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1. Introduction

Several authors were interested in the connection between distributions and
operators. I. FENYO dealt with the connection of KorevaAr fundamental sequences
and the operators [3], and the relation between the distributions defined by SIKORSKI
and the super functions generated by sequences of operators [2]. Similar investiga-
tion can be found is the works of Foias [4] and of GEszTeLyi [6], the latter author
dealt with the algebrically integrable operators and showed that every distribution
— as an operator — is an algebrically integrable operator. The distributions defined
by L. ScHwARrTz with left sided bounded supports are close relation to operators.
J. WLOKA gave a necessary and sufficient condition for an operator to be a distribu-
tion having left sided bounded support [10].

This note is connected with the above mentioned results. We shall define a con-
tinuity property for operators (see 2.) — as a linear transformations of a certain
space — which, as we shall show in 3., is equivalent to be condition given by
Wiloka.

We remark that the topology which is defined in C7T y(see in [3]) is finer than
the topology of the test function space of distributions. In the second part of the
proof of theorem | we give a new proof of Wloka form of distribution operators.

In part 4 we shall deal with the t-invertable operators, with operators which
have t-continuous inverses as reciprocal inverses. Finally, in part 5, we shall investigate
some problems which can be solved very easy with operator method, but it seems
to be harder to attach in the distribution or classical function sense,

Through the paper we shall use the notations of operators found in the book
[9]; and the existence and properties of special operators defined over finite intervals.
If we use the pseudo-normed space term we always understand a complete space
in uniform structure defined by this semi-norm system.

The purpose of this paper is to give and to apply a characterization of a kind
of operators as continuous linear transformations of a pseudo-normed topological
space. ;
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2. Definitions and preliminaires

The general form of distributions having left sided bounded supports is

o0

) T= 2 Dfi(x)

k=1

where the sequence {f;(x)} is locally finite and the functions f, are continuous
moreover their supports have common lower bound. In what follows we deal with
distributions with support contained in [0, =), let us denote by D, their set, so that

this lower bound can be taken equal zero. (See [1] and [10].)
Wiloka has shown in [10] that a distribution of the above kind can be corresponded
to an operator if and only if it has the form

@ 0= 3 e 0,()

where the {®,(x)}’s are continuous functions on k<Xx-<-co vanishing on (— =, k)
and r,’s are positive integers.

In accordance with the purpose of this paper let us define the space of test
functions: C% yis the space of all infinitely differentiable functions ¢ for which ¢?(0)=0
for every i. The following pseudo-norm system will be introduced to CT,
3) MGl = max |fP(x), i=12,..

a
O=x=i
0sj=i-1

It is evident that the space C%, with the pseudo-norm topology t is a countable normed
space with non-decreasing seminorms.

If M is the Mikusinski field the product x{f}, (x €M, f€C% ;) is sensible and
Cr is algebrically isomorphic to a subring of M.

Definition of t-continuous operator:

w €M is called t-continuous operator if for every f€C5 q the product o { f}€C% 5
and w{f,}—w{f} provided that f,— f.

3. Characterization of t-continuous operators and their series forms.

Theorem 1. An operator w € M is a distribution having a support being in [0, =)
if and only if w is a t-continuous operator.

PrOOF. a) Let @ be a distribution with support being in [0, =) then itis of
the form (2). We shall show that o {f}€C%,, whenever f€C% 4. Since the series
(2) converges in the operational sense there is a function g € C such that*)

@ 2 ge M (@, (x)}

*) C is the set of continuous functions defined on [0, =),
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uniformly converges in every compact interval belonging to [0, =). Now since
g{f}€C (here g{f}€C7, also because f€CT,) we get that the series

@y g‘; ge 5 {f}{By (%)}

also converges uniformly in every interval [0, £]. It will be shown that this series
t-converges and it’s sum is of the form g{¢} where ¢ €C%,. Indeed, let 0=x=i be
fixed then

(&) I

k_i:‘ glf}e s (@, ()| =0

if k,=>i because of the properties of the shift operator e~*. However
kz; gi{fte s {®(x)}€CT,

and the space CTyis complete in the 7-topology so the series is 7-convergent too.
Nevertheless the partial sums of the series can be written in the form g{¢,} where

