Laplace —Stieltjes transform of Mikusinski operator functions

By LARRY W. WILSON

l.
Introduction

The purpose of this paper is to define and develop an integral which can be
used to generalize the Laplace—Stieltjes transform. This generalization will apply
to functions of a real variable which take their values in Mikusinski's [4] operator
space.

In [1] and [2] GeszTELYI defines Stieltjes integrals of operator functions. In [1]
he begins with the integral of f with respect to g where f is operator-valued and g
is numerical-valued and in [2] he defines an integral as the limit of a summation.
Each of these approaches seems indirect in trying to generalize the Laplace—Stieltjes
transform: hence we will define an integral of f with respect to g where f'is numerical-
valued and g is operator-valued.

1. The integral over a bounded interval

Definition 1. A function g(4, t) is of class H on [a, b]X[0, =) if for each 4 in
[a, b], g(4, t) is continuous in 7 on [0, =) and for each 7=0 there is an M such that
if 0=1,=T then the variation of g(4, t,) on [a, b] is less than M.

Theorem 1. If f(7) is continuous on [a, b] and g (4, t) is of class H on [a, b} < [0, =)

b
then h(r) = j f(A)d g(2, 1) is continuous on [0, ==).

Proor. Follows from a theorem in Hildebrandt [3, p. 78].

Definition 2. Operator function g is of class A on [a, b] if there exists an operator
P such that g(4)=P{q(4, 1)} on [a, b] and g(4, t) is of class H on [a, b] X [0, =). We
say P{q(4, 1)} is a representation for g(4) on [a, b].

Definition 3. If f(2) is continuous on [a, b] and g(4) is of class H on [a, b] with
representation P {g(/. )} then

b b
[ fGydg (i) = P{ [ f(yd;q(2. 1)}
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b
Theorem 2. If f(7) is continuous and g(2) of class H on [a, b] then f f(i)dg(4)

exists and is unique.

Proor. Existence follows from Theorem 1. For uniqueness we let g(1) have
representations P, {g,(4, 1)} and P,{q,(2, 1)} on [a, b]. Without loss of generality
we assume P, and P, are of class C (i.e. continuous on [0, =)). For i=1, 2 we have
gi(4, 1) is continuous in 7 for 1=0 for each 4 in [a, b] and it is easily verified that for
each t=0, P,(t—7)q;(4 7) is of uniformly bounded variation in 2 over [a, b] for 7
in [0, 7]. Therefore by a theorem in WIDDER [5, p. 25] we have

t b b t
[ Pit-7)a7 [ f()dq:.7) = [ f()d; [Pit—T)qi(h, T)dT; for i=1,2.
0 a a 0

Therefore,

b r X
P [ fd,q,G.0} = [ Pia—T)[ [ f()dsq,G T)|dT =
] 0 A
b 1
= [ 1@, [ P\(1—7)q,(, T)dT =
a 0
b [
% ff(;')dszz(r—f)qz(j,y)dy-z
a 0

b
= P {[ f(Dd;q:(, 7)}.

a

Lemma 1. If g(4. t) is of class H on [a, b]X[0, =) and x(7") is continuous on
[0, =) then h(i, t) = f x(t—=7)q (A, T)dT is of class H on [a, b] X[0, ==).
0
PROOF. Let P be any partition of [a, b], t=0 and 7 >t

.;: [h(Zis ) —h(Ai—y, 1) = 4:.: f |x(t—)||q(%is T)—q(Ai=1, T)|dT =
h

[1A

[ 4
M3 [ 146 7)=qlioy, 7)]dT =
0

M [(219Ci T) =gz, 7))dT =
0

[IA

= MVf'dfg
0

=MVT
Where M =sup |x(7)| for .7 in [0, T] and V is larger than the variation of ¢(, 7)
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in 4 over [a, b] for 7 in [0, T]. Further for each A in [a, b], h(A, t) is continuous
on [0, =) since if 7 =t=u=0and x(u—7) = x(t—F)+e(7,u) for all 7 in [0, ]
then
. & u
hG, ) =hGau)| = | [ x(t=T)q(h 7)dT — [ &(F, w)q(h, T)dT | =
]

u

A

1 1
MM, [ dT + M, [ |e(F;u)|dT;
" 0

where M, =sup |x(¢)| for ¢ in [0, 7] and M,=|q(4, t)| for (4, ¢) in [a, b] X[0, T].
Since (7, u) -0 as w—t uniformly for u, ¢ in [0, 7], we have left continuity for
h(4, t) at each . By similar proof we obtain right continuity. Therefore /1(4, 1) is of
class H on [a, b] X[0, ==).

