Publ. Math. Debrecen
49 / 3-4 (1996), 265-294

Discontinuous groups in homogeneous Riemannian spaces by classification of D-symbols

By E. MOLNÁR (Budapest)

Abstract

In this paper we classify the 3-dimensional D-symbols [4], [7], [5], [13] $(\mathcal{D}, \mathcal{M})$ up to cardinality $|\mathcal{D}|=3$ of the vertices of D-diagram \mathcal{D}. We describe all the possible matrix functions \mathcal{M} for each D-diagram \mathcal{D} such that the combinatorial (topological) tiling (\mathcal{T}, Γ) according to $(\mathcal{D}, \mathcal{M})$, will have a true metric realization in a simply connected homogenous Riemannian 3-space \mathcal{S}^{3}, one of the 8 Thurston geometries [1], [14], [15]: $\mathbf{S}^{3}, \mathbf{E}^{3}, \mathbf{H}^{3}, \mathbf{S}^{2} \times \mathbf{R}, \mathbf{H}^{2} \times \mathbf{R}, \widehat{\mathbf{S L}} \mathbf{S}_{2} \mathbf{R}, \mathbf{N i l}$, Sol, with a corresponding group Γ of isometries in the space \mathcal{S}^{3}. Furthermore, we describe the (generalized) orbifold [1], [2], [6], [14], \mathcal{S}^{3} / Γ with the corresponding I-labelled $(I=\{0,1,2,3=d\})$ simplicial subdivision obtained from each D-symbol.

The phenomenon of Thurston splitting [2], [11], [14], [15] along spherical (\mathbf{S}^{2}-) or Euclidean (toric, \mathbf{E}^{2}-) suborbifold also occurs in our new classification that are summarized in Tables and Figures. As a new tool, we describe algorithms which bring our D-symbols into canonical ordered forms and list their equivalence classes by a new ' $<$ ' relation. After having implemented our algorithms to computer we can proceed by the dimension d of space, by the increasing vertex numbers of D-diagrams as illustrated. In this paper the combinatorial and differential geometry are combined. We discuss starting results and raise open problems.

1. Introduction with examples related to Figures and Tables

We start with the familiar face-to-face cube tiling [13] $\mathcal{T}:=\mathcal{T}_{\text {cube }}$ in the Euclidean space $\mathcal{S}^{3}:=\mathbf{E}^{3}$ and illustrate the procedure how to get its D-symbol $(\mathcal{D}, \mathcal{M})=: \mathcal{D}_{1}$ and the corresponding group $\boldsymbol{\Gamma}_{\mathbf{1}}(x ; y ; z):=$ $\boldsymbol{\Gamma}_{\mathbf{1}}(4 ; 3 ; 4)$ in our Figures and Tables.

[^0]Consider the barycentric subdivision \mathcal{C} of \mathcal{T}. Any simplex C := $A_{0} A_{1} A_{2} A_{3}$ in \mathcal{C} has vertices labelled by $I:=\{0,1,2,3\}$ as follows. The vertex A_{3} is the midpoint of a cube as a 3 -dimensional constituent of \mathcal{T}, then A_{2} is that of a quadrate face as an incident 2-dimensional constituent of \mathcal{T}, and so are A_{1} and A_{0} for an incident edge and vertex, respectively. In the same time we introduce the corresponding I-labels for the opposite side faces of C denoted by $s_{0}: A_{1} A_{2} A_{3}, \ldots, s_{3}: A_{0} A_{1} A_{2}$ and the adjacency operations

$$
\begin{equation*}
\sigma_{0}: \cdots \cdots, \quad \sigma_{1}:---, \quad \sigma_{2}:-, \quad \sigma_{3}: \sim \sim \sim \tag{1.1}
\end{equation*}
$$

for the simplicial subdivision \mathcal{C} first. Every operation $\sigma_{i}, i \in I$, is an involutive permutation of \mathcal{C} that orders to any C the adjacent $\sigma_{i} C$ along its common i-face s_{i}. We formally introduce the (free) Coxeter group

$$
\begin{equation*}
\Sigma_{I}:=\left(\sigma_{i}, i \in I=\{0,1,2,3\}-\sigma_{i} \sigma_{i}=: \sigma_{i}^{2}=1, i \in I\right) \tag{1.2}
\end{equation*}
$$

and its action on \mathcal{C} from the left (say). The action of

$$
\begin{equation*}
\sigma:=\sigma_{i_{r}} \cdots \sigma_{i_{2}} \sigma_{i_{1}} \in \Sigma_{I} \quad \text { on any } C \in \mathcal{C} \tag{1.3}
\end{equation*}
$$

can be visualized by the path through the simplices

$$
\begin{equation*}
C, \sigma_{i_{1}}(C), \sigma_{i_{2}} \sigma_{i_{1}}(C):=\sigma_{i_{2}}\left(\sigma_{i_{1}} C\right), \ldots, \sigma_{i_{r}} \cdots \sigma_{i_{2}} \sigma_{i_{1}}(C)=: \sigma(C) \tag{1.4}
\end{equation*}
$$

i.e. from C crossing its i_{1}-face, then crossing the i_{2}-face of $\sigma_{i_{1}}(C), \ldots$, then entering $\sigma(C)$ by formula (1.3) trough its i_{r}-face. The simplices of \mathcal{C} can also be considered as vertices of a dual diagram of \mathcal{C}, where the $\sigma_{i^{-}}$ operations are indicated by connecting the vertices with i-coloured edges as (1.1) shows in the role of colours. We see on our example and require, in general, that a relation

$$
\begin{equation*}
\overbrace{\left(\sigma_{j} \sigma_{i}\right) \cdots\left(\sigma_{j} \sigma_{i}\right)}^{\text {m-times }}(C)=:\left(\sigma_{j} \sigma_{i}\right)^{m}(C)=C \tag{1.5}
\end{equation*}
$$

holds for every $C \in \mathcal{C}, i, j \in I$ with a minimal natural number $m \in \mathbb{N}$ in (1.5), it will be denoted by

$$
\begin{equation*}
m=: m_{i j}(C) \tag{1.6}
\end{equation*}
$$

Thus a symmetric matrix function

$$
\begin{equation*}
M: \mathcal{C} \longrightarrow \mathbb{N}_{I \times I}, \quad C \longmapsto M(C):=m_{i j}(C) \tag{1.7}
\end{equation*}
$$

will be introduced which specializes the action of Σ_{I} defined by (1.2). For our cube tiling this matrix function is constant for every $C \in \mathcal{C}$:

$$
m_{i j}(C)=\left(\begin{array}{cccc}
1 & 4 & 2 & 2 \tag{1.8}\\
4 & 1 & 3 & 2 \\
2 & 3 & 1 & 4 \\
2 & 2 & 4 & 1
\end{array}\right)
$$

