{n-1} \\
T_{n-1}(x)=1}} \int_{-B_{1} n}^{B_{1} n}\left|T_{n-1}\left(|s|^{1 / m}\right)\right|^{2} \cdot|s|^{\frac{\alpha}{2 m}+\frac{1}{m}-1} \cdot e^{-|s|} d s \\
\geq k \min _{\substack{T_{n / m} \in \Pi_{n} \\
T_{n / m}\left(|x|^{m} \\
m^{m}\right.}} \int_{-B_{1} n}^{B_{1} n}\left|T_{n / m}(s)\right|^{2} \cdot|s|^{\frac{\alpha}{2 m}+\frac{1}{m}-1} \cdot e^{-|s|} d s \\
\\
=k \lambda_{n / m}\left(w_{\frac{\alpha}{m}+\frac{2}{m}-2},|x|^{m}\right) .
\end{gathered}
$$

Here we can use the result of Lemma 2, (b) and thus we get Lemma 2, (c).
Proof of the sharpness of Nikolskiǐ-type inequality.
Case (i): $p \leq q$.
We will obtain the polynomials R_{n}^{*} from D. S. Lubinsky's function G defined by (7). According to [4] Theorem $6 G(x) \asymp \exp \left(|x|^{m}\right), x \in \mathbb{R}$, and thus if we define R_{n}^{*} to be the $n / 2$-th partial sum of the power series in (17) then

$$
\begin{equation*}
0<R_{n}^{*}(x) \leq K \exp \left(|x|^{m}\right), \quad x \in \mathbb{R} \tag{17}
\end{equation*}
$$

Moreover, a close inspection of the remainder term $G-R_{n}^{*}$ shows that there exists $\varepsilon>0$ such that $G(x) \leq R_{n}^{*}(x)+o(1)$ uniformly for $|x| \leq \varepsilon n^{1 / m}$ and $n=1,2, \ldots$ where $\lim _{n \rightarrow \infty} o(1)=0$. Hence we have

$$
\begin{equation*}
\exp \left(|x|^{m}\right) \leq K \cdot R_{n}^{*}(x), \quad|x| \leq \varepsilon n^{\frac{1}{m}} . \tag{18}
\end{equation*}
$$

Let $r>0$. Then we obtain
$\left\|R_{n}^{*} w_{\alpha}\right\|_{r} \asymp\left\|R_{n}^{*} w_{\alpha} \chi_{\left[-c n^{1 / m}, c n^{1 / m}\right]}\right\|_{r} \asymp\left\|\chi_{\left[-c n^{1 / m}, c n^{1 / m}\right]} \cdot v_{\alpha}\right\|_{r} \asymp n^{\frac{\alpha}{2 m}+\frac{1}{m r}}$,
where $v_{\alpha}(x)=|x|^{\alpha / 2}, n=1,2, \ldots$ which proves (3) in case $p \leq q$.
Case (ii): $p>q$ and $m>1$. Pick $r_{0}>0$. We will prove (3) by constructing a sequence of polynomials $\left\{R_{n}^{*}\right\}_{n=1}^{\infty}$, $\operatorname{deg} R_{n}^{*} \leq n$, such that for every fixed $r>r_{0}$

$$
\begin{equation*}
\left\|R_{n}^{*} \cdot w_{\alpha}\right\|_{r} \asymp n^{((1 / m)-1) r}, \quad n=1,2, \ldots . \tag{19}
\end{equation*}
$$

Given $r_{0}>0$, let us choose an integer $M>0$ such that $r_{0}>M^{-1}$. Define the weight function u as follows

$$
u(x)=|x|^{\frac{\alpha}{2 M}} \cdot \exp \left(-|x|^{m} / M\right), \quad x \in \mathbb{R}
$$

and let $\left\{p_{n}(u, x)\right\}_{n=0}^{\infty}$ be the system of polynomials which is orthonormal with respect to u. Define the function $K_{n}(u)$ by the formula

$$
K_{n}(u, x, y)=\sum_{k=0}^{n-1} p_{k}(u, x) \cdot p_{k}(u, y)
$$

and let $N=\max \left\{1,\left[\frac{n}{2 M}\right]\right\}$. Then

$$
\begin{equation*}
R_{n}^{*}:=\left(\frac{K_{N}\left(u, x, x_{0}\right)}{K_{N}\left(u, x_{0}, x_{0}\right)}\right)^{2 M} \tag{20}
\end{equation*}
$$

is a polynomial of degree at most n, where $x_{0} \neq 0$ is arbitrary fixed, independent of n. We may assume that $x_{0}>0$.

In what follows we will show hat $\left\{R_{n}^{*}\right\}_{n=1}^{\infty}$ satisfies (19). Using orthogonality it follows

$$
\left\|R_{n}^{*} w_{\alpha}\right\|_{1 / M}=\left\{\int_{R} \frac{K_{N}^{2}\left(u, x, x_{0}\right)}{K_{N}^{2}\left(u, x_{0}, x_{0}\right)} u(x) d x\right\}^{M}=K_{N}^{-M}\left(u, x_{0}, x_{0}\right)
$$

