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Statistical inference for multidimensional
AR processes

By GYULA PAP (Debrecen) and KATALIN VARGA (Debrecen)

Abstract. It is shown that the suitably normalized maximum likelihood estima-
tor of some parameters of multidimensional autoregressive processes with coefficient
matrix of a special structure have exactly a normal distribution.

1. Introduction

Consider the 2–dimensional real–valued stationary autoregressive pro-
cess X(t), t ≥ 0, given by the stochastic differential equation (SDE)

(
dX1(t)
dX2(t)

)
=

(−λ −ω
ω −λ

)(
X1(t) dt
X2(t) dt

)
+

(
dW1(t)
dW2(t)

)
,

where W (t) = (W1(t),W2(t)), t ≥ 0, is a standard 2–dimensional Wiener
process and λ > 0, ω ∈ R are unknown parameters. This process is a
so–called 2–dimensional Ornstein–Uhlenbeck process.

Now consider the following statistics:

s2
X(t) =

∫ t

0

(X2
1 (u) + X2

2 (u))du,

rX(t) =
∫ t

0

(X1(u) dX2(u)−X2(u) dX1(u)).

As it is known the maximum likelihood estimator (MLE) of the parameter
ω is given by

ω̂X(t) =
rX(t)
s2

X(t)
,
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and the following holds

sX(t)(ω̂X(t)− ω) D= N (0, 1) for all t > 0,

where D= denotes equality in distribution. This result was formulated
in Arató, Kolgomorov, Sinay [2], and gives not only an asymptotic
property but an exact distribution.

We are interested in the multidimensional generalization of the above
result. Let X(t) = (X1(t), . . . , Xd(t))′, t ≥ 0, prime means transposed, be
the d–dimensional process given by the stochastic differential equation

dX(t) = AX(t)dt + dW (t), X(0) = 0,

where W (t), t ≥ 0, is a standard d–dimensional Wiener process with in-
dependent components and A is a d × d matrix. The following question
arises: what type of conditions should be assumed on the matrix A in order
that the suitably normalized MLE of its certain entries will have exactly
a normal distribution?

G. Pap and M. C. A. van Zuijlen [6] studied d–dimensional processes
of the special form

(1) dX(t) =
(
−λId +

∑m

i=1
ωiCi

)
X(t) dt + dW (t), X(0) = 0

where Id is the d × d unit matrix, λ, ω1, . . . , ωm ∈ R are unknown pa-
rameters and C1, . . . , Cm are fixed d × d skew–symmetric matrices, i.e.,
C ′i = −Ci, i = 1, . . . , m. The maximum likelihood estimator of ω =
(ω1, . . . , ωm)′ is given by

ω̂X(t) = σ−1
X (t)rX(t),

where σX(t) is the m×m matrix

σX(t) =
(∫ t

0

〈CiX(s), CjX(s)〉ds

)

1≤i,j≤m

,

and rX(t) is the m–dimensional column vector

rX(t) =
(∫ t

0

〈CiX(s), dX(s)〉
)′

1≤i≤m

.

In [6] it is proved that

(2) σ
1/2
X (t)(ω̂X(t)− ω) D= N (0, Im), for all t > 0,
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if conditions (C1)–(C3) are satisfied, where
(C1) C ′i = −Ci, i = 1, . . . , m,
(C2) (CiCj + CjCi)Ck = Ck(CiCj + CjCi), i, j, k = 1, . . . , m,
(C3) (CiCj + CjCi)(CkC` + C`Ck) ∈ L(CuCv, 1 ≤ u, v ≤ m),

i, j, k, ` = 1, . . . , m,
where L(CuCv, 1 ≤ u, v ≤ m) denotes the linear hull of the matrices
CuCv, 1 ≤ u, v ≤ m. The main purpose of this paper is to show that the
condition (C3) is superfluous.

Theorem. Let X(t), t ≥ 0, be the process given by (1). Let us
suppose that the conditions (C1) and (C2) are satisfied. Then (2) holds.