In general, we assume that an isometry group $\Gamma \leq \operatorname{Aut} \mathcal{T}$, like a subgroup of automorphism group of our polyhedral tiling \mathcal{T}, leaves invariant the combinatorial incidence structure of \mathcal{T}, and so Γ preserves also the barycentric subdivision \mathcal{C} of \mathcal{T}. Our notations

$$
\begin{gather*}
\left(\sigma_{i} C\right)^{\gamma}=\sigma_{i}\left(C^{\gamma}\right)=: \sigma_{i} C^{\gamma}, \quad(C)^{\gamma_{1} \gamma_{2}}:=\left(C^{\gamma_{1}}\right)^{\gamma_{2}}=: C^{\gamma_{1} \gamma_{2}} \tag{1.9}\\
\text { for any } C \in \mathcal{C} ; \sigma_{i} \in \Sigma_{I} \text { and } \gamma, \gamma_{1}, \gamma_{2} \in \Gamma
\end{gather*}
$$

show these facts. Γ also factorizes the matrix function M by the set \mathcal{D} of Γ-orbits of \mathcal{C} :

$$
\begin{equation*}
C^{\Gamma}=\left\{C^{\gamma} \in \mathcal{C}: \gamma \in \Gamma\right\}=: D \in \mathcal{D} . \tag{1.10}
\end{equation*}
$$

Thus the σ_{i}-operations on the set \mathcal{D} of simplex orbits are induced by

$$
\begin{align*}
\sigma_{i}: D \longmapsto & \sigma_{i} D:=\sigma_{i} C^{\Gamma}=\left\{\sigma_{i} C^{\gamma} \in \mathcal{C}: \gamma \in \Gamma\right\} \tag{1.11}\\
& \text { for any } i \in I, C \in D \in \mathcal{D} .
\end{align*}
$$

The induced matrix function

$$
\begin{gather*}
\mathcal{M}: \mathcal{D} \longrightarrow \mathbb{N}_{I \times I}, \quad D \longmapsto \mathcal{M}(D):=M(C):=m_{i j}(C) \tag{1.12}\\
\quad \text { for any } C \in D \in \mathcal{D}
\end{gather*}
$$

and so the D-symbol $(\mathcal{D}, \mathcal{M})$ will be introduced. This pair consists of a D diagram \mathcal{D} (a set, required to be finite, together with given σ_{i}-operations $i \in I$) and of a matrix function \mathcal{M} on \mathcal{D} with some natural additional requirements as it follows later in Section 2 under formulas (2.10-13).

In the case of our cube tiling $\mathcal{T}:=\mathcal{T}_{\text {cube }}$ the full isometry group $\Gamma \cong$ Aut \mathcal{T} acts simply transitively on the barycentric subdivision of \mathcal{C}, i.e. with exactly one Γ-orbit. Thus our Figures at $\boldsymbol{\Gamma}_{\mathbf{1}}$ show the D-diagram $\mathcal{D}_{\mathbf{1}}$ with 1 vertex and with four loops $\sigma_{i}, i \in I$. The matrix function under (1.8) provides the presentation of $\Gamma:=\mathbf{P} \mathbf{m} \overline{3} \mathbf{m}$ as a crystallographic space group no 221. in the International Tables [8]. This presentation is given in our Tables $\mathcal{D}_{\mathbf{1}}-\boldsymbol{\Gamma}_{\mathbf{1}}(x ; y ; z)$ by the generating mirror reflections $m_{i}, i \in I$ in the i-face of any fixed fundamental simplex $\mathcal{F}_{\mathbf{1}}=C_{\mathbf{1}} \in \mathcal{C}_{\mathbf{1}}$, and the
matrix (1.8) provides the relations for $\boldsymbol{\Gamma}_{\mathbf{1}}(x ; y ; z)$, now with $m_{01}:=x=4$, $m_{12}:=y=3, m_{23}:=z=4$ as specialized matrix entries.

Every partial D-symbol \mathcal{D}^{i}, obtained by cancelling the σ_{i} operation and the i-th row and i-th column of (1.8), defines the matrix function \mathcal{M}^{i} and the partial D-symbol components $\left(\mathcal{D}^{i}, \mathcal{M}^{i}\right)$. Any of them characterizes a local 2-dimensional tiling \mathcal{T}^{i}, or more its barycentric subdivision \mathcal{C}^{i} around a corresponding i-midpoint or around any Γ-images of this i midpoints. Our $\left(\mathcal{D}^{i}, \mathcal{M}^{i}\right)$ describes also the stabilizer subgroup $\Gamma^{i}\left(A_{i}\right)$ of $\mathcal{T}^{i}, \mathcal{C}^{i}$ and of the i-midpoint A_{i} up to conjugacy in Γ. Now we naturally require that each $\Gamma^{i}, i \in I \backslash\{0,3\}$, is finite group for a spherical, i.e. \mathbf{S}^{2}-tiling, but any of Γ^{0} 's or Γ^{3} 's is permitted to be either a finite spherical group or a Euclidean crystallographic plane group for an \mathbf{E}^{2}-tiling \mathcal{C}^{0}, resp. \mathcal{C}^{3}, too. This last requirement allows ideal points (ends) for A_{0} 's or A_{3} 's e.g. in \mathbf{E}^{3}, $\mathbf{H}^{3}, \mathbf{H}^{2} \times \mathbf{R}$. Since we know the plane crystallographic groups [10], [17], their fundamental domains [9], moreover their D-symbol characterization [4], [7], this will restrict our choice for the matrix function \mathcal{M}. That is why we have many other tilings for the same D-diagram $\mathcal{D}_{\mathbf{1}}$ at $\boldsymbol{\Gamma}_{\mathbf{1}}(x ; y ; z)$ in the Figures and Tables. The unequalities

$$
\begin{equation*}
\frac{\pi}{x}+\frac{\pi}{y}+\frac{\pi}{2}>\pi \quad \text { and } \quad \frac{\pi}{y}+\frac{\pi}{z}+\frac{\pi}{2}>\pi \tag{1.13.a}
\end{equation*}
$$

