Additive relations

By A. SZAZ (Debrecen) and G. SZAZ (Budapest)

Introduction

To give the concept of additive relations, we begin with some facts from analysis
and algebra (see [5] and [6]).

A subset § of the Cartesian product of two sets is called a relation. The domain
and the range of S are {x:3y:(x,y)€S} and {y:3x:(x,y)<S}, respectively. The
image of a set 4 under S is S(A4)={y:3x€A:(x,y)€S}. S is said to be a func
tion if (x, yy), (x, ) €S implies y,=y,.

A subset of an algebraic structure X is called a complex of X. For every x€X
{x} is identified with x. If 4 and B are complexes of X and # is an operation in X,
then A«B = laxb:ac A, bcB).

In § 1. we define: A relation S with domain an additive groupoid X and range
contained in an additive groupoid Y is additive if for all @, bc X

S(a+b) = S(a)+ S(b).

In § 2. we deal with the representation of additive relations in the form S(x) =
= f(x)+ S(0) and some applications of them.
Finally, in § 3. real-valued additive relations are investigated.

§ 1. The concept of additive relations

Definition 1. 1. Let X and Y be two additively written groupoids.
A relation S with domain X and range contained in Y is called an additive rela-
tion from X into Y if for all a,bcX

S(a+b) = S(a)+S(b).

An additive relation from X into X is simply said to be an additive relation
on X.

Example 1. 1. The equality in an additive groupoid is a trivial additive rela-
tion on it.

Example 1. 2. Let R be the set of all real numbers. Then the usual ordering on
R is an additive relation on R.
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Example 1. 3. Let X be a set, and Z(X) be the family of all subsets of X. If the
addition in 2(X) is defined by the set union, then the set inclusion in Z(X) is an
additive relation on 2(X).

Example 1. 4. If fis an additive function from a groupoid X into a commuta-
tive semigroup Y and C is a complex of Y such that C+ C = C, then the relation S
defined by S(x) = f(x)+C is an additive relation from X into Y.

Remark 1. 1. If X, Y are additive groupoids and S is a relation with domain
X and range contained in Y, then S is an additive relation from X into Y iff the
function @g defined by ¢g¢(x)= S(x) for x€X is an additive function from X into
#2(Y), i.e., a holomorphic mapping of X into 2(Y).

Theorem 1. 1. Let S be an additive relation from a group X into a group Y.
Then S is a function iff S(0)=0.

ProoF. Obviously, if S is a function, then S(0)=0. Conversely, if S(0)=0,
then from
S(x)+S(—x) = 5(0)

it follows that for each x £.X S(x) has only one element.

Theorem 1.2. Ler S and T be additive relations from a groupoid X into a commu-
rative semigroup Y. Then the relation S+ T defined by

(S+T7T)(x) = S(x)+T(x)
is also an additive relation from X into Y.

ProoOF. Trivial.

Remark 1.2. It can be shown that if S, and S, are additive relations from a
module X into a module Y, then

= {(-"l + X3, Vi +32) (X, 1) €Sy, (x3,),)€ Sz}
1s also an additive relation from X into Y.

Lemma 1. 1. Ler S be an additive relation from a groupoid X into a groupoid Y.
Then for all A, BC X
S(A+B) = S(A)+ S(B).

PROOF. For A, Bc X yeS(A+B) < JacA and béB:yeS(a+b) < JacA
and beB:yeS(a)+ S(b) < vy S(A)+ S(B).

Theorem 1. 3. Let S be an additive relation from a groupoid X into a groupoid Y,
and T be an additive relation from Y into a groupoid Z. Then the composite relation
To S is an additive relation from X into Z.

ProoF. This is an immediate consequence of Lemma 1. 1.
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§ 2. Representation of additive relations

Definition 2. 1. A function f defined on the domain of a relation S and con-
tained in S is called a choice function or a selection for S.

Remark 2. 1. Note that every choice function for a relation is a choice func-
tion for the family of all relation classes of that, and conversely every choice function
for a family of sets {4;};¢, is a choice function for the relation {(i,a):i€l, acA;}.

Theorem 2. 1. Let S be an additive relation from a group X into a group Y.
Assume that f is a selection for S. Then for all x € X

J(x)+80) < Sx) € —f(—x)+S(0)
and
S$(0)+f(x) < S(x) < S(0)—f(—x).
Proor. Forall x£X

f(x)+S(0) < S(x)+S(0) = S(x)
and :
f(=x)+S(x) < S(—x)+S(x) = 5(0),

i.e.,, S(x) < —f(—x)+ S(0).
The proof of the other inclusion is quite similar.

