On the homothetic transformations in areal spaces
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1. Introduction

The homothetic transformations were first studied by E. B. SHANKS [1]') in
Riemannian spaces. YANO [2] studied the homothetic transformations and group
of homothetic transformations more systematically in a Riemannian space and
formulated his theory specially by making the use of Lie derivatives. Lateron, these
transformations were considered by TAKANO [3] in Finsler spaces and subsequently,
the theory of r parameter group G, of homothetic transformations was given by
HIRAMATU [4, 5] in Finsler manifold.

On the other hand, the geometry of an areal space of the submetric class has
been studied by KAwAGUCHI and TANDAI [7, 8], Gama [9, 10, 11, 12], KiKUCHI
[13, 14] and many others [17]. IGARASHI [15] has also developed the theory of Lie
derivatives in areal spaces.

The prime purpose of the present paper is to discuss the theory of homothetic
transformations in areal spaces of the submetric class and to show some of the interest-
ing properties of this transformation in areal spaces of the submetric class which
are enjoyed by these spaces in the wide sense because the spaces Riemannian and
Finsler are the special cases of an areal space of the submetric class and consequently,
the corresponding theory of homothetic transformations in Riemannian and Finsler
spaces may be derived from the theory of homothetic transformations in areal spaces
of the submetric class.

In what follows, we shall use the same notations and symbolism as those em-
ployed by KawAGucHi [17] and by previous authors in their studies of areal spaces,
without explanations.

2. Some Preliminary results

Let us consider an n-dimensional manifold referred to a coordinate system
(x') and attach the m-plane direction p), with every point of the manifold. Thus,
a manifold, each point of which is associated with a set 2) (x{, p!) constituting the
so called m-plane element of support of the manifold, is named as an areal space.

1) Numbers in brackets refer to the references at the end of the paper.
2) The Latin indices A, i, j, k, ... run from 1 to N and Greek indices «, £, 7,4, ... from 1 to
M, throughout this paper.
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The fundamental function of this space is denoted by F(x,p), p=p., which is a
positive analytical and homogeneous function of degree one in p’s.

In such an areal space which is always regular, if there exists an intrinsic sym-
metric tensor with two indices g;; (or g"/) and whose components, depending on an
m-dimensional plane element P,,, can be deduced from the fundamental function
F(x, p), the transversal m-vector Gjp,;, and the metric m-tensor g;r,; jt,1 by an
algebraic operation, the space is said to be of the submetric class.

In an areal space 4™ of the submetric class, the absolute covariant differential

nf a nnnfrg\!arianf vartnr Y" "I‘.’IE }\PPI’! l'lPﬁﬂPl" ac

DX = X\ dx*+X'|}Dp;, Dp= yi(dp}+ ... +piI "} dx),
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yb Gama [9, 11], where
2.1) X=X = XL+ XI5,
@.2) X'}} = X334 XIC)

and the symbols the small vertical bar (|) and a long solidus denote the covariant
derivatives of X' with respect to x* and p’, respectively. In above expressions, the
comma and semi-colon indicate the ordinary partial derivatives with respect to x*
and p’; respectively.

Now, in an A™, let us introduce an infinitesimal point transformation.

(2.3) X' = x'+(x)d,

where dt is an infinitesimal constant and &' is a contravariant vector field defined
over the demain 2 of the space under consideration, which is independent of the
direction and is of atleast class C2.

With respect to the infinitesimal point transformation (2. 3), IGARASHI [15] has
determined the Lie derivatives in an areal space. The Lie derivatives of the connection
parameters I'ji of the space 4™ are defined by

(2.4 £t = ‘|.j|k‘+’-Rj‘klél+r*jft;?&ﬁp:s
and the Lie derivative of a general tensor 7} may be defined as
(2.5) £T} = T+ Tj;5Ek, ph—TFEL + TiEY,

where £ denotes the operator of the Lie differention and R}“ is the curvature tensor
of the space 4™, defined by Gama [9).
Also, the Lie derivative [16] of the normalized metric tensor g;; [7] is given by

(2.6) £gij = &+ Eu+& i pk.