¢, €C% oand evidently g{¢,}——g{p} with ¢ €C3 4 thus g{p}=gw{f}€C%, which
was the required situation. Let ¢,—¢ arbitrary in CT ,. According to the previous

result we have that every function of C% , multiplies the operator w to C (in fact to
CZ% g)—compare with the relation (5) — thus we can get

kg e (@, (¥)} " {9 ()} —é[" e~ {d, (x)}s"{o (x)}

= Héz e (@ (x)} 5™ {@n ()} _;.g; e * (@, (x)} 5" {o (x)}

=
i

= kg le=** {@ ()} ™ {0 (x) — 9 (D} =

=x=i
0=mv=i—1

o g[ e If Pu(x—1+K) (@ () — 9+ (1) dr]) =
k=00 0 ‘

k=0 O0=x=i
0=vy=i-1

= g ( max Ico}"*""(x)—fP("*'*’(x)lf(nlfﬂix B (x—1+K)) < &

Here we used the continuity of the functions &;(x) moreover the t-continuity
of 5™, for every r,, from which

@8 (x) = o™ (x)
follows whenever @,—¢.

l‘
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Thus we proved that every operator of the form (2), i.e. every distribution of
D', is T-continuous.
b) In the proof of the converse we need the following theorem:

Theorem 2. (X; Z) and (X'; Z’) are countably normed spaces, are complete in
topologies t5 resp. t5.: A:X—~X’ is a linear transformation. A is continuous if
and only if there are indexes i; and positive constants C;, such that

(6) l4xli; = Ci, [l xl;,
Jor every x € X. ;

(See in [7] and [5].)
We may remark that i;>i;_, may be assumed by non-decreasing semi-norms.
Let @ be a t-continuous operator. It will be shown that  is of the form (2).
If an operator g is equivalent to continuous function at ¢ let us denote by ¢(¢) the
value of this function at 7. Set [w {@}](t) =n(t) 0 =t =j, t is fixed. For each ¢
n(t) can be considered to be a linear functional acting on the set of functions from
%0 whose domains are restricted to [0, #;].
We have chosen the interval [0, i;] since

() leo{o}l: = Ci,lol;,

holds by Theorem 2, and by (7)

(8) [o{e}](1)] = Ci,llel,

follows. This means that {[m{ N (r)} is a continuous linear functional on the set
of functions from CT 4 considering their domains only on [0, /;]. Denote the closure
(the complition) of this space by H; in the norm topology | -|;,. Evidently, by an
argument based upon (8), the norm conditions are satisfied by II{[a){ }](r)}ﬂ =
=inf C; (t) hence {[w{ }](t)} can be extended to the whole space H; with norm
preserving. This fact holds for each 1 €[0, j] so thus for every fixed ¢ €H; is a real
or complex valued function acting on 0=¢=j. (Evidently, (i;— 1)-times differentiable
functions for which ¢ (0)=0 (v =0, 1, ..., i;—1) are elements of H;.) Let us con-
sider the (i;+1) power of the operator of integration.*)

eum L
9 Il = {?}

As a consequence of the above mentioned fact /s € H;. Assign f;(t)=[wl*](2).
We shall show that the functions /() are of bounded variation on [0, j]. For this let
us choose an arbitrary division of [0, j]:

U=fhh<h=a<l =]

*) Phrtle C% .0, it is the cause of the necessity of the extension of [@{ }1(r).
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and by denoting &, = j— 1,

PAVIE TN z le=4m*f; () — e=Em-121, (j)| =

= 3 (el — emtmarsly* 0] ()| =

m=1
n
= Jcy "wHJ"e_c""[i’H"e_c"‘"’pﬁl"u =
m=1

= Cu [[ﬂ)";[ max 2
0=tsi; m=1
0=vs=i;—-1

thy=v
= ¢jlloll; max |var|— "
. jomsuq (H—w)!

Similarly as in (4) we have that

I+ {[o{e}l(0)} = {[wl*11(0)}{e}
for all p €CT ¢ on 0=t=j. Thus

, I H{lo{eh ()} = {[o{eN (1} = {pH{[wl*] (1)}
1.e.
(10) - Nlo{e )@} = s {f7He}

on 0=r=j, where {f7}=I{f;} is a continuous function on 0=r=j. (Here it was
used the fact £;(0)=0.) Since

leo{e}—s's*2*{ffH{o}lx = 0

(=L~  (—&a-0%"

(G =w)! @G=!