Corollary 2. 1. If Sis as in Theorem 2. 1., then S(x) has the same cardinality
for each x € X.

Definition 2.2. Let S be an additive relation from a groupoid X" with zero
into a groupoid Y.
A selection f for §, satisfying at least one of

S(x) = f(x)+5(0) and S(x) = S(0)+f(x)

for all x € X, is called a representing selection for S.
A representing selection f for S, satisfying

f(x)+S5(0) = S(0)+f(x)
for all x £X, is said to be normal.

Corollary 2.2. If S is as in Theorem 2. 1. and f is an odd selection for S,
then f'is a normal representing selection for S.

Remark 2.2. If S is as in Theorem 2. 1. and 0£ S(0), then there is an odd
selection for S. _
To prove this, use S(x)+S(—x) = S(0).

Corollary 2.3. If Sis as in theorem 2. 1. and f'is an additive selection for S,
then fis a normal representing selection for S.

Lemma 2. 1. Let S be an additive relation from a group X into a group Y. Assume
that for some xo€X there exists yo € S(xq) such that —y,€S(—xg). Then

S(xg) = yo+S(0) = S(0)+y,.
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Proor. The inclusions

l _')"(}‘*'S(-\.O) C S(_"‘O)-‘.-S{'\‘O) S SIO)’
i.e.,
S(.\'D) e ]'{)+S{0)

and
Yo+ S5(0) © S(x5)+ S(0) = S(x;)

imply that S(xy) = y,+ S(0).
Similarly, from
. S(Xg)—Yyo © S(xg)+ S(—xp) = S(0),
ie.,
S(xy) < S(0)+y,

and
S(O) +y9 C S(O) + S(.\‘o) = S(.TO).

it follows that S(x,) = S(0)+y,.

Theorem 2.2. Let S be an additive relation from a group X into a group Y.
Assume that f is a selection for S such that — f(x) € S(—x) for all xcX. Then fis a
normal representing selection for S.

Proor. This is an immediate consequence of Lemma 2. 1.
Example 2. 1. Let Q be the set of all rational numbers and
S={(xy)ERXQ:x <y}
Then S is an additive relation on R, but there is no function / from R into R such
that for all x€R S(x) = f(x)+ S(0).

Theorem 2. 3. Let S be an additive relation from a group X into a group Y.
Then every representing selection for S is normal.

PrOOF. Suppose first that fis a selection for § such that for all xcX

S(x) = f(x)+ S(0).
From
S(0) = f10)+ S(0)

since f(0) € S(0), it follows that 0 5(0). Then there is an odd selection g for S.
Moreover, by Corollary 2. 2., g is a normal representing selection for S. Thus
we have
: f(x)+S(0) = 5(0)+g(x)
ie.,

S(0) =~ f(x)+ S(0)+g(x)
for all x € X. Therefore

S(—x) = S0)+2(—x) =—f()+SO)+g(x)+2(—x) = —f(x)+ S(0)

holds for all x € X. Hence, since 0 € §(0), it follows that — f(x) € S( —x) for all xcX.
Then, by Theorem 2. 2, fis a normal representing selection for S.
A similar proof can be given in the other case.
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Theorem 2.4. Let S be an additive relation from a group X into a group Y.
Then the following propositions are pairwise equivalent:

(1) a, —a < S(0) implies a=0;
(ii) There exists at most one representing selection for S,
(iii) Every representing selection for S is additive.

Proor. We will prove this theorem by showing successively that (i) implies (ii),
(i1) implies (iii), and finally that (iii) implies (i).

Suppose first that (i) is true and assume that f; and f; are representing selection
for S. Then 0€ S(0) and for all x€X

f1(x)+50) = f(x)+ S(0),
S(0) = —f1(x)+/5(x)+ 5(0).

Hence, since 0< 5(0), it follows that — f, (x)+ f5(x) and the opposite of that are
in S(0). Consequently, by (i) we obtain —f,(x)+f>(x) = 0, i.e., fi(x)=/5(x) for
all x€X.