On making the use of the formula (2. 1), (2. 5) and as a result of (2. 4), we have
the following useful relation:

(2.7) £(gr’j|k)_(£gij)|k = (—5?311‘5;&:—3”;?19:) (fr*hi ’

which may also be directly obtained as an immediate consequence of the Lemma 3
of IGARASHI [15].
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On the other hand the application of two operators £ and | on a contravariant
vector X', after a long calculation, gives the commutation formula:

(2.8) £(XIH)—(EXHE = XIEC), A,

where we have the use of relations (2. 2), (2. 5) and the indentity £(X';}) = (£X7);}.
Furthermore, we define an operator | for a generalized geometric object Q by

QJt = F(2;7),

so that, it is interesting to note that if we apply the commutator of two operators
£ and ] on a general tensor 77}, then after some simple calculation, we have

(2.9) £(T5]D—ETY Ik = (T3 BE s
where we have used the definition of | and the identity
£(X5H = (£XY;1.

We shall now define the homothetic transformations in areal spaces of the sub-
metric class.

3. Definition of homothetic transformations

Two distinct n-dimensional areal spaces 4™ and A!™ of the submetric class
with the same system of coordinates are said to be conformally related [12, 13],
if their respective normalized metric tensor g;; and g; are connected by the re-
lation

3.1 8ij = ezogu,

where ¢27 is a factor of proportionality and ¢ is atmost a point function. In above
relation, if we consider the function ¢ a constant instead of taking it as a scalar
point function, the transformation (3. 1) becomes homothetic one in the sense of
Shanks.

In relation (3. 1), if we assume the constant ¢ equal to zero, then clearly, g;;=
=g,; and the respective connection parameters I, and I'*/} of the spaces 4™ and
A™ also become equal, i.e. [*/=I"" consequently, we have £g,;=0 and £I'*/}=0.
Hence in the case ¢=0, the transformation (3. 1) becomes an areal motion [15].
Therefore, throughout this paper, we shall consider such a transformation (3. 1),
in which ¢ is a non-zero constant.

Now for the sake of conveniency, we write the relation (3. 1) into the form

3.2 gij = 2¢gij,

where ¢ is a non-zero constant, because of the reason that in the case ¢=0, our
transformation (3. 2) becomes an areal motion in the space A™. Thus, for ¢=0,
the transformation (3. 2) will be known as a proper homothetic transformation

in the space A/™ and ¢ will be called a homothetic constant.
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4. Homothetic transformations between the areal spaces of the submetric class

Let us have the Euler vector E;, defined by
(4' 1) Ei= F-I(F;?m_Fﬂ)'

It is also well known that under the homothetic transformation (3. 1), the
fundamental functions F(x, p) and F(x, p) of the spaces 4™ and A respectively
are related by

4.2) F = KF, K= e™,
On differentiating this, we find that
F:i=K$iF+KFsh F;?n:: ajpiF;?"'KF;?ms

where K,;=0K/dx' and F;},,=dF;/du*. From these expressions, we may deduce
the relation

(40 3) F;?,H_F)I g K(F;?,,—F,f)+(K,jP£F;?—K,(F).

But for a non-zero constant ¢, K is also a constant, so the terms under bracket on
the R.H.S. of the relation (4. 3) vanish, consequently, we obtain

F;?uc"'Fi = K(F;?sz—Fﬂ)°

On substituting the desired expression for K from (4. 2) in this relation and by help
of (4. 1), we get finally

4.4) E, = E,

which clearly shows that under the proper homothetic transformation (3. 1), the
Eulerian vectors are invariant. Conversely, if the Euler vectors are invariant, the
expression under bracket on the R.H.S. of (4. 3) vanishes, i.e., K, ; pi F;{—K,;F = 0.
This gives

K’I(p:lF!:—F) - 0
From which we conclude that K is a constant, say K,;=0, because pi j—F # 0.
Hence, the transformation is a proper homothetic one. Thus, we have the

Theorem 4. 1. If two areal spaces A™ and A™ of the submetric class admit
a proper homothetic transformation, the Eulerian vectors are invariant under this
transformation, and the converse is also true.

Moreover, the vanishing of Euler vector (4. 1) in an 4™ characterizes the
extremal subspaces. Therefore, from (4. 4), the vanishing of either Euler vector of
the spaces under consideration reduces the other to zero.

Theorem 4.2. When two areal spaces AM™ and A™ admit the transformation
(3. 1), the transformation leaves the extremal subspaces invariant, if and only if the
transformation (3. 1) is a proper homothetic one.