for angle sum of spherical triangles, guarantee that A_{3} and A_{0} will be proper vertices as in the case of our Euclidean cube tiling with $\boldsymbol{\Gamma}_{\mathbf{1}}(4 ; 3 ; 4)$ like a so-called Coxeter reflection group. This and any other Coxeter group [3], [16] can be described by a Coxeter diagram. Here, to the generating plane reflections $m_{0}, m_{1}, m_{2}, m_{3}$, as vertices, we also indicate the defining relations or mirror face angles at the edges (see in the Tables) which are well-known. For instance, $\boldsymbol{\Gamma}_{\mathbf{1}}(x ; y=2 ; z)$ leads to an infinite series of spherical groups and \mathbf{S}^{3}-tilings where the polyhedra of \mathcal{T}_{1} are spherical with two x-gon faces, each of the x vertices is of valence 2 , z lenses meet at any edge. $\boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 5 ; 3)$ leads to a regular icosahedron tiling in the hyperbolic space \mathbf{H}^{3} where 3 icosahedra meet at each edge. $\boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 3 ; 6)$ serves also a \mathbf{H}^{3}-tiling by regular tetrahedra with face angles $\frac{2 \pi}{6}$ and so with ideal vertices. More generally, the equalities

$$
\begin{equation*}
\frac{\pi}{x}+\frac{\pi}{y}+\frac{\pi}{2}=\pi, \quad \text { resp. } \quad \frac{\pi}{y}+\frac{\pi}{z}+\frac{\pi}{2}=\pi \tag{1.13.b}
\end{equation*}
$$

describe that A_{3}, resp. A_{0} is ideal vertex. E.g. $\boldsymbol{\Gamma}_{\mathbf{1}}(2 ; 3 ; 6)$ provides an \mathbf{E}^{3} tiling with regular trigonal infinite prisms; $\boldsymbol{\Gamma}_{\mathbf{1}}(6 ; 3 ; 6)$ leads to a \mathbf{H}^{3}-tiling by "regular polyhedra" (\mathbf{H}^{3}-honeycomb) whose centre and the vertices all
are ideal points. This latter regular polyhedron has an inscribed horosphere. The faces are hexagons meeting 3 ones at each ideal vertex as in the Euclidean plane hexagon tiling. At any edge meet 6 such infinite polyhedra. We exclude when Γ^{3} resp. Γ^{0} is a \mathbf{H}^{2}-plane group, although such a polyhedron would exist in the projective embedding of \mathbf{H}^{3} with outer centre A_{3} resp. outer vertex A_{0}.

Since a tiling (\mathcal{T}, Γ) and its dual $\left(\mathcal{T}^{\star}, \Gamma^{\star}\right)$ have canonically isomorphic groups $\Gamma \cong \Gamma^{\star}$, we enumerate only one of them. The metric existence of any $\boldsymbol{\Gamma}_{\mathbf{1}}$-tiling rests on the eigenvalue signature of the cosinus matrix

$$
\left(\begin{array}{cccc}
1 & -\cos \frac{\pi}{x} & 0 & 0 \tag{1.14}\\
-\cos \frac{\pi}{x} & 1 & -\cos \frac{\pi}{y} & 0 \\
0 & -\cos \frac{\pi}{y} & 1 & -\cos \frac{\pi}{z} \\
0 & 0 & -\cos \frac{\pi}{z} & 1
\end{array}\right) .
$$

As it is well-known, the signature $(++++)$ leads to \mathbf{S}^{3}-tilings, $(+++0)$ to \mathbf{E}^{3}-tilings as in our cubic case, and $(+++-)$ provides \mathbf{H}^{3}-tilings [1], [3], [12], [16].

Now we analogously sketch the Euclidean rhombododecahedron tiling $\mathcal{T}_{\mathbf{2 . 1}}:=\mathcal{T}_{r h}$ under $\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$ in Figures and Tables. $\mathcal{T}_{r h}$ is embedded into the cube tiling in the usual way. As any rhomb lies on an edge of a cube, we illustrate only a part of this tiling with the fundamental domain $A_{3} A_{2}{ }^{1} A_{0} A_{1}{ }^{2} A_{0}$ of the full isometry group $\boldsymbol{\Gamma}_{\mathbf{2 . 1}}(2 \cdot 2 ; 3 ; 4 ; 3) \cong$ Aut $\mathcal{T}_{r h}$. Our procedure with the barycentric subdivision $\mathcal{C}_{r h}$ leads to 2 simplex orbits under $\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$. These are represented by ${ }^{1} A_{0} A_{1} A_{2} A_{3} \leftrightarrow D_{1} \leftrightarrow$ (1) and ${ }^{2} A_{0} A_{1} A_{2} A_{3} \leftrightarrow D_{2} \leftrightarrow$ (2) in the simplified D-diagram $\mathcal{D}_{2.1}$ where the $\sigma_{0}-$ operation $(\cdots \cdots)$ is indicated but the loops for $\sigma_{1^{-}}, \sigma_{2^{-}}$and $\sigma_{3^{-}}$-operations are not (as also later on).

Our general procedure leads to the presentation of $\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$ again as a Coxeter group with 4 generating reflections $m_{1}, m_{1^{\prime}}, m_{2}, m_{3}$ indicated only by their subindices in their simplified Coxeter diagram. Here the order $x=$ $y=3$ of product $m_{2} m_{3}$ expresses that 3 rhombododecahedra meet at any edges ${ }^{1} A_{0} A_{1}{ }^{2} A_{0} ; v=3$ and $w=4$ indicate the edge-valences of the nonequivalent vertices ${ }^{1} A_{0}$ resp. ${ }^{2} A_{0}$ on the surfaces of rhombododecahedron. The most "interesting" information is expressed by $2 \cdot u$ in the denotation $\boldsymbol{\Gamma}_{\mathbf{2 . 1}}(2 u ; v, w ; x=y), u=2$ in our case. That means the rhomb is a quadrangle: $2 \cdot u$-gon (of course), $u=2$ refers to the order of reflectionproduct $m_{1} m_{1^{\prime}}$ (now $s_{1} \perp s_{1^{\prime}}$). The coefficient 2 refers to the number of vertices in the partial diagram only with $\sigma_{0^{-}}$and σ_{1}-operations

$$
\begin{equation*}
\mathcal{D}_{01}:(1) \cdots \cdots(2) \text { i.e. }\left(\sigma_{1} \sigma_{0}\right)^{2} D_{z}=D_{z}, \quad z=1,2 \text {. } \tag{1.15}
\end{equation*}
$$