Theorem 3. If f(4), f1(4) and f,(4) are continuous on [a, b), g(4), g,(2), g:(%)
are of class H on [a, b), ¢ an operator, and k a complex number then

b b
a) [ f)degG) = c [ f2)dg(2)
b b
b) [ kf()dg() = k [ f(i)dg(2)
b r b
) [ IDdg®) = [ A)dgN) + [ fDdg®) for a<r<b.

d) f (1) +/2(4))de(2) = f fi(G)dg(2) + f f2(2)dg(2)
and

&) [f(d(g,()+g:.() = [ f(dg,(h)+ [ f(2)dg: ().

ProOOF. The proofs of parts b, ¢, and d are trivial. Part a follows from the fact
that if p {g(4, 1)} is a representation for g(4) then cp {g(4, 1)} is a representation for
ce(A).

To prove part e we let g;(41)=p;{q:(4, t)} be a representation for g(2) on [a, b)
for i=1, 2 where p;=a;/c where a; and ¢ are of class C (continuous on [0, «)) and
¢=0. By Lemma 1 we have a,{q;(Z, 1)} is of class H on [a, b]X[0, =) for i=1, 2.

Therefore g,(2)+g,(2) has a representation of ‘i‘.{"l {g: (A, D)} +az{g.(4, r)]} on

[a, b] since class H is closed under addition. The conclusion follows.
We note that the integral is a generalization of the Riemann—Stieltjes integral.
L]

That is if g(2)={q(4, 1)} where g(Z, 1) is of class H on [a, b] then ff(A)dg(}.)z

b
= {f f(2)d,q(4, 1)} for all f continuous on [a, b].
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2. Limits

We use the following definition of limit which is similar to that of MIKUSINSKI
[4] for sequences of operators.

Definition 4. For F(b) an operator function, lim F(b)=a if there exists an

b—=o=

operator ¢ such that F(b)=q{f(b, 1)} for all b=N for some N=0, where f(b, t)
is continuous in 7 on [0, =) for each b=N and lim f(b, t)=h(t) almost uniformly

b—ec
on [0, =o).
This limit has the same properties as Mikusinski's sequential limits. In particular
it is unique and linear.

3. The improper Integral

Definition 5. Operator function g(4) is of class H on [a, =) if g(A)=p{g(Z, 1)}
where p is an operator and ¢(4, ) is of class H on [a, b] X [0, =) for all b=a. p {q(4, 1)}
is called a representation of g(4) on [a, =).

Definition 6. If f(7) is continuous on [a, =) and g(4) is of class H on [a, =) then
oo h
J 10)dgy = lim [ f)de(2)

provided the limit exists.
We note that Theorem 3 is easily extended to allow b= ==.
Theorem 4. If f(A) is continuous on [a, =), g(2) is of class H on [a, ==) and

oo

f f(2)dg(2) exists then g(1) has a representation p{q(i, 1)} on [a, =) such that

b b s
lim ff(i)dq()., t) exists almost uniformly and f fU.)dg(}.)zp{f fl2)d, q(7, f)}.

b=

PrROOF. Let ¢{g(4, t)} be a representation of g(2) on [a, ==). Then f f(A)deg(l) =

b
= lim c{f fA)d; q(4, r)} implies the existence of an operator p and a function
boo a

F(b, t) continuous in 7 on [0, =) for each b= N for some N =0 such that lim F(b, 1)=

h—=o=
b
=h(r) almost uniformly on [0, ==) and r{ff(_}.)d;_q(z‘.. r)} =p{F(b, 1)}. Let c=c,/e
and p=p, /e where ¢, p, and e are of class C (continuous on [0, ==)) and ¢=0. Then
b
e [ 140, O}=pi {F(b,1)}. Clearly lim p, {F(b, )}=p, {h(r)} almost uni-
a besoc

formly on [0, ==). Therefore
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[ fGyde(2) = pifelh(t)} =
; = p,/e{lim F(b, r)} =
b—=oo

= 1/e{lim p, (F(b, 1)}} =

b
e {lim e { [ f(d,q( )} =

b
= e{lim [ f()dze {g( 0}

Since ¢(4, 1) is of class H on [a, ==) X [0, =), ¢; {g(4, 1)} is of class H on [a, ==) X
%[0, =) by Lemma 1. Therefore l/e{c, {q(4, r)}} is the desired representation of
g(4) on [a, ).