It is well known that an areal space 4™ (n=2) of the submetric class of constant
curvature is characterized by the relation

4.5 R_!ikﬁ = R(x, p) (5igjk_5igjh)' R(x, p) # 0,
where R(x, p) is the Riemannian curvature of the space A{™ at the point x'.
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On the other hand, KikucHi [14] has shown that if the relation (4. 5) holds
good, the space 4/™ is a Riemannian space with constant curvature. Therefore,
in analogy with the theorem 3 of SHANKS [1]. The following theorem may be established
without difficulty:

Theorem 4.3. Two areal spaces A{™ and A\™ of the submetric class of the
same non-zero constant curvature admit no proper homothetic transformation be-
tween them, while two spaces A{™ and A{™ with unequal positive (or negative) con-
stant curvature admit a proper homothetic transformation. The constant exponent ¢
is uniquely determined by the relation

1 R(x, p)
= g Bl
N S [ OF
where R(x, p) and R(x, p) are the Riemannian curvatures of the spaces A™ and A{™,
respectively.

5. The homothetic transformations of an areal space of the submetric class with
itself

In this section, we discuss the homothetic transformations to which a space
Al™ admits into itself. For this purpose, if we make the use of Lie derivatives,
then the proper homothetic transformation relation (3. 2) may be characterized by

(5.1) fgu = 25'5’.',',

and the transformation is now called a proper infinitesimal homothetic transforma-
tion with a homothetic constant c.

Employing the relation (5. 1) in (2. 7) and taking note of the fact that for co-
variant differential in 4{™, the normalized metric tensor g;; behaves as a constant,
we see that the L.H.S. reduces to zero, so we get

(5.2) ("‘5?811'—5?3.1—8:;;TP:) (fr‘fu‘) =0,
from (5. 2), if we assume (—0fg,;—d"g,—g;;:ipk) # 0, which is quite obvious, we
get £I'*},=0. Hence we have the

Theorem 5. 1. When an A™ admits a proper infinitesimal homothetic transforma-
tion, it is necessary and sufficient that the transformation be an areal motion at the
same time, provided that |(—06%g,;—d%gy—gi;:ipM| # 0.

Further, it is no more difficult that after some simple calculation, the relation
(2. 6) can be written as

(5.3) £8ii = ZijaC*+ S+ gt +ginl R pE.
Introducing (5. 1) in (5. 3), we obtain

|
x

(5.4) 2"3:‘_; = gijsk‘:k"}'gkjf.-’-‘i"'gikéi‘j+gij:;‘:f-kp -
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Now, we consider a one parameter group of transformation and choose such a
coordinate system with respect to which &=4%, then the infinitesimal transformations
(2. 3), which are the finite equations of the group, become

(5.5 X = x'+ 64 dt.
In such a case from (5.4), we find that

(5.6) 8ij»1 = 2¢gi;.
Consequently, from (5. 6), we have

(5.7 gy (', o) = 2 &, (2, X2, ..., X", pD),

where ®;; is a homogeneous function of degree zero in the p’s. Conversely, if there
exists a coordinate system in which the normalized metric tensor g;;, which serves
as a fundamental metric tensor in an areal space 4{™ of the submetric class, takes
the form (5. 7), then the space 4™ admits a one parameter group of proper homothe-
tic transformations generated by (5. 5). Thus, we have the

Theorem 5. 2. If an areal space A{™ of the submetric class admits an infinitesimal
proper homothetic transformation, then A\™ admits also a one parameter group of
proper homothetic transformations generated by the infinitesimal one.

Theorem 5.3. When an areal space A\™ of the submetric class admits a one
parameter group of proper infinitesimal homothetic transformation, it is necessary
and sufficient that there exists a coordinate system with respect to which the normalized
metric tensor of A{™ takes the form (5.7).

