Some properties of T-matrices over non-archimedian fields

By D. SOMASUNDARAM (Salem)

- 1. Let $A = (a_{np})$, n, p = 1, 2, ... be a matrix defined over a field K provided with non-trivial non-archmedian valuation. The field K is supposed to be complete under the metric of valuation. In this note, we shall deduce from a theorem of Monna [2], the conditions for a matrix A to be regular and study some properties of regular matrices known as T-matrices over K. We note that the classical Steinhaus Theorem dealing with T-matrices [1] is not true in general in the non-archidedian case in § 2. However we recover the Steinhaus theorem for a restricted class of matrices over K in § 3. Suitably defining the absolute equivalence of T-matrices over K, we shall find out anecessary and sufficient condition for a matrix T to be absolutely equivalent for all bounded sequences over K in § 4.
- 2. From a theorem of Monna [2], we deduce as in the classical case, the following theorem.

Theorem 1. A matrix $A = (a_{np})$ is a T-matrix over K called a T(K) matrix if and only if

where M is a constant,

$$\lim_{n \to \infty} a_{np} = 0$$

for every fixed p,

(2.3)
$$\sum_{p=1}^{\infty} a_{np} = A_n \to 1 \quad as \quad n \to \infty.$$

Let $y_n = \sum_{p=1}^{\infty} a_{np} x_p$, n = 1, 2, 3, ... The sequence (y_n) is called the A-transform

of (x_p) . If the sequence (y_n) is convergent, its limit is called the A-limit. The classical Steinhaus Theorem states that given a T-matrix, there is always a bounded sequence which has no A-limit.

If π is a prime number, we shall construct T(K) matrices over the π -adic field K which are rational number fields completed under π -adic valuation.

Example 1. Let

$$a_{np} = \begin{cases} 1/2 & \text{for } p = n, n+1 \\ 0 & \text{otherwise} \end{cases}$$

This matrix is evidently a T(K) matrix. Consider a bounded sequence (1, 0, 1, 0, 1, ...) where 1 is the multiplicative identity of the π -adic field K. A-transforms of this bounded sequence gives rise to a sequence $y_n = 1/2$, n = 1, 2, ... which is convergent sequence having the limit 1/2. Here the A-limit of a bounded sequence exists.

Example 2. Let

$$a_{np} = \begin{cases} \pi^n & \text{for } n > p \\ 1 - (1 - n)\pi^n & \text{for } n = p \\ 0 & \text{otherwise.} \end{cases}$$

One can easily verify that $A = (a_{np})$ defined above is a T(K) matrix over the π -adic field. The A-transforms of this sequence (1, 0, 1, 0, ...) gives rise to the sequence y_n defined by

$$y_n = \begin{cases} 1 - (n-1)/2\pi^n & \text{if } n \text{ is odd.} \\ n/2\pi^n & \text{if } n \text{ is even.} \end{cases}$$

 (y_n) is not convergent sequence. Thus the A-transform of a bounded sequence is not convergent. These two examples establish that the classical Steinhaus Theorem is not true in general in the non-archimedian case.

3. We shall prove the Steinhaus Theorem for a restricted class of regular matrices over K.

Theorem 2. Let $A = (a_{np})$ be a regular matrix over K with the following restriction on (2.1)

(3.1)
$$\sup_{n,p} |a_{np}| \leq \lambda \quad where \quad \lambda \geq 1.$$

Then there is a bounded sequence which has no A-limit.

PROOF. Let (Z_p) be a sequence defined in K such that $0 \le |Z_p| \le 1$. By (2.3) choose a n_1 such that the following is satisfied.

(3.2)
$$\left|\sum_{p=1}^{\infty} a_{n_1 p}\right| = A_{n_1} > \mu \quad \text{where} \quad \mu < 1.$$

Since $\sum_{n=1}^{\infty} a_{np}$ converges for each fixed n, we have

$$(3.3) a_{np} \to 0 as p \to \infty.$$

Hence given $\varepsilon > 0$, we can find a p_1 such that $|a_{np}| < \varepsilon$ for $p \ge p_1$ for every fixed n. Using this we have from the above,

$$\sup_{p_1+1\leq p<\infty}|a_{n_1p}|<\varepsilon.$$

Let us choose $z_p = 1$ for $1 \le p \le p_1$

$$Z'_{n_1} = \sum_{p=1}^{\infty} a_{n_1 p} - \sum_{p=p,+1}^{\infty} (1-z_p) a_{n_1 p}.$$