So, this refers to the exponent $r_{01}=2$ in the $\left\langle\sigma_{0}, \sigma_{1}\right\rangle$-orbit of $\mathcal{D}_{\mathbf{2 . 1}}$ under the action of Σ_{I}. Furthermore, all these also refer to the entry $m_{01}=$ $r_{01} \cdot u=2 \cdot u=4$ in the matrix function

$$
\begin{gather*}
\mathcal{M}: \mathcal{D}_{\mathbf{2 . 1}} \longrightarrow \mathbb{N}_{I \times I}, \\
D_{1} \longmapsto\left(\begin{array}{cccc}
1 & 2 u & 2 & 2 \\
2 u & 1 & v & 2 \\
2 & v & 1 & x \\
2 & 2 & x & 1
\end{array}\right), \quad D_{2} \longmapsto\left(\begin{array}{cccc}
1 & 2 u & 2 & 2 \\
2 u & 1 & w & 2 \\
2 & w & 1 & y \\
2 & 2 & y & 1
\end{array}\right) \tag{1.16}\\
\text { with }(u ; v ; w ; x=y)=(2 ; 3 ; 4 ; 3)
\end{gather*}
$$

as our Tables say in a shorter form.
The same D-diagram $\mathcal{D}_{\mathbf{2 . 1}}$ with $(u ; v ; w ; x=y)=(2 ; 3 ; 5 ; 3)$ describes a \mathbf{H}^{3}-tiling with proper vertices, but e.g. $(2 ; 3 ; 6 ; 3)$ gives us a \mathbf{H}^{3}-tiling with A_{3} and ${ }^{2} A_{0}$ as ideal vertices at the absolute, while ${ }^{1} A_{0}$ is proper vertex. Again, the cosinus matrix

$$
\begin{align*}
& \text { (1) } \tag{1.17}\\
& \text { (1) } \\
& \text { (2) } \\
& \text { (3) }
\end{align*}\left(\begin{array}{cccc}
1 & -\cos \frac{\pi}{u} & -\cos \frac{\pi}{v} & 0 \\
-\cos \frac{\pi}{u} & 1 & -\cos \frac{\pi}{W} & 0 \\
-\cos \frac{\pi}{v} & -\cos \frac{\pi}{w} & 1 & -\cos \frac{\pi}{x} \\
0 & 0 & -\cos \frac{\pi}{X} & 1
\end{array}\right) \text {, }
$$

according to the simplified Coxeter diagram (Fig. $\mathcal{D}_{\mathbf{2 . 1}}-\Gamma_{\mathbf{2 . 1}}$), by its signature, decides the existence of metric realization in $\mathbf{S}^{3}(++++), \mathbf{E}^{3}$ $(+++0), \quad \mathbf{H}^{3}(+++-)$. The principal 3×3 minors determine the qualities of vertices. For instance, the signature of $\left(1,1^{\prime}, 2\right)$-minor tells us the quality of vertex A_{3}. For $(u, v, w)=(2,3,4)$ or $(2,3,5)$ the signature is $(+++)$, that means A_{3} is proper. But for $(u, v, w)=(2,3,6)$ that is $(++0)$ indicating an \mathbf{E}^{2}-stabilizer for A_{3}, i.e. A_{3} is ideal vertex. The signatures of $(1,2,3)$ - and ($1^{\prime}, 2,3$)-minors characterize ${ }^{2} A_{0}$ and ${ }^{1} A_{0}$, respectively.

Our Tables $\mathcal{D}_{\mathbf{2 . 1}}-\Gamma_{\mathbf{2 . 1}}$ tell that $\boldsymbol{\Gamma}_{\mathbf{2 . 1}} \cong$ Aut $\mathcal{T}_{\mathbf{2 . 1}}$ maximal group iff $v<w$, else $\boldsymbol{\Gamma}_{\mathbf{1}}(\bar{x}=2 u ; \bar{y}=v=w ; \bar{z}=x=y)$ is a supergroup, preserving the combinatorial structure of the corresponding tiling $\mathcal{T}_{\mathbf{2 . 1}}$. Indeed, in case $v=w \mathcal{T}_{2.1}$ has a richer automorphism group. Namely, the combinatorial reflection (as the operation $\sigma_{0}: D_{1} \mapsto D_{2}=\sigma_{0} D_{1}$ dictates)

$$
\begin{equation*}
m_{0}:{ }^{1} A_{0} A_{1} A_{2} A_{3} \longmapsto{ }^{2} A_{0} A_{1} A_{2} A_{3} \quad \text { of } \quad \mathcal{F}_{\mathbf{2 . 1}}={ }^{1} A_{0}{ }^{2} A_{0} A_{2} A_{3} \tag{1.18}
\end{equation*}
$$

(the fundamental domain of $\boldsymbol{\Gamma}_{\mathbf{2 . 1}}(2 u ; v, w ; x=y)$ in case $\left.v=w\right)$ can be extended to the entire tiling $\mathcal{T}_{\mathbf{2 . 1}}$. In the language of D-symbols we say: there is a D-morphism, i.e. a surjection

$$
\Psi: \mathcal{D}_{2.1} \longrightarrow \mathcal{D}_{\mathbf{1}} \quad \text { with } \quad\left(\sigma_{i} D\right)^{\Psi}=\sigma_{i}\left(D^{\Psi}\right), \quad \mathcal{M}\left(D^{\Psi}\right)=\mathcal{M}(D)
$$

$$
\begin{equation*}
\text { for any } D \in \mathcal{D}_{\mathbf{2 . 1}}, \quad i \in I \text {, } \tag{1.19}
\end{equation*}
$$

preserving the σ_{i}-operations and the matrix function with the corresponding parameters (the bars, if occur, only distinguish the letters in the two symbols). Then $\mathcal{T}_{2.1}$ can be derived from \mathcal{T}_{1} by symmetry breaking [4], [5], [7], [13].

Our Tab. $\mathcal{D}_{\mathbf{2 . 1}}-\Gamma_{\mathbf{2 . 1}}$ tells that $\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$ is optimally presented by the tiling $\mathcal{T}_{2.1}$, iff - in addition to the other conditions - $3 \leq v, x$; else $\boldsymbol{\Gamma}_{\mathbf{1}}$ and \mathcal{T}_{1} - with appropriate parameters (not detailed) - provide a simpler presentation for the group $\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$. Indeed, if $u=1$, then $v=w$ would lead to non-maximal groups; similarly $3=u=v=w$, when A_{3} is ideal vertex with \mathbf{E}^{2}-stabilizer. If $v=2$ or $x=2$ then the Coxeter diagram reduces to that of $\boldsymbol{\Gamma}_{\mathbf{1}}$.

Our Tab. $\mathcal{D}_{\mathbf{2 . 1}}-\Gamma_{\mathbf{2 . 1}}$ allows the condition $v \leq w$ by logical symmetry. Indeed, if $v>w$ holds, we change $1 \leftrightarrow 2$ in the notations of vertices of $\mathcal{D}_{2.1}$, to obtain our case.