To show that (ii) implies (iii), let f be a representing selection for S. Then for
each a, b X

S(a+b) = fla+b)+ S(0)
and
Sta+b) = S(a)+ S(b) = fa)+ S(0)+1(b)+ S(0) =

= fla)+ f(b)+ 5(0)+ S(0) = f(a)+ f(b)+ S(0),

where we used Theorem 2. 3 too. Hence, by (ii), we can conclude that f is additive.
Finally, to prove that (iii) implies (i), suppose that (iii) is true and a, —a ¢ S(0).
Then 0 5(0) and, by Lemma 2. 1, we have

S(0) = a+ S(0).

On the other hand, since 0¢€ 5(0), there is a representing selection f for S. Define
the function g by

f(x) for x#0
a for x=0.

Evidently, g is a representing selection for S. Then by (iii) it follows that g is additive.
Thus g(0)=a=0, and the proof is complete.

Corollary 2.4. If S is as in Theorem 2. 4., 0< S(0) and a, —a € S(0) implies
a=0, then there exists a unique representing selection f for S. Moreover, fis additive.

In the sequel we are going to deal with some applications of the results mentioned
above.

Theorem 2.5. Let X be and additive group and S be a relation with domain X
and range contained in X. Then S is an additive equivalence relation on X iff S(0) is a
normal subgroup of X and for all x <X

S(x) = x+ S(0).
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PrOOF. First, suppose that S is an additive equivalence relation on X. From
the additivity and the reflexivity of §, we can infer that S(0) is closed with respect
to the addition and 0 € S(0), respectively. Moreover, by Theorem 2. 2., the identity
function of X is a normal representing selection for S. To prove that every element
of §(0) has its inverse in S(0) let @ € S(0). Then, by the symmetry of S, we can infer
that 0 € S(a). Thus from

S(a)+ S(—a) = 5(0),

since we also have —a < S(—a), it follows that —a < S(0).
For the brevity, the proof of the converse is omitted.

Remark 2.3. Note that if S is a reflexive additive relation on a group X, then
S is transitive.

Remark 2.4. If S is an additive equivalence relation on a group X, then
every selection for S is representing selection for S.

Remark 2.5. Clearly, S is an additive equivalence relation on a group X
iff S is a congruence relation on it.

Example 2.2. S = {(x,y)€R*:y—x€Q} is an additive equivalence relation
on R.

Theorem 2. 6. Let X be an additive group and S be a relation with domain X
and range contained in X. Then S is an additive order relation on X iff S(0) is a non-
negativity domain of X and for all x € X

S(x) = x+ 5(0).

Proor. If S is an additive relation on X, then from the additivity and reflexivity
of S, by Theorem 2. 2, it follows that for all x€X

S(x) = x+5(0) = S(0)+x.

Hence for all x€ X —x+ S(0)+x < S(0). Moreover, by the additivity of S, we have
S(0)+ S(0) = S(0). To prove S(0)(—S(0)) =0, where —S(0) = {x: —x €S(0)},
assume that a < S(0) and a< — S(0), i.e., —a<5(0). Then, by Lemma 2. | and the
above representation of S, we have

5(0) = a+ S(0) = S(a).

Hence, since 0 € S(0), we can infer that 0 € S(a). Therefore, by the antisymmetry of
S, a€S(0) and 0€S(a) imply that a=0. Finally, to prove S(0)U(—S(0)) = X,
assume that a €X. Then, by the trichotomy of S, we have at least one of a€S(0)
and 0€ S(a). If ac S(0), then we are ready. If 0 S(a), then from S(a) = a+ S(0)
we can conclude —a€S5(0), ie., ac(—S(0)).

Conversely, if S(0) is a non-negativity domain of X" and for all x€X

S(x) = x+ 5(0),

then from S(0) N (— S(0)) = 0it follows that 0 € S(0). Now, from S(0)+ S(0) < S(0)
we can infer that
S(0)+ S(0) = S(0).
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On the other hand, since —x+ S(0)+x < S(0) for all x<X. we have

SO)+x < x+S(0)
and

x+S0) < S(0)+x,
ie.,

x+5(0) = S(0)+x

for x€X. Thus for each a, b X
S(a+b) =a+b+S(0) =a+b+S5(0)+S5(0) =
= a+S(0)+b+S5(0) = S(a)+ S(b).
No&, it is easy to see that S is an order relation too.

Remark 2.6. If Sis an additive order relation on a group X, then the identity
function on X is the unique representing selection for S.
To prove this, use Theorem 2. 4.

Remark 2.7. Clearly, if X and S are as in Theorem 2. 6, then S is an additive
order relation on X iff X with S is an ordered group.

In [1] C. BERGE has defined set-valued linear mappings. Here, we shall define
linear relations similarly.