)=

whenever j=k, we have
(11) o{p} =1 —}im st { fiH o}

Thus from the relation s%*2{f7}{p}—s'-1*2{ff_:}{e} = 0 on 0=r=j—1 it
follows

(12) (Mo} —s-=b{ S o} = 0
on0=r=j-1.
Now by (11) and (12)

ofe) = 1= lim s {/i) o} + (T Ho P+ i o) + -
e SUTHO ~ B o) + -] =
= 3 sitteU-0{(a,(0Ho ()

i=1

Hence w is an operator of form (2). Q.e.d.

**) Here it was used that the shift operator e~** (i=0) is existing as an operator defined on a
finite interval and is commutable with every continuous functional [@{ }](7).
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4. On t-invertable operators.

It is easy to see that not every t-continuous operator has an r-continuous inverse.

Indeed, let = 89.; where ¢ €C3 4, and f¢CT, and let @ be t-continuous, then
o~ = % is not a 7-continuous operator. (For example let f=/and ¢ be arbitrary
in C3,.)

2]

Let w =_g_ be a t-continuous operator then the equation fy = @g, which
is of the Volterra type, always has a solution ¢ of C5, for each n €C3,.

For ™" to be a t-continuous operator a necessary condition is that the equation:

(13) fn=go
is solvable in C3 4 for every ¢ €C3 4.

Is this condition (13) sufficient?
It is easy to prove that the condition (13) is also sufficient whenever inf | f(x)|=
=A>0. Indeed, if fyy,—fMm = gp,—go, then, if n,, n, ¢, and ¢ are of C3

S fa—s"fn = [FG)S(t—x)—n (¢ —x))dx =
0

t .
= [ 2@ (o 1—x)— ™ (t1—x))dx = 5*2¢,—5" 20
0
so by continuity of f and g we have

16 [ ¢ —x) =1t —x)dx = g(x)) [ (0” (t—x)— 9 (t—x)) dx
1.e. : :
max [g(x)|

O=x=i

—"—W lpa—elli =

lny—nl; = (n — )

It is imaginable if f(x) -0 slowly enough then (13) is not sufficient. (We have
not yet any examples for this.)
The following is a simple fact.

Theorem 3. The set of all t-continuous operators having t-continuous inverses is
a multiplicative subgroup of M.

-1
PrOOF. Indeed, denote the above set by M,, for £€M,, [—f—) =§
also; 1f fi 6M (i=1, 2) then evidently — f‘ f” EM follows from —-j—i 9 €CT,, and

&1

eEM,

?!}0 €C% o and from their continuity. Q.e.d.
2
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Let us consider some examples to t-invertable operators. Let {f(x)}= {x*f(x)},
(B(+0)=0, v=0) then the equation (13) always has a continuous solutions. (See
in [3].) Moreover the equation fiy=1I"{gs"¢} has a solution of n-times differentiable
functions if r is suitably large. But ¢ (0)=0 for all v thus the new equations are
equal to (13), hencen is infinitely differentiable solution of (13). It is known that if

= {x*a(x)}, (u=0, x(+0)0) then flg<-T € D’,, so in our term f/g is a T-continuous
operator, hence

)
= oy M
(See 5 b.)

5. Some remarks on the space C7,

5. a) Let w be a t-continuous operator then the equation

(14) 0p—@o=¢ (02 @y(x)€CT,0)
— which is called generalized inhomogen Volterra type equation — has a solution in
CZoif and only if g €(w0—1)C% .

Indeed, in the case @, €(w—1)C3 4, 0 = (00— Do, however ¢, satisfies (14).
If @, is a solutlon of (14) then ¢, = (co— 1)@, and 1 is t-continuons thus ¢, €(w—
—DC%0

5. b) If we let out the t-continuity of ® but assume that = is a locally integrable
JSunction, then (14) has only one solution of C% , for every non zero ¢,€C3 .
By the formal solution

=5
Pl = e 1

we can get

¢r = %(00 ll-—l—l- = %‘Po [é; [%]*] = %(1 +{k(0)})
w

thus ¢, €CT because 1€M_; o *and {k(z)} are locally integrable functions. Thus
we can see 1f w=p~, inverse of a local integrable function p, then (w—1)~* is 7-con-
tinuous.
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