After this detailed introduction we discuss for $d=3$ more concisely the inverse problem: For each D-diagram \mathcal{D} of a classification list up to cardinality $|\mathcal{D}|=3$ we give the possible matrix functions \mathcal{M} so that each D-symbol $(\mathcal{D}, \mathcal{M})$ shall be realizable, first by a combinatorial tiling (\mathcal{T}, Γ) in a simply connected topological 3 -space \mathcal{S}^{3}. In this way $(\mathcal{D}, \mathcal{M})$ will represent a (generalized) good orbifold [1], [2], [6], [14] $\mathcal{O}^{3}\left(\mathcal{X}^{3}, \mathcal{A}\right)$, i.e. a topological 3 -space \mathcal{X}^{3} with a compatibile atlas \mathcal{A}, where each point P has a neighbourhood \mathcal{U}_{P} in \mathcal{A} that is homeomorphic to \mathbf{R}^{3} factorized by a finite group G_{O} fixing the origin $O \in \mathbf{R}^{3}$, corresponding to $P \in \mathcal{X}^{3}$. Our natural generalization allows finitely many "ideal" points in \mathcal{X}^{3}, any of them has neighbourhood homeomorphic to $\left(\mathbf{R}^{2} / G\right) \times \mathbf{R}$ where G is a Euclidean plane crystallographic group that acts on \mathbf{R}^{3}, extended along a fixed plane \mathbf{R}^{2}, preserving its halfspaces. The "ideal" point, considered in \mathcal{X}^{3}, corresponds to the common ideal point $+\infty$ of \mathbf{R}-fibers of $\left(\mathbf{R}^{2} / G\right) \times \mathbf{R}$ (embedded in the projective sphere $\mathbf{P S}{ }^{3}$ of \mathbf{R}^{3}, but it is not important now [12], [16]). Each orbifold and tiling (\mathcal{T}, Γ) will be given by a canonical fundamental domain \mathcal{F}_{Γ} as the D-symbol dictates by our later Algorithm 2.3. \mathcal{F}_{Γ} is endowed by an involutive face pairing \mathcal{I} (identifications) which generates the group Γ. The symbol $(\mathcal{D}, \mathcal{M})$ provides also the defining relations for Γ.

Altough the general criteria for isometric realizations have not been completely determined yet (these are related with the Thurston conjecture [1], [2], [14], [15], see our necessary assumption and conjecture at Alg. 2.3.e and papers [12], [13]), second we give also the metric realization for each D-symbol $(\mathcal{D}, \mathcal{M})$ and tiling (\mathcal{T}, Γ), if exists, in a Thurston geometry from the list in the Abstract. If such a metric realization does not exist, i.e. our good orbifold is non-geometric [6], [11] then we give the corresponding \mathbf{S}^{2} - and \mathbf{E}^{2}-suborbifolds, respectively, and splittings along them, according to the Thurston's orbifold conjecture. All the results are summarized in the Figures and Tables as indicated above by the starting examples.

2. On classification of D-diagrams and D-symbols, in general

Definition 2.1 of a D-diagram (to honour of B. N. Delone (Delaunay), M. S. Delaney and A. W. M. Dress [4], [5], [7], [13]): Let $\mathcal{D}:=\left(\Sigma_{I}, \mathcal{D}\right)$ a finite set endowed by $d+1$ involutive permutations as σ_{i}-operations $i \in I=\{0,1, \ldots, d\}$ generating the left hand side action of a free Coxeter group Σ_{I} by (1.2) which is transitive on \mathcal{D}. Particularly, think of dimension $d=3$, and use the conventions (1.1) in Sect. 1. Any element $D_{z} \leftrightarrow z$ of \mathcal{D} can be considered as a vertex of an I-coloured graph, called D-diagram \mathcal{D}, or more visually, a vertex corresponds to an R-coordinatized I-labelled simplex $\left(D_{z} ; \Delta_{I}\right)$ as a Cartesian product with the standard simplex

$$
\begin{equation*}
\Delta_{I}=\left\{\mathbf{x}:=\left(x^{0}, x^{1}, \ldots, x^{d}\right) \in \mathbf{R}^{I}: 0 \leq x^{k} \text { for any } k \in I \text { and } \sum_{k=0}^{d} x^{k}=1\right\} \tag{2.1}
\end{equation*}
$$

its i-facets $\Delta_{I}^{i}:=\left\{\mathbf{x} \in \Delta_{I}: x^{i}=0\right\}$ and i-vertices $A_{i}\left(a_{i}^{j}\right) \in \Delta_{I}$ by $a_{i}^{j}=\delta_{i}^{j}$ the Kronecker symbol $i, j \in I$.

Here the simplex Δ_{I} wears the usual affine topology. \mathcal{D} is assumed to have the discrete topology. We imagine as many simplices $\left(D_{1} ; \Delta_{I}\right), \ldots$, $\left(D_{n} ; \Delta_{I}\right)$ as many elements \mathcal{D} has, $n:=|\mathcal{D}|$ denotes the cardinality of \mathcal{D}. That means, we can introduce the standard topological realization, denoted by $\operatorname{Top}\left(\Sigma_{I}, \mathcal{D}\right):=\left(\mathcal{D} ; \Delta_{I}\right) / \sim$, as the Cartesian product with pointwise identifications $\sim:(D ; \mathbf{y}) \sim\left(\sigma_{i} D ; \mathbf{y}\right)$ for every $D \in \mathcal{D}$ and $\mathbf{y} \in \Delta_{I}^{i}, i \in I$.

As a tool for visualization, we may introduce the "local reflection"

$$
\begin{equation*}
\sigma_{i}:(D ; \mathbf{x}) \longmapsto \sigma_{i}(D ; \mathbf{x}):=\left(\sigma_{i} D ; \mathbf{x}\right) \text { for every } \mathbf{x} \in \Delta_{I} \tag{2.2}
\end{equation*}
$$

in the facet $\left(D ; \Delta_{I}^{i}\right) \sim\left(\sigma_{i} D ; \Delta_{I}^{i}\right)$, fixed pointwise under σ_{i} for a "local" $D \in \mathcal{D}, i \in I$. Then we can define and visualize the action of Σ_{I} on \mathcal{D} analogously as under formulas (1.3-4). Furthermore we can introduce

Definition 2.2, the action of the (extended) fundamental group of $\operatorname{Top}\left(\Sigma_{I}, \mathcal{D}\left(D_{1}\right)\right)$

$$
\begin{equation*}
\pi_{1}\left(\Sigma_{I}, \mathcal{D}\left(D_{1}\right)\right):=\Sigma_{I}\left(D_{1}\right):=\left\{\sigma \in \Sigma_{I}: \sigma\left(D_{1}\right)=D_{1}\right\} \tag{2.3}
\end{equation*}
$$

is well-defined up to a conjugacy in Σ_{I} related to a starting element $D_{1} \in \mathcal{D}$.

Indeed, if $D=\varrho D_{1}$ is an arbitrary vertex of the Σ_{I}-connected \mathcal{D} with $\varrho \in \Sigma_{I}$, then $\Sigma_{I}(D)=\varrho \Sigma_{I}\left(D_{1}\right) \varrho^{-1}$.