According to the Lemma 2, (a) we obtain $K_{N}^{-1}\left(u, x_{0}, x_{0}\right)=O\left(N^{(1 / m)-1}\right)$. Therefore we obtain

$$
\left\|R_{n}^{*} w_{\alpha}\right\|_{1 / M} \leq K n^{((1 / m)-1) M}
$$

and by (2)

$$
\begin{equation*}
\left\|R_{n}^{*} w_{\alpha}\right\|_{r} \leq K n^{\left(1-\frac{1}{m}\right)\left(M-\frac{1}{r}\right)} \cdot\left\|R_{n}^{*} w_{\alpha}\right\|_{1 / M} \leq K \cdot n^{((1 / m)-1) r} \tag{21}
\end{equation*}
$$

holds for $n=1,2, \ldots$. The next step is to show that there exists $0<\varepsilon<1$ such that

$$
\begin{equation*}
R_{n}^{*}(x) \geq \frac{1}{2}, \quad\left|x-x_{0}\right| \leq \varepsilon n^{(1 / m)-1} \tag{22}
\end{equation*}
$$

By (20) $\left(R_{n}^{*}\right)^{\frac{1}{2 M}}$ is a polynominal of degree at most n such that $\left(R_{n}^{*}\left(x_{0}\right)\right)^{\frac{1}{2 M}}=1$. Hence for $\left|x-x_{0}\right| \leq \varepsilon n^{(1 / m)-1}, n \geq n_{0}=n_{0}\left(x_{0}, m\right)$,

$$
\begin{aligned}
\left|1-\left(R_{n}^{*}(x)\right)^{\frac{1}{2 M}}\right|= & \left|\int_{x}^{x_{0}}\left[\left(R_{n}^{*}(t)\right)^{1 / 2 M}\right]^{\prime} d t\right| \\
& \leq \sqrt{\left|x-x_{0}\right|} \cdot\left\{\int_{x}^{x_{0}}\left|\left[\left(R_{n}^{*}(t)\right)^{\frac{1}{2 M}}\right]^{\prime}\right|^{2} d t\right\}^{\frac{1}{2}} \\
& \leq k \sqrt{\left|x-x_{0}\right|}\left\{\int_{x}^{x_{0}}\left|\left[\left(R_{n}^{*}(t)\right)^{\frac{1}{2 M}}\right]^{\prime} \cdot \sqrt{u(t)}\right|^{2} d t\right\}^{\frac{1}{2}} \\
& \leq k \sqrt{\left|x-x_{0}\right|} \cdot\left\|\left[\left(R_{n}^{*}(t)\right)^{\frac{1}{2 M}}\right]^{\prime} \cdot \sqrt{u}\right\|_{2}
\end{aligned}
$$

Here, using a Markov-Bernstein type inequality [1], the right-hand side can be estimated in terms of

$$
\begin{gathered}
K n^{(1-(1 / m))} \sqrt{\left|x-x_{0}\right|} \cdot\left\|\left(R_{n}^{*}\right)^{\frac{1}{2 M}} \sqrt{u}\right\|_{2} \\
=K n^{(1-(1 / m))} \cdot \sqrt{\left|x-x_{0}\right|} \cdot K_{N}^{-\frac{1}{2}}\left(u, x_{0}, x_{0}\right)=K \sqrt{\left|x-x_{0}\right|} \cdot n^{\frac{1-(1 / m)}{2}} .
\end{gathered}
$$

Hence we get

$$
\left|1-\left(R_{n}^{*}(x)\right)^{\frac{1}{2 M}}\right|=K n^{\frac{1-(1 / m)}{2}} \cdot \sqrt{\left|x-x_{0}\right|}
$$

where $\left|x-x_{0}\right| \leq \varepsilon n^{(1 / m)-1}$; from this (22) immediately follows. From (22) we obtain

$$
\begin{equation*}
K n^{((1 / m)-1) r} \leq\left\|R_{n}^{*} w_{\alpha}\right\|_{r}, \quad n=1,2, \ldots . \tag{23}
\end{equation*}
$$

From (21) and (23) the desired (19) follows.

References

[1] I. Joó, Weighted Nikolskiǐ-type inequalities, Publ. Math. Debrecen 44 (1-2) (1994), 5-30.
[2] G. Freud, Orthogonal Polynomials, Pergamon Press Oxford et Akadémiai Kiadó Budapest, 1971.
[3] P. Névai, Orthogonal polynomials of the real line associated with the weight $|x|^{\alpha} \cdot \exp \left(-|x|^{\beta}\right)$, I., Acta. Math. Acad. Sci. Hung. 24 (1973), 335-342. (in Russian)
[4] D. S. Lubinsky, Gaussian quadrature, weights on the whole real line and even entire functions with nonnegative even order derivatives, J. Appr. Theory 46 (1986), 297-313.
[5] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monograph, Vol. 5, Providence, Rhode Island, 1964.
[6] P. Névai and Géza Freud, Orthogonal Polynomials and Christoffel Functions, J. Approx. Theory 48 (1986), 3-167.
[7] A. L. Levin and D. S. Lubinsky, Canonical products and the weights $\exp \left(-|x|^{\alpha}\right)$, $\alpha>1$, wih applications, J. Approx. Theory 49 (1987), 149-169.
[8] P. Névai and V. Totik, Weighted polynominal inequalities, Constructive approximation 2 (1986), 113-126.
[9] P. Névai and V. Totik, Sharp Nikolskiǐ inequalities with exponential weights, Analysis Math. 13 (1987), 261-267.
I. JOÓ

DEPARTMENT OF MATHEMATICS
L. EÖTVÖS UNIVERSITY

1088 BUDAPEST
(Received March 9, 1994; revised July 10, 1995)