Furthermore, applying &'=4} in (2. 4), we get
(5.8) £ = Ry,

However, we notice that if an A{™ admits a proper infinitesimal homothetic trans-
formation, £I' *1=0, by reason of this fact, from (5.8), we see that Rj,,=0, but
R}Hz —‘le'k' Therefore ‘R}k1= ""R}u=0. ’ v ! g

We now remember that the curvature tensor R} satisfies the identity

R_I{kl'l'Rilj + Rl'ijk - 0'
If we put /=1 in this identity, then under the above facts, we finally have

Rilj =3 Rikj = Rjn = 0.
Hence, we have the
Theorem 5. 4. If an areal space A!™ of the submetric class admits a one para-
meter group of proper infinitesimal homothetic transformation, it is necessary and

sufficient that those components of the curvature tensor RYy, of A™, which are neces-
sarily the function of x* in their lower indices, vanish identically.

In an areal space A{™ of the submetric class, the subspaces defined by

J : e ‘ ox!
His = vi(Pis+ T3 Phpy) = 0, pisg= Erw i

are said to be totally geodesic.
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Using the formula (2. 5), we have
£95 = Vi +visalh Ph—viCh+ kel

But 7%,,=0, so on putting &'=0}, we find that £5=0. Under this fact, applying
the transformation (2. 3) and putting &'=4i, if we use the condition I'*j, =I'*}, (because
£I'*,=0) by theorem 5. 1, then we can see with ease that the totally geodesic subspaces
remains invariant. Hence, we can give the

Theorem 5. 5. If an areal space A™ of the submetric class admits a one para-
meter group of proper infinitesimal homothetic transformation, the transformation
generated by the infinitesimal one leaves the totally geodesic subspaces invariant.

Next, we take a coordinate system in which & =x/, then because of the condition
gi;3ipi=0, relation (5. 4) gives us

gijskxk = 2(c—1)gy,

which shows that normalized metric tensor g;; is a homogeneous function of degree
2(c—1) with respect to &', Hence, we have the

Theorem 5. 6. In order that an areal space A{™ of the submetric class admits
a one parameter group of proper infinitesimal homothetic transformation with a homo-
thetic constant ¢, it is necessary and sufficient that there exists a coordinate system in
which the components of a normalized metric tensor g;; are homogeneous functions of
degree 2(c— 1) of the coordinate variables x'.

Remark 1. 1t is interesting to point out that for the case m=1, the areal space
A{™ becomes the Finsler space in particular. In such a case, theorems 5.2, 5.3
and 5.6 hold good coinciding with the corresponding theorems of TAKANO [3]
in Finsler spaces. The Riemannian space is one of the special case of areal space
AM™ for Ci;,%=0, therefore, these theorems also hold good for the Riemannian
spaces in particular.

Remark 2. In the above discussion, since the proof of the theorems 5.4 and
5.5 is based on the condition £I"*}, =0, which is an essential condition for the areal
motion as well as for the proper infinitesimal homothetic transformations, therefore
these two theorems also hold good for the one parameter group of areal motion in
the space A™,

6. Some additional properties of the homothetic transformations

The fundamental function F(x, p) of the space A{™ is changed as
F(x, py=mcF(x, p)

under the transformation (3. 2). If we make the use of Lie-derivatives, then, under
the proper homothetic transformations (3. 2), the variation in the function can be
written as

6.1) £F = mcF.
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In an areal space 4™, the area of an infinitesimal domain on an m-dimensional
sub-space x'=x(u*), a=1,2, ..., m, is given by

(6. 2) dS=F(x, p)(du)", where (du)"=du'du®...du™,

by means of a priori given function F(x, p). The present author [16] has also shown
that under the infinitesimal point transformation (2. 3), the fundamental function
F(x, p) varies as -

F(x,p) = F(x, p)+£F(x, p)dt,
where

(6.3) £F(x, p) = (F;D&, pl.

Employing the transformation (2. 3), the area dS on an infinitesimal domain is
transformed as

dS = dS +(£Fdt) (du)™.

Introducing (6. 1) and (6. 3) in this relation and on making the use of relation F;7=
= Fpi, if we note that pfpi=pi, we find that

ds ds
—— = l4+medt, or as

consequently, we obtain that
(6.4) me = Bi&;.

From this relation, it is obviously presumptive that for a constant ¢, the quantity
p1&!; constituting an invariant should invariably be a constant. Thus, we can state the

Theorem 6. 1. In order that an areal space A\™ of the submetric class admits
a proper infinitesimal homothetic transformation, it is necessary and sufficient that the
invariant B{; should necessarily be a constant for a properly chosen element of sup-
port py.