Definition 2.3. The universal covering space $\widetilde{\operatorname{Top}\left(\Sigma_{I}, \mathcal{D}\right):=}$ $\left(\Sigma_{I} ; \mathcal{D} ; \Delta_{I}\right) / \sim$ of $\operatorname{Top}\left(\Sigma_{I}, \mathcal{D}\right)$ can be defined, first again, as a Cartesian product $\left(\Sigma_{I} ; \mathcal{D} ; \Delta_{I}\right)$ with the discrete topology of $\left(\Sigma_{I} ; \mathcal{D}\right)$ and the usual affine topology on Δ_{I}. Second again, we introduce identifications on $\left(\Sigma_{I} ; \mathcal{D} ; \Delta_{I}\right)$

$$
\begin{align*}
& \quad \sim:\left(\varrho \sigma ; D_{1} ; \mathbf{x}\right) \sim\left(\varrho \sigma \varrho^{-1} ; D ; \mathbf{x}\right) \\
& \text { and } \quad\left(\varrho \sigma \varrho^{-1} ; D ; \mathbf{y}\right) \sim\left(\sigma_{i} \varrho \sigma \varrho^{-1} ; D ; \mathbf{y}\right) \\
& \text { for any } D_{1}=\sigma D_{1}, D=\varrho D_{1} \text { in }\left(\Sigma_{I} ; \mathcal{D}\right), \tag{2.4}\\
& \quad \mathbf{x} \in \Delta_{I}, \mathbf{y} \in \Delta_{I}^{i}, i \in I
\end{align*}
$$

If $\sigma D_{1}=D_{1}=\tau D_{1}$, then $\sigma \tau D_{1}=D_{1}$ also holds, i.e. $\sigma, \tau, \sigma \tau \in$ $\Sigma_{I}\left(D_{1}\right)$. To $\Sigma_{I}\left(D_{1}\right)$ we correspond the group $\tilde{\Sigma}_{I}(\mathcal{D})$ of covering transformations of $\widetilde{\operatorname{Top}}\left(\Sigma_{I}, \mathcal{D}\right)$ which acts from the right, written exponentially, and preserves the $\Sigma_{I^{-}}$-action on simplices of $\widetilde{\operatorname{Top}}\left(\Sigma_{I}, \mathcal{D}\right)$ as

$$
\begin{equation*}
\left(\sigma_{i} D\right)^{\tilde{\sigma}}=\sigma_{i}\left(D^{\tilde{\sigma}}\right)=: \sigma_{i} D^{\tilde{\sigma}}, \quad(D)^{\tilde{\sigma} \tilde{\tau}}:=\left(D^{\tilde{\sigma}}\right)^{\tilde{\tau}}=D^{\widetilde{\sigma \tau}} \tag{2.5}
\end{equation*}
$$

will denote. Indeed, we define for $D:=\left(1 ; D ; \Delta_{I}\right) \sim\left(\varrho ; D_{1} ; \Delta_{I}\right)=: \varrho D_{1}$ in $\operatorname{Top}\left(\Sigma_{I}, \mathcal{D}\right)$

$$
\begin{equation*}
D^{\tilde{\sigma}}:=\left(\varrho D_{1}\right)^{\tilde{\sigma}}:=\varrho \sigma D_{1}=\varrho \sigma \varrho^{-1} D \quad \text { iff } \sigma D_{1}=D_{1} \text { in }\left(\Sigma_{I}, \mathcal{D}\right) . \tag{2.6}
\end{equation*}
$$

Then

$$
\left(\sigma_{i} D\right)^{\tilde{\sigma}}:=\left(\sigma_{i} \varrho D_{1}\right)^{\tilde{\sigma}}:=\left(\sigma_{i} \varrho\right) \sigma D_{1}=\sigma_{i} \varrho \sigma \varrho^{-1} D=\sigma_{i}\left(D^{\tilde{\sigma}}\right)
$$

hold, indeed. Moreover,

$$
\left(D^{\tilde{\sigma}}\right)^{\tilde{\tau}}:=\left(\varrho \sigma D_{1}\right)^{\tilde{\tau}}:=(\varrho \sigma) \tau D_{1}=\varrho(\sigma \tau) \varrho^{-1} D=: D^{\widetilde{\sigma \tau}}
$$

show also the homomorphism Φ of the fundamental group $\Sigma_{I}\left(D_{1}\right)$ of $\operatorname{Top}\left(\Sigma_{I}, \mathcal{D}\left(D_{1}\right)\right)$ onto the covering transformation group $\tilde{\Sigma}_{I}(\mathcal{D})$ of $\operatorname{Top}\left(\Sigma_{I}, \mathcal{D}\right)$ by

$$
\begin{equation*}
\Phi: \Sigma_{I}\left(D_{1}\right) \longrightarrow \tilde{\Sigma}_{I}(\mathcal{D}), \quad \sigma \longmapsto\left\{\varrho \sigma \varrho^{-1}: \varrho \in \Sigma_{i}\right\}=: \tilde{\sigma} \tag{2.7}
\end{equation*}
$$

A standard argumentation shows that our Φ is even an isomorphism. Here we do not prove this fact, only mention that it is a byproduct from a more general construction for universal covering of a good orbifold [1], [11], [14].

Definition 2.4. The D-diagram $\left(\Sigma_{I}, \mathcal{D}\right)$ automaticly induces its subdiagram components ${ }^{c}\left(\Sigma_{J}, \mathcal{D}\right), J \subset I$, which characterize lower-dimensional parts of $\operatorname{Top}\left(\Sigma_{I}, \mathcal{D}\right)$. Thus, the components ${ }^{c} \mathcal{D}_{i j}, i<j \in I$ with their $\sigma_{i^{-}}$ and σ_{j}-operations define a symmetric matrix function with entries from the natural numbers \mathbb{N} :

$$
\begin{align*}
& \mathcal{R}: \mathcal{D} \longrightarrow \mathbb{N}_{I \times I} ; \quad D \longmapsto r_{i j}(D), \quad i, j \in I \\
& \text { by } r_{i j}(D):=\min \left\{r \in \mathbb{N}:\left(\sigma_{j} \sigma_{i}\right)^{r}(D)=D\right\} \tag{2.8}
\end{align*}
$$

with the following requirements:

$$
\begin{gather*}
r_{i i}(D)=1 ; \quad r_{i j}(D)=r_{j i}(D)=r_{j i}\left(\sigma_{i} D\right) ; \\
r_{i j}(D) \in\{1,2\} \quad \text { if } 1<j-i \tag{2.9}\\
\text { for any } D \in \mathcal{D}, i<j \in I
\end{gather*}
$$