Therefore

$$\sum_{p=1}^{\infty} a_{n_1 p} = Z'_{n_1} + \sum_{p=p_1+1}^{\infty} (1-z_p) a_{n_1 p}.$$

Hence we have from the above

$$\left|\sum_{p=1}^{\infty} a_{n_1 p}\right| \leq \operatorname{Max}\left\{|Z'_{n_1}|, \left|\sum_{p=p_1+1}^{\infty} (1-z_p) a_{n_1 p}\right|\right\}$$

But

(3.6)
$$|1-Z_p| = 1, \quad \left| \sum_{p=p_1+1}^{\infty} (1-Z_p) a_{n_1 p} \right| \leq \sup_{p_1+1 \leq p < \infty} |a_{n_1 p}| < \varepsilon.$$

Substituting (3.6) in (3.5) and using (3.2) and (3.4), we get

$$\mu \leq \operatorname{Max}\{|Z'_n|, \varepsilon\}$$
 wich implies $|Z'_{n_1}| > \mu$.

By using (3.3), choose a $p_2 > p_1$ such that

Let us choose $z_p = 0$ for p_1

$$z'_{n_2} = \sum_{p=1}^{p_1} a_{n_2 p} z_p + \sum_{p=p_1+1}^{p_2} a_{n_2 p} z_p + \sum_{p=p_2}^{\infty} a_{n_2 p} z_p.$$

Therefore

$$|Z'_{n_2}| \leq \operatorname{Max} \left\{ \left| \sum_{p=1}^{p_1} a_{n_2 p} Z_p \right|, \left| \sum_{p_2+1}^{\infty} a_{n_2 p} Z_p \right| \right\}.$$

By using (3.1) we have

(3.9)
$$\left| \sum_{p=1}^{p_1} a_{n_2 p} Z_p \right| \leq \sup_{1 \leq p \leq p_1} |a_{n_2 p} Z_p| < \sup_{n, p} |a_{np}| < \lambda.$$

By using (3.7) we have

$$\left|\sum_{p_2+1}^{\infty} a_{n_2 p} Z_p\right| \leq \sup_{p_2+1 \leq p < \infty} |a_{n_2 p}| |Z_p| < \varepsilon.$$

Making use of (3.9) and (3.10) in (3.8) we get

$$|Z'_{n_2}| \leq \operatorname{Max} \{\lambda, \varepsilon\}$$
 so that $|Z'_{n_2}| \leq \lambda$.

By (2.3) choose $n_3 > n_2$ such that

$$\left|\sum_{p=1}^{\infty} a_{n_3 p}\right| > \mu$$

and also by (2.2)

$$(3.12) \qquad \qquad \sup_{1 \le p \le p_2} |a_{n_3 p}| < \varepsilon.$$

By (3.3) choose a $p_3 > p_2$ such that

$$(3.13) \qquad \sup_{p_3+1 \le p < \infty} |a_{n_3 p}| < \varepsilon.$$

Now we have for Z'_{n_0}

$$Z'_{n_{3}} = \sum_{p=1}^{\infty} a_{n_{3}p} - \sum_{p_{1}+1}^{p_{2}} a_{n_{3}p} - \sum_{p=p_{3}+1}^{\infty} (1 - Z_{p}) a_{n_{3}p}$$

$$\sum_{p=1}^{\infty} a_{n_{3}p} = Z'_{n_{3}} + \sum_{p_{1}+1}^{\infty} a_{n_{3}p} + \sum_{p=p_{3}+1}^{\infty} (1 - Z_{p}) a_{n_{3}p}$$

$$\left| \sum_{p=1}^{\infty} a_{n_{3}p} \right| \leq \operatorname{Max} \left\{ |Z'_{n_{3}}|, \left| \sum_{p_{1}=1}^{p_{2}} a_{n_{3}p} \right|, \left| \sum_{p_{1}=1}^{\infty} (1 - Z_{p}) a_{n_{3}p} \right| \right\}.$$

$$(3.14)$$

Using (3.11), (3.12) and (3.13) in (3.14) we get,

$$\mu \leq \operatorname{Max}\{|Z'_{n_3}|, \varepsilon, \varepsilon\}$$
 from which we have $|Z'_{n_3}| > \mu$.

By our assumption, λ can never be equal to μ so that (Z'_n) is not convergent. Hence if A is a T(K) matrix satisfying (3.1), we can choose (Z_k) so that all its elements are 0 or 1 and (Z'_n) does not tend to a limit. This completes the proof of the theorem.

4. Two matrices A and B defined over K are said to be absolutely equivalent for a class of sequences (Z_p) , whenever $(Z_p' - Z_p'') \to 0$ as $n \to \infty$ where Z_p' and Z_p'' are the A and B transforms of the sequence (Z_p) .