Furthermore we may also have the

Theorem 6. 2. If an areal space A\™ of the submetric class admits a proper
infinitesimal homothetic transformation (5. 1), then choosing suitably the plane ele-
ment of support p!, the homothetic constant c is uniquely determined by the relation.

1
= — J el
¢ mﬁ‘é"

Remark 3. In the particular case, when m=1, the areal space A\™ of the sub-
metric class becomes a Finsler one, and the above theorem coincide with the cor-
responding theorem 5 of TAKANO [3] in Finsler spaces.

Now, we apply the commutation formula (2.9) for the normalized metric
tensor g;;, we obtain

f(gijﬁ) —-(£gip [k = (gij]:)ﬁffrm-
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In case of the proper infinitesimal homothetic transformation (5. 1), the above rela-
tion gives the result

(6.5) £(gi; JD) = Q+m)cg; [k,

where we have introduced the relation (6. 4). In the same way, again operating on
the same commutators for the tensor g;;Ji, and making use of the relations (2.9),
(6. 5), and (6. 4), we shall find that

(6.6) £(gy JR]1) = @+2m)ceg; Ji ]I

In any manner, from the definition of homothetic transformations, we have ob-
tained the relations (6. 5), (6. 6). Likewise, the following inductive relations hold
good:

£g;; = 2cgy;,
(6.7) £(8uﬂ) = (2+m)cguh,
£(gi Ji P = 2+2m)cg; Ji ]1-

Consequently, for an arbitrary number r, it can be no more difficult to put inductively
the relation

(6.8) £(g i % - 1) = Q+ym)egy; it Jis - [k,

where r takes the values 0, 1, 2, ... successively, for the relation (6. 8) can easily be
proved as a result of (2.9). Thus, we have the

Theorem 6. 3. If an areal space A of the submetric class admits a proper
infinitesimal homothetic transformation (5. 1), a set of relations (6. 7) is identically
satisfied one after another, and in general the tensors g;;[%' Ji:... , derived successively
from the normalized metric tensor g;; by the well defined operator |, satisfy the rela-
tion (6. 8) with respect to the operator £ of Lie-derivation.

Remark 4. In the special case m=1, the space 4™ under consideration be-
comes a Finsler space, and then, above theorem coincides with the theorem 6 of
TAKANO [3] in Finsler spaces.

On applying the formula (2. 8) for the normalized metric tensor g;;, we can
immediately have

£(gl'_l]:})_(£glj)]§ — gnjfcbr gm£str

In our present case, the use of the transformation (5. 1) and the implication of the
property g;;|# =0 in above relation yields the result

(6‘ 9) gnjfcfsr'i'gmfc‘??i = 0.

Thus, we see that the relation (6. 9) universally holds good in the areal spaces of
the submetric class admitting proper infinitesimal homothetic transformations.

Adding (£g,,)C!',} +(£g,,)C},} on both the sides of (6. 9) and making the suit-
able arrangement after employing the transformation (5. 1), we obtain

(6' 10) £Cijs:+£chr"' ZC(CU,,A."*'C;,,
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Now, in the case when an 4™ is an areal space of the metric class, the torsion
tensor C;,;=g,;Cl,} is symmetric with respect to the indices i and j, by virtue
of the theorem of H. IwAmoto [6]. Therefore, from (6. 10), we get atonce

(6]1) £C”,§= ZCC,'J:,:}.

Hence, we can state that when an A{™ admits a proper infinitesimal homothetic
transformation (5. 1) and if the space is of the metric class, the relation (6. 11) holds
good for a homothetic constant c.

Furthermore, we also notice that TANDAI [8] has already shown that the space
A{™ is always Riemannian one, if g;;;§=0, i.e., C;;,§=0. In such a case, from (6. 11),
we find that £C;;,§=0. Hence, we may also have the

Theorem 6. 4. A necessary and sufficient condition that an areal space A{™ of
the submetric class becomes a Riemannian space is that C;;,§=0 holds good in the
space, but if the space admits a proper infinitesimal homothetic transformation, this
condition may be replaced with £C;;,§=0, so that the space A{™ becomes a Riemannian
space admitting proper homothetic transformation.

