Some properties of 7-matrices over non-archimedian fields

By D. SOMASUNDARAM (Salem)

1. Let A=(a,,), n,p=1,2, ... be a matrix defined over a field K provided with
non-trivial non-archmedian valuation. The field K is supposed to be complete
under the metric of valuation. In this note, we shall deduce from a theorem of
MoNNA [2], the conditions for a matrix 4 to be regular and study some properties
of regular matrices known as 7-matrices over K. We note that the classical Steinhaus
Theorem dealing with T-matrices [1] is not true in general in the non-archidedian
case in § 2. However we recover the Steinhaus theorem for a restricted class of matrices
over Kin § 3. Suitably defining the absolute equivalence of 7-matrices over K, we shall
find out anecessary and sufficient condition for a matrix 7"to be absolutely equivalent
for all bounded sequences over K in § 4.

2. From a theorem of MoNNA [2], we deduce as in the classical case, the fol-
lowing theorem.

Theorem 1. A matrix A=(a,,) is a T-matrix over K called a T(K) matrix if
and only if

(2.1 Sup |a,,| = M
n,.p
where M is a constant,

(2.2) lim a,, = 0

n-—-oc

for every fixed p,

oo

(2.3) Sp=A,+1 as n- oo,
p=1

Let y,= ¥ a,,x,, n=1,2,3,.... The sequence (y,) is called the A-transform

of (x,). If the sequence (},) is convergent, its limit is called the A-limit. The classical
Steinhaus Theorem states that given a 7-matrix, there is always a bounded sequence
which has no A-limit.

If = is a prime number, we shall construct 7(K) matrices over the n-adic field
K which are rational number fields completed under n-adic valuation.
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Example 1. Let
{ 1/2 for p=nn+1
8oy =

0 otherwise

This matrix is evidently a 7(K) matrix. Consider a bounded sequence (1,0, 1,0, 1, ...)
where 1 is the multiplicative identity of the n-adic field K. A-transforms of this
bounded sequence gives rise to a sequence y,=1/2, n=1, 2, ... which is convergent
sequence having the limit 1/2. Here the A-limit of a bounded sequence exists.

Example 2. Let

n" for n=p
p=11-(=nm=n" for n=p
0 othervise.

One can easily verify that 4=(a,,) defined above is a T(K) matrix over the n-adic
field. The A-transforms of this sequence (1,0, 1,0, ...) gives rise to the sequence y,
defined by

1—(n—1)2a" if n is odd.
" | n/2n" if n is even.

(y,) is not convergent sequence. Thus the A-transform of a bounded sequence is not
convergent. These two examples establish that the classical Steinhaus Theorem is not
true in general in the non-archimedian case.

3. We shall prove the Steinhaus Theorem for a restricted class of regular matrices
over K.

Theorem 2. Let A=(a,,) be a regular matrix over K with the following restriction
on (2.1)

(3.1) Supla,,| =4 where A= 1.
", p

Then there is a bounded sequence which has no A-limit.

PrOOF. Let (Z,) be a sequence defined in K such that 0= |Z,|=1. By (2.3) choose
a n, such that the f‘(’)llowing is satisfied.

(3.2) 28y, =4, >p where pu<1l.
p=1
Since 2 a,, converges for each fixed n, we have
p=1
3.3) a,—+0 as p—eco.

Hence given >0, we can find a p, such that |a,,|<¢ for p=p, for every fixed n.
Using this we have from the above,

(3.4) Sup |a,,,| <e.

p1+l=p=co
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Let us choose z,=1 for 1=p=p,

Gyp— 2 (L=2z)a,,.
1 p=p;+1

(WL

Z, =

il

Therefore §

o (=)
’ ul
.Z Qyp = Zm 3 Z (l _zp)alu!'
p=1 p=p;+1

Hence we have from the above

(3.5) 2 Gn, p| = Max {IZ;II, i —z,,)a,,‘,}
p=1 p=p+1
But
(3.6) N1=Z,| =1, 2 (-2Z)a,,= Sup |a,, <e.
P=]"1+1 Py 1S p=oco

Substituting (3.6) in (3.5) and using (3.2) and (3.4), we get
u = Max {|Z,|,¢} wich implies |Z, | = u.
By using (3.3), choose a p,>p, such that

3.7) Sup |a,,, <& for arbitrary &= 0.

pPptl<p=<oo

Let us choose z,=0 for p,<p=p,

P1 P2 -
Zny = 2 GupZpt 2 GupZpt 2 GuypZp-
p=1 p=p,+1 P=Pps
Therefore
(3.8) |Zae| = Max{ }

Z ﬂ,.’ FZP

pat1

g AnypZ)p
p=1

By using (3.1) we have

P
(3.9) 2:1,,,,,2, = Sup la,,,Z,| < Supla,,| < A.
p=1 1=p=p, n,p
By using (3.7) we have
(3.10) D OupZ) = Sup |a,,,llZ,)<e.
pa+1 Patl=sp<cc

Making use of (3.9) and (3.10) in (3.8) we get
|Z,,| = Max{4,¢e} sothat |Z,|= A.
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By (2.3) choose ny=n, such that

(3.11) 2 Guypl = M
p-
and also by (2.2)
(3.12) Sup |a,,,| <e.
lsp=p;

By (3.3) choose a p;=p, such that
(3.13) Sup |an,,l <&

’ pytl=p<es
Now we have for Z,,

’ < L4 <
zn3= Eangp_ 2 Auyp— Z (l_zp)aﬂsp

p=1 P+l p=py+1l
r - b
20y =20+ Z a,+ 2 (1-2Z)a,,
p=1 py+1 p=py+1
o
(3.14) | = Maxi|Z.l, | 2 a,,“, v 1.2 =2 a. Jr.
py+1 p3+1l

Using (3.11), (3.12) and (3.13) in (3.14) we get,
u = Max {|Z, |, e, ¢} from which we have |Z;| > u.