Definition 2.5 of a D-symbol $(\mathcal{D}, \mathcal{M})$. A D-diagram $\left(\Sigma_{I}, \mathcal{D}\right)$ together with a matrix function, with entries from $\mathbb{N}^{\infty}:=\mathbb{N} \cup \infty$:

$$
\begin{equation*}
\mathcal{M}: \mathcal{D} \longrightarrow \mathbb{N}_{I \times I}^{\infty} ; \quad D \longmapsto \mathcal{M}(D):=m_{i j}(D):=r_{i j}(D) \cdot v_{i j}(D) \tag{2.10}
\end{equation*}
$$

with $v_{i j}(D) \in \mathbb{N}^{\infty}$ as rotational orders or branching numbers, is called a D-symbol (Delone-Delaney-Dress-symbol), if the following requirements are fulfilled:

$$
\begin{gather*}
m_{i i}(D)=1 ; \quad m_{i j}(D)=m_{j i}(D)=m_{j i}\left(\sigma_{i} D\right) \tag{2.11}\\
m_{i j}(D)=2 \quad \text { if } \quad 1<j-i ; \quad m_{i j}(D) \geq 2 \quad \text { if } \quad 1=j-i \tag{2.12}\\
\left(\sigma_{j} \sigma_{i}\right)^{m_{i j}(D)}(D)=D \quad \text { if } \quad m_{i j} \neq \infty \tag{2.13}
\end{gather*}
$$

for any $D \in \mathcal{D}$ and $i<j \in I$.

From our present investigations $m_{i j}(D)=\infty=v_{i j}(D)$ will be excluded. In case $d=3$ we have required proper ($d-2$)-faces, i.e. edges for the simplices in the barycentric subdivision \mathcal{C} of a tiling \mathcal{T} being described later. Of course (2.10) provides dependences among the requirements for the functions $r_{i j}, v_{i j}, m_{i j}$. These are constant on any component ${ }^{c} \mathcal{D}_{i j}$ of $(\mathcal{D}, \mathcal{M}), \quad i<j \in I$.

Definition 2.6 of realization. To a given D-symbol $(\mathcal{D}, \mathcal{M})$ we want to construct a simply connected d-space \mathcal{S}^{d}, moreover a tiling \mathcal{T} in \mathcal{S}^{d} with a barycentric subdivision \mathcal{C} of I-labelled simplices. The left action of Σ_{I} should be transitive on \mathcal{C} and compatible with the right action of a group $\Gamma \leq$ Aut \mathcal{T}. We require that the orbit space \mathcal{C} / Γ and the Σ_{I} action, induced on it, is just isomorphic to $\mathcal{D}:=\left(\Sigma_{I}, \mathcal{D}\right)$. Furthermore, we also require that for any $C \in D \in \mathcal{C} / \Gamma=\mathcal{D}$ the matrix function \mathcal{M} provides the minimal exponent $m_{i j}(D)=: m$ so that $\left(\sigma_{j} \sigma_{i}\right)^{m}(C)=C$ holds for any $i, j \in I$. If such a construction exists, then we call it a topological (orbifold) realization of D-symbol $(\mathcal{D}, \mathcal{M})$. Analogously we can define the other realizations, e.g. like metric realization in a space of constant curvature with group Γ of isometries, or in other spaces. The existence of such a realization is questionable, in general.

In our papers [12], [13] we proposed a procedure for such a construction, in general. The basic idea was that the D-symbol $(\mathcal{D}, \mathcal{M})$ itself dictates how to glue a fundamental domain \mathcal{F} from $|\mathcal{D}|=: n$ simplices, and how to pair the free facets of \mathcal{F} to generate a group Γ and a fundamental tiling $\langle\mathcal{F}, \Gamma\rangle$ with Γ-images of \mathcal{F}. The free $(d-2)$-face classes of \mathcal{F}, by means of the matrix function \mathcal{M}, tell us how to glue the Γ-images of \mathcal{F} at the $(d-2)$-faces. Moreover, they tell us the defining relations for the face pairing generators of Γ by so-called Poincaré-Aleksandrov algorithm [1], [12], [16]. Moreover, the tiling $\langle\mathcal{F}, \Gamma\rangle$ just defines a simply connected space \mathcal{S}^{d}, if the fundamental domain \mathcal{F} is nice enough, e.g. the interior of its each k-face is homeomorphic to an open k-simplex $(k \in I)$. The group Γ, however, may collapse by the consequences of the defining relations above. This is the case, e.g. if one from the four types of 2-dimensional bad orbifolds [11], [12], [14] does occur among the partial D-symbol components of $(\mathcal{D}, \mathcal{M})$ with any 3 colours from I (see Alg. 2.3.e, (2.16)). Then the rotational orders $v_{i j}$ and so $m_{i j}$ should be reduced according to (2.10).

Our classification will show these phenomena on concrete examples.
Now we give a general scheme for classification of D-diagrams and D-symbols. This is our new initiative in this paper, although this type of method is well-known in combinatorics.

1. We define an ordered form for each D-symbol $\left(\Sigma_{I}, \mathcal{D}\left(D_{1}\right), \mathcal{M}\right)$ with starting element $D_{1} \leftrightarrow$ (1) by numbering the other elements. So we can define a distance between D_{1} and D_{k} as $D_{1} D_{k}=k-1$. Choosing another starting element, a (non-symmetric) distance function can be defined in the whole D-diagram, independent of \mathcal{M}.
2. We define a ' $<$ ' relation between any two D-symbols each with distinguished starting element.
3. On the base of $\mathbf{1 - 2}$ we define a smallest numbering for a fixed D symbol to choose a representative from isomorphic variants.
4. Comparing the representatives, we list the D-symbols increasingly.
5. To each D-symbol $(\mathcal{D}, \mathcal{M})$ in the list we determine its automorphism group $\operatorname{Aut}(\mathcal{D}, \mathcal{M})$ by the step 3. That is not trivial iff we have more smallest numberings. We take the orbits of $\operatorname{Aut}(\mathcal{D}, \mathcal{M})$ as elements from a smaller D-symbol $\left(\mathcal{D}^{n}, \mathcal{M}\right)$ with the induced Σ_{I}-action and the same matrix function. This is called the normalizer D-symbol of $(\mathcal{D}, \mathcal{M})$.
6. As usual [4], [5], [7], [13] we introduce to each D-symbol $(\mathcal{D}, \mathcal{M})$ its smallest D-morphic image $\left(\mathcal{D}^{\star}, \mathcal{M}^{\star}\right)$ if there is a surjective mapping

$$
\begin{gather*}
\Psi: \mathcal{D} \longrightarrow \mathcal{D}^{\star}, \quad D \longmapsto D^{\Psi} \\
\text { with } \quad\left(\sigma_{i} D\right)^{\Psi}=\sigma_{i}\left(D^{\Psi}\right) \quad \text { and } \mathcal{M}(D)=\mathcal{M}^{\star}\left(D^{\Psi}\right) \tag{2.14}\\
\text { for each } D \in \mathcal{D}, i \in I .
\end{gather*}
$$

This characterizes isomorphic tilings $\mathcal{T} \cong \mathcal{T}^{\star}$ with groups $\Gamma \leq \Gamma^{\star} \cong$ Aut \mathcal{T}, the maximal group for $\mathcal{T} \cong \mathcal{T}^{\star}$. If Ψ above is bijective, then it is a D-isomorphism. If $\left|\mathcal{D}^{\star}\right|<|\mathcal{D}|$ stands for the cardinalities, then (\mathcal{T}, Γ) is called a symmetry breaking of ($\left.\mathcal{T}^{\star}, \Gamma^{\star}\right)$ according to the D-symbols, respectively.
7. We arrange the D-symbols into topological families. Each family is represented by the common smallest D-morphic image, i.e. by the maximal group $\Gamma=$ Aut \mathcal{T}.