Theorem 3. A necessary and sufficient condition that T matrices A and B defined over K are absolutely equivalent for all bounded sequences (Z_n) is that $S_n = \sup_{1 \le p < \infty} |C_{np}| \to 0$ as $n \to \infty$, where $C_{np} = a_{np} - b_{np}$.

PROOF. The condition is sufficient. Now

$$Z'_{n} - Z''_{n} = \sum_{p=1}^{\infty} (a_{np} - c_{np}) Z_{p} = \sum_{p=1}^{\infty} C_{np} Z_{p}.$$

Therefore $\left|\sum_{p=1}^{\infty} C_{np} Z_p\right| \le M$ Sup $\left||C_{np}|\right|$, since $|Z_p| \le M$ for all p. Hence if Sup $|C_{np}| \to 0$ as $n \to \infty$, then $Z_n' - Z_n'' \to 0$ as $n \to \infty$. Therefore A and B are absolutely equivalent for all bounded sequences.

Conversely let us assume that $y_n = Z_n' - Z_n'' \to 0$ as $n \to \infty$. That is $\sum_{p=1}^{\infty} C_{np} z_p \to 0$ as $n \to \infty$ for every bounded sequence (z_p) . Then we shall prove that $S_n \to 0$ as $n \to \infty$.

Consider the bounded sequence (1, 1, 1, ...) where 1 is the identity in K. Then

$$Z'_n - Z''_n = \sum_{p=1}^{\infty} C_{np} Z_p = \sum_{p=1}^{\infty} C_{np}.$$

Since Z_n is defined for every bounded sequence, this is defined for (1, 1, 1, ...) also. $S_0 \sum_{n=1}^{\infty} C_{np}$ is well defined in the field K. This implies that

(4.1)
$$C_{np} \to 0$$
 as $p \to \infty$ for every fixed n.

Suppose $S_n = \sup_{1 \le p < \infty} C_{np}$ does not tend to zero as $n \to \infty$, it will tend to ∞ through a subsequence of values of n. Then for some $\varepsilon > 0$, there exists a subsequence of values of n such that

$$\sup_{1 \le p < \infty} |C_{np}| > \varepsilon.$$

Using (4.1) we can find a p_{n1} such that

$$\sup_{p_{n_1}+1 \le p < \infty} |C_{n_1p}| < \frac{\varepsilon \lambda}{2}$$

where $\lambda < 1$ corresponds to some element $Z \in K$ for which $|Z| = \lambda$. Such an $Z \in K$ exists because the valuation is non-trivial.

Comparing (4.2) and (4.3) we get $\sup_{1 \le p \le p_{n_1}} |C_{n_1 p}| > \varepsilon$. Therefore there is a p_1 in this range such that

$$|C_{n_1 p_1}| > \varepsilon.$$

Now we shall construct a sequence (Z_p) with the condition that $|Z_p| \le 1$ and $y_n = Z_n' - Z_n''$ does not tend to zero. Let

(4.5)
$$Z_p = \begin{cases} Z & \text{where} \quad |Z| = \lambda < 1 \quad \text{when} \quad p = p_1 \\ 0 & \text{for all } p \text{ in} \quad 1 \le p \le p_{n_1} \quad \text{and} \quad p \ne p_1. \end{cases}$$

Now

$$y_{n_1} = \sum_{p=1}^{p_{n_1}} C_{n_1 p} Z_p + \sum_{p_{n_1}+1}^{\infty} C_{n_1 p} Z_p.$$

But

$$\begin{vmatrix} \sum_{p_{n_1}+1}^{\infty} C_{n_1 p} Z_p \end{vmatrix} \leq \sup_{p_{n_1}+1 \leq p < \infty} |C_{n_1 p}| < \frac{\varepsilon \lambda}{2},$$
$$\begin{vmatrix} \sum_{p=1}^{p_{n_1}} C_{n_1 p} Z_p \end{vmatrix} = |C_{n_1 p_1}| |Z_{p_1}| = |C_{n_1 p_1}| |Z|.$$

Therefore we get from (4.6)

$$|C_{n_1p_1}||Z_{p_1}| \le \operatorname{Max}\left\{|y_{n_1}|, \left|\sum_{p=p_{n_1}+1}^{\infty} C_{n_1p}Z_p\right|\right\}.$$