Definition 2.3. Let X and Y be two vector spaces over the same field F.
A relation S with domain X and range contained in Y is called a linear relation
from X into Yif forall a,bcX and 0=/4¢ F

(1) S(a+b) = S(a)+ S(b),
(2) 0€5(0),
(3) S(ia)=/iS(a).

Example 2.3. Let X={f:fis a function from an interval of R into R having
primitives} and Y={f:f"€X}. Furthermore, define the addition and the scalar
multiplication in X" and Y on the usual way. Then X and Y are vector spaces over
R and the indefinite integral

[={(f, HeXXY:F'=f}

is a linear relation from X into Y.
The following representation theorem exactly characterizes linear relations and
is very useful for the investigation of set-valued linear mappings studied by C. BERGE.

Theorem 2.7. Let X and Y be two vector spaces over the same field F, and S
be a relation with domain X and range contained in Y. Then S is a linear relation from
X into Y iff S(0) is a subspace of Y and there exists a linear representing selection
for S.

Proor. First assume that S is a linear relation from X into Y. From the linearity
of S, we have
S(0) = 5(0)+ S(0),

0€S(0)
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and
S(0)=4S(0) for all O0=Ai€F.

Hence it is obvious that S(0) is a subspace of Y. Let B be a basis for X over F, then
for each x € X there exists a unique function «, from B into F such that

x= >a.lhb
bcB

Let ¢ be a choice function for the family {S(b)},c5, and define the function f by
f(x) = o (b)o(b).

bEB
Then f(b)=e¢(b) € S(b) for all b€ B. Moreover, since S(—5b) =— S(b), we also
have — f(b) £ S(—b) for all b<B. Thus, by Lemma 2. 1, it follows that for all b€ B

S(b) = f(b)+ S(0).
Hence for all x€X

S(x)=S§ (bé o, (b)b) = ”Z; S(2:(b)b) =b€Z; %.(b)S(b) =

= a.f.; % (b)f(b) + b.?,; %,(6)S(0) = f(x) + S(0).
Finally, it is clear that f'is linear.
The proof of the converse is simple and is omitted.

§ 3. Real-valued additive relations

Theorem 3. 1. Let S be an additive relation from a group X into R. Then exactly
one of the following alternatives obtains:

(A) inf S(x)=sup S(x) is an additive function from X into R;
(B) inf S(x) is an additive function from X into R and sup S(x) =+ for all
XeX;
(C) inf S(x) = —<= for all x€X and sup S(x) is an additive function from X
into R:

(D) inf S(x) = —== and sup S(x) = +== for all xcX.

PrROOF. Foreverya,bcX

inf S(a+b) = inf S(a)+inf S(b)
and
sup S(a+b) = sup S(a)+sup S(b).
In particular,
inf S(0) = inf §(0)+inf S(0)
and
sup S(0) = sup S(0)+sup S(0).

Hence we have exactly one of the following alternatives:

(a) inf $(0) = sup S(0)=0;:
(b) infSO)=0 and sup S(0) =+ ==;
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If (a) prevails, then S(0)=0. Thus, by Theorem 1. 1, § is an additive function
from X into R.
If we have (b), then from

inf $(0) = inf S(x)+inf S(—x)
and
sup S(0) = sup S(x)+sup S(—x)

it is quite obvious that for all x€X
inf S(x) # 4+ and sup S(x) = +-e=.

Thus we have (B).
A similar proof can be given in the case (C) and (D), respectively.

Remark 3. 1. Evidently, if S is as in Theorem 3. 1, then
T={(x, y):(x, —y) €S}
is also an additive relation from X into R. Moreover, for all x€X
inf T(x) = —sup S(x) and sup 7'(x) = —inf S(x).
Thus the investigation of the case (C) can be reduced to that of (B).

Theorem 3. 2. Let S be an additive relation from a group X into R and f be an
additive selection for S. Then the relations S, and S, defined by

S;()={yeSx):y=£(x)}
S, (x)={yeS(x):y=f(x))}

are additive relations from X into R. Moreover, S = S,\JS, and f = S, S,.
Proor. By Corollary 2.3, we have for all x€X

S(x) = f(x)+ S(0).

and

Then for all x€X
S;(x) =f(x)+S5,(0) and S,(x) = f(x)+ 5,(0).

Hence it is obvious that S, and S, are additive.