By our assumption, 4 can never be equal to p so that (Z,) is not convergent. Hence
if A is a T(K) matrix satisfying (3.1), we can choose (Z;) so that all its elements
are 0 or 1 and (Z,) does not tend to a limit. This completes the proof of the theorem.

4. Two matrices 4 and B defined over K are said to be absolutely equivalent
for a class of sequences (Z,), whenever (Z,—Z;)—~0 as n—c= where Z, and Z; are
the A and B transforms of the sequence (Z,,).

Theorem 3. A necessary and sufficient condition that T matrices A and B defined over
K are absolutely equivalent for all bounded sequences (Z,) is that S,= Sup |C, [-~0

lsp<oo

as n—oo, where C,,=a,,—b,,.

Proor. The condition is sufficient. Now

z,— Z” 2 (@p—cCnp)Z, = E CupZy-

2 wZp =M Sup ||C,,|,since |Z,|=M forall p. Henceif Sup |C,,|—~

l1=p<eo= l=p<=ec
as n-»oo, then Z,—Z,~+0asn . Therefore 4 and B are absolutely cquwalcnt for
all bounded sequences.

—

Therefore

Conversely let us assume that y,=Z,--Z,~0 as n—e. That is 3 C,,z,~0
p=1
as n—-= for every bounded sequence (z,). Then we shall prove that S,—~0 as n—e-.
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Consider the bounded sequence (1, I, 1, ...) where 1 is the identity in K. Then
Z,~Zy=m 3 CZ,= FC,,.
p=1 p=1

Since Z, is defined for every bounded sequence, this is defined for (1, 1, 1, ...) also.
Sy > C,, is well defined in the field K. This implies that

p=1

4.1 C,—~0 as p—e for every fixed n.

Suppose S,= Sup C,,does not tend to zero as n— o=, it will tend to = through
lsp=<ece
a subsequence of values of n. Then for some ¢=0, there exists a subsequence of

values of n such that
(4.2) Sup |C,,l = &

1sp=<oce
Using (4.1) we can find a p,, such that

(43) Sup 1y, < 2
Pnl*-lﬂ_;p-cw
where A<1 corresponds to some element Z€K for which |Z|=A4. Such an Z¢K

exists because the valuation is non-trivial.
Comparing (4.2) and (4.3) we get Sup |C, ,|=¢. Therefore there is a p, in

! 1=—;]’=—;Pu1
this range such that

(4.4) ICasd >4

Now we shall construct a sequence (Z,) with the condition that |Z,/=1 and
v,=Zn—Z, does not tend to zero. Let

Z where |Z|=A<1 when p=p,
(4.5) ZP = ‘ o
0 forallpin 1=p=p, and p = p,.
Now
'P"l oo
(4.6) A~ Y AR oS D
r=1 p,.l-i-l
But
- el
i Gl SAWE- A L S M & 5
pn1+l Pn1+1§P"°°
Pny
‘Z‘l Cn;pzp - |Cn1p1”zml = 1Cn1 p1I|Z|°
p-
Therefore we get from (4.6)
]Cn;mHzml E Max {lyll1|’ Z Clupzp}‘
P=pn+1
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Therefore ei<Max (|y,,|, €4/2) by using (4.3), (4.4) and (4.5). Hence we get
(47) |yn1| = &h

By (4.1) we have a,,—~0 as n—<= for each fixed p. Now choose n,>n, such that

(4.8) Sup C,,,>¢
lsp=<ece

and

(4.9) Sup C,,, < _ai

' 1=p=pn, 2

This is possible if n, is large enough, such that n,>Max (n,) where 1=p=p, defined
in (4.9). Then there exists by (4.1) a p,,>p,, such that

(4.10) Sup |C,,,l < fi
p"’—i—lép{u 2
Therefore from (4.8) and (4.10),
(4.11) Sup |C,,,l =&
l:—‘l’iﬂﬂ’

So we can find a p, in 1=p=p, such that
(4.12) [Capl = &
and p, chosen in (4.12) exceeds p,, by (4.9) and (4.8). Let us define

Z when p=p, and |Z|=1<1
Z,=

ey 0 forallp in p,,,=p=p, and p3#p,,

Pny P
= chsrzp+ .2 Cmvz : o Z C,,“,Z
p= -+

Pny 1 Png+ +1

pll'

2 CupZy| =

Pa""

4 .S Cngpzp_ .ZHCuapzp

(4.14) IC

Z na.v 2 ngp P

Pn’

ng pat

}

12, = Max { [Vaals

by using (4.13) in the left hand side of (4.14). By (4.10) we have

5o el
(4.15) 2 Cond) = Sup |[Cy,,l < s
Pn'+1 pn!+]§p¢m
From (4.9) we get
Pry sl
(4.16) 2 CopZy = Sup [Cpyyl < -
EP"P-,
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Using (4.12), (4.13), (4.15) and (4.16) in (4.14) we get

X el EA

g4 = Max []y,,,l, 3 3 ]
Therefore from the above |y,,|=é&4. Proceeding in this manner, we can find y,
such that |y, |>e¢4 so that y,=Z,—Z; does not tend to zero as n—e=, through a
subsequence of values of n. This shows that S, does not tend to zero for every
bounded sequence (Z,) and this implies that y,=Z,—Z, does not tend to zero which
is contrary to our assumption. This contradiction proves the necessity of the con-
dition. Hence the theorem is completely proved.
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