Therefore $\varepsilon \lambda < \text{Max}(|y_{n_1}|, \varepsilon \lambda/2)$ by using (4.3), (4.4) and (4.5). Hence we get

$$|y_{n_1}| > \varepsilon \lambda.$$

By (4.1) we have $a_{np} \to 0$ as $n \to \infty$ for each fixed p. Now choose $n_2 > n_1$ such that

$$(4.8) \qquad \qquad \sup_{1 \leq p < \infty} C_{n_2 p} > \varepsilon$$

and

$$\sup_{1 \le p \le p_{n_1}} C_{n_2 p} < \frac{\varepsilon \lambda}{2}.$$

This is possible if n_2 is large enough, such that $n_2 > \text{Max}(n_p)$ where $1 \le p \le p_{n_1}$ defined in (4.9). Then there exists by (4.1) a $p_{n_2} > p_{n_1}$ such that

$$(4.10) \qquad \qquad \sup_{p_{n_2}+1 \le p < \infty} |C_{n_2 p}| < \frac{\varepsilon \lambda}{2}.$$

Therefore from (4.8) and (4.10),

$$(4.11) \qquad \qquad \sup_{1 \leq p \leq p_{n_2}} |C_{n_2 p}| > \varepsilon.$$

So we can find a p_2 in $1 \le p \le p_2$ such that

$$(4.12) |C_{n_2 p_2}| > \varepsilon$$

and p_2 chosen in (4.12) exceeds p_{n_1} by (4.9) and (4.8). Let us define

(4.13)
$$Z_{p} = \begin{cases} Z & \text{when } p = p_{2} & \text{and } |Z| = \lambda < 1 \\ 0 & \text{for all } p & \text{in } p_{n_{1}+1} \leq p \leq p_{n_{2}} & \text{and } p \neq p_{2}, \end{cases}$$

$$y_{n_{2}} = \sum_{p=1}^{p_{n_{1}}} C_{n_{2}p} Z_{p} + \sum_{p_{n_{1}}+1}^{p_{2}} C_{n_{2}p} Z_{p} + \sum_{p_{n_{2}}+1}^{\infty} C_{n_{2}p} Z_{p}$$

$$\left| \sum_{p_{n_{2}}+1}^{p_{n_{2}}} C_{n_{2}p} Z_{p} \right| = \left| y_{n_{2}} - \sum_{p=1}^{p_{n_{1}}} C_{n_{2}p} Z_{p} - \sum_{p_{n_{2}}+1}^{\infty} C_{n_{2}p} Z_{p} \right|,$$

$$|C_{n_{2}p_{2}}||Z_{p}| \leq \operatorname{Max} \left\{ |y_{n_{2}}|, \left| \sum_{p=1}^{p_{n_{1}}} C_{n_{2}p} Z_{p} \right| \left| \sum_{p_{n_{2}}+1}^{\infty} C_{n_{2}p} Z_{p} \right| \right\}$$

$$(4.14)$$

by using (4.13) in the left hand side of (4.14). By (4.10) we have

(4.15)
$$\left|\sum_{p_{n_2}+1}^{\infty} C_{n_2 p} Z_p\right| \leq \sup_{p_{n_2}+1 \leq p < \infty} |C_{n_2 p}| < \frac{\varepsilon \lambda}{2}.$$
 From (4.9) we get

$$\left|\sum_{p=1}^{p_{n_1}} C_{n_2 p} Z_p\right| \leq \sup_{1 \leq p \leq p_{n_1}} |C_{n_2 p}| < \frac{\varepsilon \lambda}{2}.$$

Using (4.12), (4.13), (4.15) and (4.16) in (4.14) we get

$$\varepsilon\lambda < \operatorname{Max}\left(|y_{n_2}|, \frac{\varepsilon\lambda}{2}, \frac{\varepsilon\lambda}{2}\right)$$

Therefore from the above $|y_{n_2}| > \varepsilon \lambda$. Proceeding in this manner, we can find y_{n_k} such that $|y_{n_k}| > \varepsilon \lambda$ so that $y_n = Z_n' - Z_n''$ does not tend to zero as $n \to \infty$, through a subsequence of values of n. This shows that S_n does not tend to zero for every bounded sequence (Z_n) and this implies that $y_n = Z_n' - Z_n''$ does not tend to zero which is contrary to our assumption. This contradiction proves the necessity of the condition. Hence the theorem is completely proved.

References

[1] COOKE G. RICHARD, Infinite matrices and sequence spaces, Dover Publications, New York (1955).

[2] A. F. Monna, Sur les Theoreme' de Banach-Steinhaus, Indag. Math. 25 (1963), 121-131.

Kandaswami Kandar's College Velur (Salem). Tamil Nadu. India

(Received April 11, 1973.)