In Section 2 some preparatory lemmas are given. We prove the The-
orem in Section 3. Section 4 contains some special cases. It should be
remarked that we consider only processes X(t), t ≥ 0, with initial value
X(0) = 0, but the results can be extended for processes with random ini-
tial value X(0) = ξ having absolutely continuous distribution which does
not depend on the parameter ω, as in [6]. This extension of the results
cover the stationary solution of the SDE (1).

2. Preliminaries

We shall make use of the following explicit formula which is a special
case of Lemma 11.6 in [4].

Lemma 1. Consider a standard d–dimensional Wiener process W (t),
t ≥ 0. For all t ≥ 0 let B(t) and Q(t) be d× d matrices such that Q(t) is
symmetric, positive semidefinite and

(3) Tr
∫ T

0

(B(t)B′(t) + Q(t)) dt < ∞.

Then

E exp

{
−

∫ T

0

(∫ t

0

B(s) dW (s)
)′

Q(t)
(∫ t

0

B(s) dW (s)
)

dt

}

= exp

{
1
2

Tr
∫ T

0

B(t)B′(t)Γ(t) dt

}
,

where Γ(t), t ≥ 0, are negative semidefinite matrices determined by the
Riccati differential equation

Γ̇(t) = 2Q(t)− Γ(t)B(t)B′(t)Γ(t), Γ(T ) = 0.
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Let us denote the cone of the symmetric, positive semidefinite d × d
matrices by Cd. We shall also use that the distribution of a symmetric,
positive semidefinite d × d random matrix is uniquely determined by the
value of its Laplace transform on the cone Cd.

Lemma 2. If σ is a random matrix with σ′ = σ and σ ≥ 0 then
the distribution of σ is uniquely determined by the Laplace transform
ψ : Cd → (0,∞) given by

ψ(α) := E exp{−Tr(α′σ)} = E exp



−

d∑

i=1

d∑

j=1

αijσij



 , α ∈ Cd.

Proof. First we prove that for α ∈ Cd we have Tr(α′σ) ≥ 0. It is
well known that there is a matrix β ∈ Cd such that α = β2 = β′β. The
matrix βσβ′ is again symmetric and positive definite since

〈βσβ′x, x〉 = 〈σ(β′x), (β′x)〉 ≥ 0, x ∈ Rd.

Hence, indeed
Tr(α′σ) = Tr(β′βσ) = Tr(βσβ′) ≥ 0.

For fixed k ∈ {1, . . . , d} let us consider the matrix α(k) ∈ Cd with
entries

α
(k)
ij =

{
1 if i = j = k,

0 else.

Then Tr
(
(α(k))′σ

)
= σkk.

For fixed k, ` ∈ {1, . . . , d}, k 6= `, let us consider the matrix α(k`) ∈ Cd

with entries

α
(k`)
ij =

{
1 if i, j ∈ {k, `},
0 else.

Then Tr
(
(α(k`))′σ

)
= σkk + 2σk` + σ``.

Using the classical result on the Laplace transform of a random vector
with nonnegative coordinates we know that the joint distribution of the
random variables

(4) {σkk : 1 ≤ k ≤ d} ∪ {σkk + 2σk` + σ`` : 1 ≤ k < ` ≤ d},
is uniquely determined by the Laplace transform

ϕ(sk, 1 ≤ k ≤ d; sk`, 1 ≤ k < ` ≤ d)

:= E exp



−

d∑

k=1

skσkk −
∑

1≤k<`≤d

sk`σk`



 , sk, sk` ≥ 0.
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Clearly

ϕ(sk,1 ≤ k ≤ d; sk`, 1 ≤ k < ` ≤ d)

= E exp



−

d∑

k=1

sk Tr
(
(α(k))′σ

)
−

∑

1≤k<`≤d

sk` Tr
(
(α(k`))′σ

)




= E exp{−Tr(α′σ)} = ψ(α),

where

α =
d∑

k=1

skα(k) +
∑

1≤k<`≤d

sk`α
(k`) ∈ Cd.