4. The transform
Definition 7. If f(2) = f1(A)+if5(4) and g(4) is an operator function we take
b b b
[ fydg(3) = [ fi()de(i)+i [ f:(3)dg(2)

provided f,(2) and f;(4) are integrable with respect to g(4). We allow b= =< in this
definition.

Definition 8. 1If g(2) is of class H on [0, =) and r is a complex number such that
f e~ *dg(s) exists then we call this integral the Laplace—Stieltjes transform of

0
2(2) and denote it as L(g(2)).
That the transform is well defined linear, and a generalization of the usual
Laplace—Stieltjes transform follows from the properties of the improper integral.
Using the definition of Mikusinski for the continuous derivative g'(2) of operator
function g(2) for interval [0, ==) we have the following theorem.

Theorem 5. If g(4) has a representation p {q(Z, 1)} on [0, =) such that q;(2, 1)
is continuous on [0, ==)x[0, =), fme‘"‘d,-_ 2;(A, 1) converges almost uniformly for
0=t=< and lim e~*¢q;(1, 1)=0 Gafnmsf uniformly for t in [0, =) then

" L(g'(3) = — &' O+ rL(g(2).

PROOF. ’ e~ *d,q, (A1) =
Ul

b
= lim [c" a. (2 )o+r f e~ *q,(4, r)cf,;]
0

[ p—_—
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= —q4(0,1)+rf e~*dq(i 1)

(-4

f e *d,q(4,t) exist almost uniformly on [0, =) since f e *dgq,()t) and

Ilm e *g, (b, 1) exist almost uniformly. Hence

h—oa

L(g W) = p{~¢:(0,0)+r f e *dq(i, 1)} = —g"(0)+rL(g(%).
(4]

5. Transforms of specific function

Consider the heaviside function

0. 05:52}

Theorem 6. If H(2)={H,(1)} then L(H(%)) = S:_lr
=t=A

Proofr. H; = s{hy(A, 1)} where hy(Z,1) = LE’; 0)«::
Clearly h,(4,t) is of class H on [0, b]X[0, =) for all =0, therefore

fe“’a’,-_H(l) = s{fhe"—'d,;h,(i.!)} = s{g,(r, 1)}
0 0

where
]
—  I=bh
r L]
gb(r")‘: - br
e~ —1
, b=t

I

g,(r, 1) is continuous for ¢ in [0, =) if r+0 b=0. Further for T=0 if b=7 and ¢ in
[0, T] then
=-r__ ]

e
1) = ———
g(r. 1) =

and g,(r,t) has a uniform limit as b ==, Therefore

- e-lr_
—ir . s e —— -trl
ﬁfe d, H(%) s{ - } () = —
if r=0. If r=0 for =0 we have

b b
Je#duGy = [dH@G) = s{f,(1)}
0 0
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where f,(1) = [:;’ Li?] is continous for b=0, and t=0 and lim f,(1) = —1

almost uniformly on [0, =). Therefore

i B ) SR )
0 &3 - & § _S+!'

since r=0.

Next we consider the translation operator h(4)=s{H,(1)}.

Corollary 8a. L(h(2)) = s:-sr for all r.

ProOF. Follows from the linearity of the transform and Theorem 6.

6. Application

We define the inverse transform by L~'(h(r))=g(4) if L(g(4))=/h(r), and note
that the transform may be used to solve operational differential equations.
As an example consider x"(4) = —sx’(4). Proceeding formally and using Theo-

rem 5 we obtain L(x(4)) = %+% where 4 and B depend on x’(0) and x"(0).

Taking the inverse transform we obtain x(4) = Ai—BH(4).