Remark 3.2. If S is an additive relation from a group X into R, having
additive selection and satisfying (D), then, using Theorem 3. 2 and Remark 3. 1,
its investigation can be reduced to that of two additive relations from X into R, having
additive selection and satisfying (B).

Theorem 3.3. Ler S be an additive relation from a group X into R such that
Jor some xy,€X inf S(x,) € S(xy). Then inf S(x) is the unique representing selection

for S.

Proor. From
S(xg) = S(xp)+S(0)

6*
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(c) inf S(0)
(d) inf S(0)

it follows that inf S(0)=0 and 0 € S(0). Then there exists a selection f for S such
that for all x€X

—oo and sup S(0) = 0;
—eco and sup S(0) = + <=,

S(x) = f(x)+ S(0).
Hence inf S(x)=/f(x) for all xcJX.

Corollary 3. 1. If S is an additive relation from a group X into R satisfying
(B) and £ is an additive selection for S, then f(x)=inf S(x) for all x£X.
To prove this, use Corollary 2. 3.

Theorem 3.4. Let S be an additive relation from a group X into R. Then 0 is
adherent to S(0) in R.

Proor. By Theorem 3. 1, we may suppose that we have the case (D). Assume
indirectly that the conclusion is false. Then for

z = sup {y€S5(0):y<0}
and
B = inf {y € §(0):y=>0}

we have a=0<pf. Let d=min {—a, f}. Then there are y,, y, € S(0) such that

a—d<y; =a and =y, < ﬁ-!-ﬁ.
Hence
a=a+f-8 <y, +y, =at+f+é =4

Consequently, y;+y,4 S(0). But this contradicts S(0)+ S(0) = S(0). and so the
theorem is proved.

Theorem 3.5. Let S be an additive relation from a group X into R such that for
some xo € X S(x,) has an interior point in R.

(i) If S satisfies (B), then for all x € X
inf {y:[y, +=) € S(x)} = inf S(x)+inf {y:[y, +=) = S(0)}.
(i1) If S satisfies (D), then S(x)=R for all x < X.

Proor. From
S(x0)+ S(—x,) = S(0)

it follows that S(0) has an interior point in R.
Assume first that (B) prevails. Then

S(0)+S(0) = S(0)
implies that for some y€S(0) [y, +==)< S(0). Let
ap = inf {y:[y, +=)c S(0)}.
Then (%, +<<)< §(0). Thus, for all x€X
(ag, +==)+S(x)  S(0)+S(x) = S(x).
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For x X, let
a, = inf {y:[y, + o) S(x)}.
Then for all x€X
2o+inf S(x) = a,.

On the other hand, for all xcX
(25, +22)+ S(—x) € S(x)+S(—x) = S(0).

Hence for all x€X
o +inf S(—x) = %,
ie.,
a,—inf S(x) = ay.

Consequently, z, = inf S(x)+2,.
Next assume that (D) prevails. Then

5(0)+ S(0) = 5(0)
implies that S(0)=R. Thus, from
S(x) = S(x)+ S5(0),

it follows that S(x)=R for all x€X.
From this theorem, we can easily derive the following results.

Corollary 3. 2. If S is an additive relation on R satisfying (B) and S has an
interior point in R, then there exists a number ¢ such that for all x¢X

inf {y:[y, + =) € S(x)} = ex+inf {y:[y, +=) c S(0)}.

Corollary 3. 3. If Sis an additive relation from a group X into R satisfying
(B) and for some x, £ X S(x,) is open in R, then for all x€X

S(x)=(inf S(x), +==).

Corollary 3.4. If S is an additive relation on R satisfying (B) and S is open
in R2, then there exists a number ¢ such that for all x€X

S(x)=(cx, +==).

Theorem 3. 6. Let S be an additive relation from a group X into R and denote
S(x) the closure of S(x) in R. Then

T={(x,y):x€X,y€ S(x))
is also an additive relation from X into R.

PROOF. Let a, h<X. It is easy to see that

S(a)+ S(b) c S(a+b).
To prove _
S(a+b)c S(a)+ S(b)
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assume first that S does not satisfy (D). If y € S(a+b), then there exists a sequence
¥, € S(a+b) such that y, —y. Since

S(a+b) = S(a)+ S(b)

there are sequences a, € S(a) and B,€ S(b) such that y, = «,+f,. The assumption
implies that a, and f8, are bounded, so they admit convergent subsequences %, and

B, Let « = lim o and f = lim B, . Then 2€8(a), BcS(b) and y = x+p, ie.,

y€S(a)+S(b).
Next assumgl?at S satisfies (D). If 04 S(0), then, by Theorem 3.4, S(0) is
dense in R, i.e., S(0)=R. Hence, using
S(x)+S(0)c S(x)
we obtain .ﬁf):R for all x € X. Finally, if 0€5(0), then there is a representing
selection f for S. Thus we have
S(a+b) = S(a)+ S(b) = S(a)+ S(0)+ f(b) = S(a)+f(b).