Consequently the joint distribution of the random variables in (4) is
uniquely determined by the Laplace transform ψ : Cd → (0,∞) of the
random matrix σ, hence, the joint distribution of the entries of the matrix
σ is also uniquely determined by ψ : Cd → (0,∞) since there is a one-
to-one correspondence between the entries of σ and the random variables
in (4). ¤

3. Proof of the Theorem

The proof can be carried out as in [6]. We have to show only that for
all T > 0 the distribution of the symmetric, positive semidefinite random
matrix σX(T ) does not depend on the parameter ω = (ω1, . . . , ωm)′. Using
Lemma 2 it is sufficient to show that the Laplace transform

ΨT (α) = E exp



−

m∑

i,j=1

αi,j

∫ T

0

〈CiX(t), CjX(t)〉 dt



 , α ∈ Cd,

does not depend on the parameter ω. Using the notation

C :=
m∑

i=1

m∑

j=1

αijC
′
iCj ,

we have

ΨT (α) = E exp

{
−

∫ T

0

X ′(t)CX(t) dt

}
.
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Next we show that C is a symmetric, positive semidefinite matrix. We use
again that there exists a matrix β ∈ Cd such that α = β2 = β′β, hence
αij =

∑d
k=1 βkiβkj . We have

〈Cx, x〉 =
m∑

i=1

m∑

j=1

d∑

k=1

βkiβkj〈C ′iCjx, x〉 =
d∑

k=1

∣∣∣∣∣
m∑

i=1

βkiCix

∣∣∣∣∣

2

≥ 0,

thus C ∈ Cd, indeed.
Let

A = −λId +
∑m

i=1
ωiCi.

It is known that the solution X(t), t ≥ 0, of the SDE (1) can be represented
in the form

X(t) =
∫ t

0

e(t−s)AdW (s).

Consequently,
∫ T

0

X ′(t)CX(t) dt

=
∫ T

0

(∫ t

0

e−sAdW (s)
)′

etA′CetA

(∫ t

0

e−sAdW (s)
)

dt.

We will show that Lemma 1 can be applied with B(t) = e−tA and Q(t) =
etA′CetA. Clearly the conditions (C1) and (C2) imply

B(t)B′(t) = e2λtId

and AC = CA, hence

Q(t) = CetA′etA = e−2λtC,

and we conclude the validity of the condition (3). Applying Lemma 1 and
using the above formulae we obtain

ΨT (α) = exp

{
1
2

Tr
∫ T

0

e2λtΓ(t) dt

}
, α ∈ Cd,

where Γ(t), t ≥ 0, is defined by

Γ̇(t) = 2e−2λtC − e2λtΓ2(t), Γ(T ) = 0.

Consequently the Laplace transform ΨT does not depend on the parameter
ω and the proof is completed. ¤
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4. Special cases

We give some application of the Theorem.

Corollary 1. Consider the d-dimensional process X(t), t ≥ 0, given
by

dX(t) =
(
−λI +

∑m

i=1
ωiCi

)
X(t) dt + dW (t), X(0) = 0,

where

C ′i = −Ci, i = 1, . . . , m,

CiCj = −CjCi, 1 ≤ i < j ≤ m.

Then the maximum likelihood estimators of the parameters ω1, . . . , ωm are
given by

ω̂
(i)
X (t) =

r
(i)
X (t)(

s
(i)
X (t)

)2 ,

where

r
(i)
X (t) =

∫ t

0

〈CiX(s), dX(s)〉,
(
s
(i)
X (t)

)2

=
∫ t

0

|CiX(s)|2ds,

and
(
s
(1)
X (t)

(
ω̂

(1)
X − ω1

)
, . . . , s

(m)
X (t)

(
ω̂

(m)
X − ωm

)) D= N (0, Im),

for all t > 0.

Corollary 2. Consider the d-dimensional process X(t), t ≥ 0, given
by

dX(t) = (−λI + ωC)X(t) dt + dW (t), X(0) = 0,

where C ′ = −C.
Then the maximum likelihood estimator of the parameter ω is

ω̂X(t) =
rX(t)
s2

X(t)
,

where

rX(t) =
∫ t

0

〈CX(s), dX(s)〉, s2
X(t) =

∫ t

0

|CX(s)|2ds,

and
sX(t) (ω̂X(t)− ω) D= N (0, 1), for all t > 0.
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