II.
Introduction

In I. we defined a Laplace—Stieltjes transform for operator valued functions of
a complex variable. We will extend this work further by considering convergence and
operational properties for the transform.

1. Convergence theory and order properties
Notation
If we write L(g().))=p{f e~ *dq(i, r)} exists from some r then g(4)=p {q(2, 1)}
0
for 2€[0, =), where p is an operator, g(4, 1) € H on [0, =) X[0, ==) (i.e. on [0, b] X
X [0, ==) for all 5=0), and f e~*dq(4, t) exists almost uniformly with respect to ¢
o0
on [0, ==).
We note that the existence of the transform implies the existence of operator
p and function g(Z,r) with the above properties by Theorem 4 and Definition 8
in L.

We have the following generalization of the usual theorem concerning the region
of convergence of the transform.
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Theorem 1. If L(g(4)) =p{f e~ *dq(2, l)} exists for ro = ao+iby then
1]
L(g(2)=p {f e~ *dg(, I)} exsits for all r = a+ib with a=a,.
0

Proor. Let B(u,t) = f e~*odq(J, 1) and T=0. Since lim B(u, t)=h(t) uni-
0

formly on [0, 7] and ¢(4, 1) is of uniformly bounded variation in 4 on any interval
of the form [0, N] for ¢ in [0, 7] and continuous in 7 on [0, 7] for each A=0, there
exists a J>0 such that [B(b, 1)|<J for all (b, 1) €[0, =)X[0, T]. Further,

b b
[e#dq.1) = [ e*r=d;, B4, 1) =
0 0

b
= =% =r) B(b, 1)+ (r—ro) [ e~ **~"B(4, 1)dA.
0

Since a=ayand |B(b, 1)|<Jfor (b, 1) [0, ==) X [0, T], we have e~ >~ B(b, t)~0
uniformly on [0, 7] as b —==.
Also for ¢€[0, 77,

L= -] [= =]
’ 2 i 5 J
f e~ Alr=ro) B(j, r)dz.; =J f e~Ar-rl|J} = pr - g~ MHa=ao)
5 b

which approaches 0 as b -+ ==. Therefore f e~*d,q(4, t) converges almost uniformly
0

on [0, =) for a=>a,.
Theorem 2. If L(g(7) = p{ [ e~*dg(2, 1)} exists for r=a-+ib then
0

(1) a=0 implies lim q(i,t)e~**=0 almost uniformly on [0, =)

and

(2) a=0 implies 1im q(2,1) = q(==, 1) exists and lim (q (o=, 1) —q (4, 1))e~* =0
A—=oo

-

almost uniformly on [0, ==).

PrROOF. If a=0 let B(u,t) =fe"“’d,‘,q(u',f) then
0

q(A, 1)—q(0,1) = fdiq(ﬁ.,!)= fe"‘dnB(u,t).
] 0
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Integrating by parts, multiplying by e~"* rearranging and taking the limit of both
sides of the equation gives us

lim (q(4,1)—q(0,7))e "* = B(==,1)— lim re"“'fe’“B(u du =

A=eoo eyl

= lim re "% fe’"[B(oo 1)~ B(u, )] du.

Awe

Since _lim B(A, t)=B(==, t) exists almost uniformly on [0, =), for ¢=0, 7=0

1 here exists a J such that if A=J then

\B(A, t)—B(==,1)|=¢ for all 1[0.T). For A=/,
i J A
[ &*(B(==,1)— B(u, 1))du = [ e*(B(==, 1)~ B(u.1))du+ [ €"(B(=,1)— B(u,1))du.
0 0 8 |

However,

g~ fe’“(B(m 1)—B(u,1))du = |rle”*e* MJ,
where M is an upper bound of |B(=, t)—B(u, t) for 0=u=J, 0=(=T. Also,
i A 1
f e"(B(e=,1)— B(u, 1))du = f e“edu = %s.
J J

Chdose K=J such that if 2=K then |rle="*¢* MJ<¢. Then for A=K, t€[0, T]
we have

' M f €"(B(==, 1) — B(u, r))du = e:+-[g— E.

0

Therefore lim (g(4,1)—¢(0,7))e"* = 0 and hence lim g(4,1)e~* = 0.