Hence it follows

S(a+b) = S(a)+f(b).
Since

0€S5(0) =—f(b)+S(b)= — f(b)+ S(b),
we can infer that

S(a+b)cS(a)+f(b)—f(b)+S(b) = S(a)+ S(b).

Corollary 3. 5. If S is as in Theorem 3. 6, then there exists a function f from
X into R such that for all xc X

S(x) = f(x)+ S(0).
To prove this, observe that 0 € S(0).
Corollary 3.6. If S is as in Theorem 3. 6 and S satisfies (B), then for all
XeX
S(x) = infS(x)+ S(0).

Remark 3. 3. It can be shown that if S is an additive relation on R, then the
closure of S in R? is also an additive relation on R.

Lemma 3.1. Let X be a vector space over a field F, B be a basis for X over F,
X, be the subspace of X generated by b ¢ B and Y be an additively written commutative
semigroup.

Assume that for each b€ B S, is an additive relation from X, into Y such that
Sy, (0)=S,,(0) for every b, , b, € B. Then there exists a unique additive relation S from
X into Y such that for all b€ B and x € X, S(x)=S,(x).

Proor. Denote a that unique function from X X B into F such that
x = 2 a(x, b)b.

beEB
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Let a relation S with domain X and range contained in Y be defined by
S(x) = 3 S,(a(x, b)d).
bEB

Evidently, for all b € B and x € X;, S(x)= S,(x). On the other hand, for each x,, x, €X
S(xl +x2) = 2 Sb(a(xl + X3, b)b) = Z Sb(ﬁ(xg B b)b+:t(x2. b)b) =
bEB beEB

= 2 Sp(a(xy,b)b)+ 3 Sp(x(x2,0)b) = S(x;) + S(x7).
beB bEB

Finally, to prove the uniqueness, suppose that S* is also an additive relation from
X into Y such that for all € B and x€X, S*(x)=S,(x). Then for each x€X

S$*(x) = S*( 3 a(x, b)b) = 3 S*(a(x,b)d) = 3 S,(a(x, b)b) = S(x).
beB beB beB
Theorem 3. 7. There exists an additive relation S on R, satisfving (D) such that
0 € 8(0), but there is no additive selection for S.
PROOF. Let B be a Hamel basis for R over Q such that 1 € B, R, be the subspace
=1
of R generated by b€B and s, = % b
+ k=0
Let S, be a relation defined by

S[li] =ms,+Z,
n!

where Z is the set of all integers and m €Z. It will be shown that S, is an additive
relation from R, =Q into R. To prove the correctness of the definition of S, , assume

m Hily
that —" = —5
n! n!

such that n,=>n,. Then

my | L n,: b
Sl[ﬂl!.] = m; S, +Z = ns nz! Sa, +Z =

!+ .+ (1, 1)!

n,!

m
= M, S,, +m, +Z =ms,,+Z = S[nz']

; : m
For arbitrary r,, r, € R, =Q we can assume no loss of the generality that r, = ';}TI'

m
and r, = — . Thus
n!

my +m,

Sl(’l""z):Sl[ -

] = (m;+m,y)s,+Z =

=mS,+Z+mys,+2Z = 5,(ry) +S,:(r2).

For 1=b¢€B, let the relation S, be defined by S,(x)=Z for x€R,. Clearly, for all
beB S, is an additive relation from R, into R. Using Lemma 3. 1, let S be that
unique additive relation on R such that for all b€ B and x€R, S(x)=S,(x). Then
S satisfies (D) and 0 € S(0).
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Finally, we shall show that there is no additive selection for S. Assume indirectly
that fis an additive selection for S. Then

f(]):n!f[%] and f[}:—!]ES[—;!-].

Since Oﬂsnﬂ-l— if n=3, we have for n=3

2
2 1
1nf{|a]:e€ S[?-]} =

/()] = n! f[%] = nls, =0+ 114 ...+ (n—1)!,

Therefore

what i1s a contradiction.
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