7. Further discussion

In this section, we devote ourselves to ensure some more characteristic properties
of the homothetic transformations in an A™.
Let us have the identities

(7.1) fﬁ]};k—ff'um = Rfjaﬂi—R{ﬁ& —(f?i;?)Rifh
and
(7.2) Rl + Rl + Rl ji + T lyim Rog + T hm R+ Tl m Ry = 0
With the help of (7. 1) and (7. 2), after some long calculation, we find that
(7‘ 3) (£r*lhj)|k"(£r*:‘k)h = k+r*u si(fr* I:)pz tk![(fr* ;)pa!
where we have used the relations
- (F*im:l')‘fm
R?jkf-? = (r*?j;f’)]k ik»i)u ~ﬁr*mm +r*it,£r*m§f

From (7. 3), we can see with ease that

£R?jk = (fr*l?)[k_(fr*?k)u_r*i?;r(fr‘:k)p;+F*?k_:?(£r*£j)p;'

Consequently, in our present case, when an 4™ admits a proper infinitesimal homo-
thetic transformation, above relation gives us

(7. 4) fR?jk = 0,

because of the condition £I'*};=0. Using the formula (2. 5) for the tensor Rjj and
employing the condition (7. 4), if we put £'=4j in the result, we get atonce

(7.5) Rljeys = 0.

and
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Also, for the tensor R}, we have the relation
h h ] h h I h 1 h '] h .
Rljkim1 — Rijxj1im = Rijx Riymy — Rijx Rimy — Rit Ry — Rijy Rimy — Riji3{ Romy -

By virtue of the theorem 5. 4 and due to the condition (7. 5), above relation yields
the result

(7.6) R?fﬂmll =0.

Similarly, we can further determine that

(7. 7) R?jklmh]l = 0.

Hence, combining the results (7. 5), (7. 6), (7. 7) with the theorem (5. 4), we can

enunciate the

Theorem 7. 1. If an areal space A™ of the submetric class admits a one para-
meter group of proper infinitesimal homothetic transformation, the following set of
relations holds good:

R{'Jl. =0, R?jk|1=0, R?j”m[l =0, R}'Jg;,,ﬂ,,“ = 0, ....

In an areal space A{™ of the submetric class, we have the curvature tensor K/,
which is defined by

(7.8) Kl = Rip+ClL R,
where
Rijx = R Pl

Applying the operator £ on both the sides of (7. 8) and employing the condition (7. 5),
we obtain

(7- 9) fKi'}k = (fcf': f) R;.jk .

On one hand, if we introduce the condition £C!',?=C},} into the above relation, we
shall have

£Kly = CLIRY .,
or

(7.10) £Ky = Ky — Rij,

where we have used the relation (7. 8). Thus, we have the

Theorem 7.2. When an areal space A™ of the submetric class admits a proper
infinitesimal homothetic transformation, the Lie derivative of the curvature tensor Ky
is given by (7. 10).

On the other hand, if the space A{™ is the Riemannian space, £C!} =0 by
virtue of the theorem 6. 4, and consequently, from (7. 9), £K/;;=0. Hence, the Lie
derivative of the curvature tensor K/}, vanishes in the case, when an 4{™ is a Rieman-
nian space admitting a proper infinitesimal homothetic transformation.
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Conclusion. In the author’s view, it is worthwhile essential to point out some
characteristic properties of the homothetic transformations in the space under con-
sideration, as it leaves the general discussion very interesting for the researchers of
geometry by stand point of view that for the case of parameters m equal to one,
the m-plane element p; reduces to X, and the tensor C;;;i=1 g;;:§ of A{™ becomes
C.’ﬁ‘:'} (')g,-_,-/afc", and £C“‘, :=£ij;‘ (for x= 1).

Thus, evidently, our space A is now a Finsler space in particular. In such
a case, it can obviously be seen with ease by putting m=1 and making the suitable
changes in the results, almost all the theorems of this paper are transformed into the
corresponding theorems holding good in Finsler spaces.

Hence, conclusively for m=1 in an areal space of the submetric class admitting
proper infinitesimal homothetic transformations, the present theory becomes to
coincide with the theory of homothetic transformations in Finsler spaces studied
by Takano [3]. In the case £C;;,;=0, the theory of homothetic transformations in
an A coincides with the corresponding theory of homothetic transformations in
Riemannian spaces studied by YAno [2].
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