A==oo A==
If a<0 by Theorem 1 we have L(g(4)) exists at =0 or f d,q(A, 1) = q(oo, 1)+

0
(—g(0, 1)) almost uniformly for ¢ £[0, =-). Therefore ¢(==, 1) exists. Further since a<0.

g(e=1)—q(s 1) = [ duqu,1) = [ ed,B(u,1) = e*B(J, 1)—r [ e B(u,t)du.
E i i

Therefore
lim (q(==, t)—q(4,1))e™" = B(s=,1)— llm re‘”f e B(u, t)du =

[

= lim re=* j e™(B(ce, 1)— B(u, t))du.

A

For e=0, T=0 we choose J as before such that if A1=J,
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|B(ss, t)— B(A, t)| <& for 0=t=T. Then for i=/J,

Ea"e""“f ¢"(B(==,t)—B(u,1))du = fr!e“”‘af edu = %}- e
. p 4

Therefore lim [(g(s=, ) —¢(0,1))e~*| = 0 and hence lim (¢(=, 1) —¢(0,1))e=* =0

A—~oo A—~oo
almost uniformly on [0, ==).
Definition 1. If a is any real number, g(2) an operator valued function is said
to be of order a* if there is an operator p such that g(1)=p {q(4, 1)} where g(i.1) € H
on [0, =) X [0, =) and |g(4, 1)|=m(t)e** where m(t) is bounded on [0, 7] for all
T=0,

Theorem 3. If g(2) is an operator function of order ¢** then L(g(%)) exists for all
r = c+di, with ¢=a.

PrOOF. Let g(4)=p{q(4, t)} where g(4, t) has the properties of ¢(Z, t) in defini-
tion 1. For T=0,

R R
fe‘*"diq(l, t)=q(R,t)e R —q(0,1)+r f e~ *q(i, t)da.
(1] (1]

But |¢(R,t)e "R = m(t)e"Rle ™R = Mye~ "R where M+ is an upper bound for

m(t) on [0, T). Therefore lim g(R,t)e~"® = 0 uniformly on [0, 7). Further
R-==co

e—R{c-u}__ l

R R
e':"'q(;t,fﬂd;- = e~ Me=Om()dl = My—7——
5” of , T —(c—a

oo

Therefore f e *q(4, t)di and hence f e~*d.q(/, t) converge almost uniformly
0

0
for 1€][0, ==).
Theorem 4. If lim g(7)=g(<=) exists and g(2)—g (=) is of order e" then L(g(4))

exists for all r = c¢+id with c=a.
PROOF. L(g(A)—g(==)) exists by Theorem 3.

oo oo

L(g()—g(=) = [ e *d(2()—g(=)) = [ e *dg(?) = L(2(3)).
0

0
Theorem 5. [/ L(g(4)) = p{f e~ *d; q(4, r)} exists for r = a+bi then
0

1) a=0 implies g(7) is of order ¢** and
2) a=<0 implies g(A)—g(=°) is order e**.

ProoF. By Theorem 2 for 7=0 there is a J such that if 2=J then for 7 €[0, 7],
lg(2, t)e=**|=1. Further |g(/,t)|<=M for J€[0,J], t€[0, T] since g(4, t) is of uni-
formly bounded variation in A on [0, J] for ¢ €[0, 7). Let m(T)zlub{M“q(A, 1)|=
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=Me* for 4=0, t€[0, T)} then |g(4, t)|=m(t)e** and m(t) is bounded on every
bounded interval [0, 7.
The proof of part 2 is similar and will be omitted.

Theorem 6. If L(g(4)) = p{f e~ *dg(2, r)} exists for some r = a+bi and
- 0
h(r,1) =f e *dg(i,t) then
b

) If a=0 hir,t) =r [ e~*q(. 1)di—q(0,1) and [ e=*q(i, 1)d
0 0

converges absolutely and almost uniformly for t €[0, <=) for all r = c+di with ¢=a, and
2) if a=<0 h(r.1) = q(==, )—q O, 1) +r [ e~ *(q(h t)—q(c, 1))d
0

and f e~ *(q(i, t)—q(==, 1))di converges absolutely and almost uniformly for

0
1[0, <) for all r = c+di with ¢=a.
PrOOF. If a=0, by Theorem 5, g(4) is of order ¢**, and in the proof of Theo-

rem 3 we have already proven that h(r. 1) = r f e~*q(i, t)di—q(0, 1) and that
0

the integral converges absolutely and almost uniformly.
If @a<0, after using Theorem 5, the proof is similar to that of Theorem 3 and

will be omitted.

Definition 2. 1f L(g(4)) = p{f e *d, q(4, t)}cxisls foreach r € 4 we say L(g(4))
0

exists uniformly on A if f e *d,q(4, 1) converges uniformly for r€A4 and almost
0
uniformly for 1[0, ==).

Theorem 7. If L(g(4)) =p{f e‘*"’djq(ﬂ.,r)} exists for ro = ag+byi, H=0
0

and K=1 then L(g()) exists uniformly on A = {r|r = a+bi such that |r—r, =
= K(a—ay)e"“~ and a=>a,).

PrOOF. If r = a+bi€A and a=a, the L(g(%)) exists by Theorem 1 and if
a=a, then r=r, and L(g(4)) exists. For £=0, 7>0 we must show the existence of

R, such that if R=R,

!f e"’d;q(i,r)i‘:a forall ré4 and 1€[0, 7).
R ;

Let B(/, 1) = f e~ *od,q(4, 1), since B(e=, t) exists uniformly on [0, 7] pick Ry=H
0
such that
[B(w, t)—B(u, t)| = ¢K if w,u=R, for all ¢t in [0, T].
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For R>R,, r = a+bic A with a=a, we have

[ e#diqli, 1) = | [ e"“""9d,(B(4, 1)~ B(R, 1)) =
R R
= |r—ro| [ e7*¢="||B(A, 1)~ B(R, 1)|dA=
R

= Ir—rolstf e~(@a=a)ig) <=
R

e—{a~ao)R

é K(a——ag)em“_“")a/K T g
a_ag

= g,

since H=R and a=a,. If a=a, then
| [ e"*dyq(i, 1) = |B(=>, 1)~ B(R,1)| = &/K<e.
. _

The above inequalities are clearly independent of 1[0, 7.

Definition 3. L(g(4)) =p{f e“'“'daq[).,r)} exists absolutely for some r if
o
f e~ "d.q(/,t) converges absolutely and almost uniformly on [0, ).
0

Theorem 8. If L(g(7)) = p{ f e *d,q(4, f)} exists absolutely for r = a+bi
0
then it exists absolutely and uniformly for all r = c+di with c=a.

PrOOF. Let Vgq(/, t) be the variation of ¢(u, t) for 0=u= /2 for each 1=0, then

for T=0, =0 there is an R such that f e~*d.Vq (2, t)=e for t [0, T]. Therefore
R

if c=a, r = c+di then [le=*|d,Vq(i, 1)< for all 1[0, T).
R

2. Operational properties

Theorem 9. If L(g(4)) = p{ f e~ “dq (4, r)} = h(r) exists for some r, ¢=0
0

then L(g(Z/c)) = h(cr).
PrOOF. g(4/c)=p{q(i/c, 1)} and g(i/e,t)€ H on [0, ==)>[0, ==). Using uc=A4
we obtain

p{éfme""d;,q(lfc, t)=p {jee'“”d,,q(u, !)} = h(er).
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Theorem 10. If L(g(4))=h(r) exists for r = a+bi then for r = c+di, c=>a, and
k any positive integer

oo

Ko@) = [ (=) e dg(h).
0

ProOF. Let L(g(4) = p{f e *d q(4, r)} exist for r = a +bi and h,(r,t) =
(1]

o

)k
= f e *d,q(4,1). By Theorem 5 in WIDDER [5] we have ;;r,\_ (hy(r, 1)) =

0

oo

= f —(4)e=*d;(q(4, 1)) for each t=0.
0
>h, . . ' y 5 T -
We know Ik is continuous as a function of r since the TSy exists. We need

only show the almost uniform convergence of this integral to get that it is continuous
as a function of r.

We consider the convergence problem for k = 1.

i) If e=a=0 we have

[ (e #diqG.1) = —ie~"q(, D5 — [ q(4, 1)d;(—ie=*).
0 (]
But Ze * g(/, t)—0 almost uniformly for 7€[0, =) as i< and

~ [ q.ndy(—ie*) = [ q(h.t)ye~*di—r [ ig(i. 1)e " dj.
0 0 0
'However f q(4, t)e=?rd). exists almost uniformly on [0, =) by Theorem 6. By
0

Theorem 5 [ [ze~*q(J, 1)|di. = [ Je~*m(t)e*d}. where m(t) is bounded on [0, T]
R R
for any 7=0. The integral on the right converges to 0 as R — == uniformly on [0, 7T].
Therefore f ie~*q(4, t)di converges almost uniformly on [0, =).
0

ii) If c=a=0 then L(g(4)) exists for r=a, for some 0<a, <c and the problem
reduces to case i).
iii) If a=0 and a=c then

f (—;v)f'_}"d;‘ﬂf‘-,- !) :f (_l)e—irdj‘(q()‘! r)""‘;(m9 r))
0 0

and the proof is as in case i) with ¢(4, ) replaced by q(4, t)—q(==,t).
Using induction and similar arguments to those in the case of k=1 it is easily
shown that convergence is almost uniform on [0, =) for all positive integers k.

k
Multiplying z—fk' by p completes the proof.
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b
Definition 4. If g(4) € H on [a, b], f(2) € C[a, b] then fg(i)d/'(i) = g(b)f(b)—

b &
—g(a)f(a)— ff(l)dg(i). If g(==), f(==) and f f(2)dg(2) extists we allow b=
in the above definition (which of course chang“es [a, b] to [a, ==)).

Theorem 11. If L(g(4))=h(r) exists for ro = a+bi then

1) a=0 implies L[ f q(u)du) = —&!rf-Lng). for
0 0

r=r0

and

h(ro) + g(0) — g(=) =
e e Jor r=r.

2) a<0 implies L|( f (g(2)—g(==))dz) =
Proor. Let h(rg) = pl{h,(ro,1)} where g(1) = p{q(A 1)} and

hy(ro, 1) = f e odyq(A,1) =
0
=ro [ e~q(), 1)di—q(0,1) =
0

o A
=ro [ e~d, [f q (2, 1)di] —4(0, 1),
0 0

and

almost uniformly on [0, =). Then

p{)’ll(ro,r)"l'Q(Os__t)} - fwe-—ﬁro‘ﬂ_ (p{jjq(}., f)d;t}]

ro

h(ro)+2(0) f e=#rod; (p{iq(i. 1)~ ffldm(? ny)=

Fo

oo

= [ e #rd;(ig(2) - j 2dg (7)) = fme""f’d[ f g(A)d7).
0 0 0

0
The proof of 2) is similar and will be omitted.
Theorem 12. If L(g(2))=h(r) for some ro = a+ib, then

1) a=0 implies L(/(g(4)—g(=))) = M —h(r) for r = c+di with

c=a and
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2) a<0 implies L(A(g())—g(=)) ="+ (:’) =30 963 7 Emobdt
with a<=c<0.

PROOF. If c=a=0 let h(r) = p{ [ e *dq(, 1)}, then ig(2)=p{iq(’, 1)} and
0

p{fae';’di()uq()., :))} = p{fae"""q(i, 1)dA+ fme‘*",ld;q()., N} =
0 0 [i]

LGEY R

by Theorems 10 and 11.
If a=0 the proof is similar to the above.
Theorem 13. If L(g(2)) = h(r) for r = ay+ib, then

rh(r—a)+ ag(0)
r—a

1) a=0 implies L(e* g(4)) = for Re(r—a)=a,

and
2) a=0 implies L(e"(g(2)—g(=)) = ’_”.(’;“):"}“_Eg‘go) m | GO PP
=Re (f‘ —a)= 0.

PrOOF. Let h(r) = p{ [ e“'dq(i,r)} and gy =0 then
0

fwe**’di(e‘“‘q(}_, )= [ e"‘"“"d,;q().,1)+afwe“""‘di[fq(2, 1)di).
0 ] 0 0

Multiplying by p and using Theorem 11 completes the proof of part 1. The proof of 2)
is similar and will be omitted.
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