Algorithm 2.1. Let $\left(\Sigma_{I}, \mathcal{D}\left(D_{1}\right)\right)$ be the D-diagram of a D-symbol with a starting element $D_{1} \in \mathcal{D}$. We number the other elements (vertices) of \mathcal{D} by the Σ_{I}-operations according to the natural increasing ordering of $I=\{0,1,2, \ldots, d\}$ as follows:
a) Assume, we have already numbered the elements $D_{1}, \ldots, D_{r}, r<$ $|\mathcal{D}|=: n$. Consider $\sigma_{0}\left(D_{r}\right), \sigma_{1}\left(D_{r}\right)$. The first of them, not listed yet, will be D_{r+1} if exists.
b) Else we take $\sigma_{2}\left(D_{r}\right), \ldots, \sigma_{2}\left(D_{1}\right) ; \ldots ; \sigma_{d}\left(D_{r}\right), \ldots, \sigma_{d}\left(D_{1}\right)$. The first new one will be D_{r+1}.
c) Then we proceed with $r \rightarrow r+1$ as above. Since Σ_{I} acts transitively on the finite \mathcal{D}, we end at $D_{n}, n=|\mathcal{D}|$.
d) The distance of any two elements D_{x}, D_{y} can be obtained: We choose $D_{x}=D_{1^{\prime}}$ for starting element and proceed as above. If we get $D_{y}=$ $D_{k^{\prime}}$ then the distance is $D_{x} D_{y}=k-1$.
Algorithm 2.2. Let $\left(\Sigma_{I}, \mathcal{D}\left(D_{1}\right), \mathcal{M}\right)=\mathcal{D}$ and $\left(\Sigma_{I^{\prime}}^{\prime}, \mathcal{D}^{\prime}\left(D_{1^{\prime}}\right), \mathcal{M}^{\prime}\right)=$: \mathcal{D}^{\prime} be two D-symbols each with distinguished starting element. We define $\mathcal{D}<\mathcal{D}^{\prime}$ by the following preferences $\mathbf{a}-\mathbf{d}$:
a) $|I|<\left|I^{\prime}\right|(|\cdot|$ denotes cardinality); preference of dimension.
b) If both dimensions $=: d$ then $|\mathcal{D}|<\left|\mathcal{D}^{\prime}\right|$; preference of cardinality.
c) If both cardinaties $=: n$ then we compare distances in \mathcal{D} and \mathcal{D}^{\prime}, respectively. Consider equally numbered elements and their σ_{i}-images in reverse preference in $I=I^{\prime}$:
$-D_{1} \sigma_{d} D_{1}<D_{1^{\prime}} \sigma_{d} D_{1^{\prime}} ;$ if ' $=$ ' holds then $D_{2} \sigma_{d} D_{2}<D_{2^{\prime}} \sigma_{d} D_{2^{\prime}} ; \ldots ;$ if ' $=$ ' then $D_{n} \sigma_{d} D_{n}<D_{n^{\prime}} \sigma_{d} D_{n^{\prime}}$; of course, it is enough to go till $n-1$;

- if ' $=$ ' then $D_{1} \sigma_{d-1} D_{1}<D_{1^{\prime}} \sigma_{d-1} D_{1^{\prime}} ; \ldots$; if ' $=$ ' then $D_{n} \sigma_{d-1} D_{n}<D_{n^{\prime}} \sigma_{d-1} D_{n^{\prime}}$;
\vdots
- if ' $=$ ' then $D_{1} \sigma_{0} D_{1}<D_{1^{\prime}} \sigma_{0} D_{1^{\prime}} ; \ldots$; if ' $=$ ' then $D_{n} \sigma_{0} D_{n}<D_{n^{\prime}} \sigma_{0} D_{n^{\prime}}$.
d) If ' $=$ ' stands in each place before, then the D-diagrams are isomorphic. Then come the matrix functions by increasing preferences in their $01,12, \ldots,(d-1) d$ entries for the equal components of \mathcal{D}_{01}, $\mathcal{D}_{12}, \ldots, \mathcal{D}_{(d-1) d}:$
- $m_{01}\left(D_{1}\right)<m_{01}^{\prime}\left(D_{1^{\prime}}\right)$; if ' $=$ ' then $m_{01}\left(D_{2}\right)<m_{01}^{\prime}\left(D_{2^{\prime}}\right)$; \ldots; if $'=$ ' then $m_{01}\left(D_{n}\right)<m_{01}^{\prime}\left(D_{n^{\prime}}\right)$; of course, we compare whole 01 orbits, as later on, too;
- if ' $=$ ' then $m_{12}\left(D_{1}\right)<m_{12}^{\prime}\left(D_{1^{\prime}}\right) ; \ldots$; if ' $=$ ' then $m_{12}\left(D_{n}\right)<$ $m_{12}^{\prime}\left(D_{n^{\prime}}\right)$;
!
- if ' $=$ ' then $m_{(d-1) d}\left(D_{1}\right)<m_{(d-1) d}^{\prime}\left(D_{1^{\prime}}\right) ; \ldots$; if ' $=$ ' then $m_{(d-1) d}\left(D_{n}\right)<m_{(d-1) d}^{\prime}\left(D_{n^{\prime}}\right)$.
e) If ' $=$ ' stands in each place before, then the two D-symbols clearly are D-isomorphic and lie in the same equivalence class.

Proposition 2.1. Our ' $<$ ' relation is trichotom and transitive on the equivalence classes of D-symbols with distinguished starting elements.

The proof is obvious. In each place we compare natural numbers, within zero, whose ordering satisfies these properties.

We remark that other preferences are also possible in Alg. 2.1.a or in Alg. 2.2.c: These would lead to other orderings, considered less natural for our reason. Our preferences can be applied for generating our list of D-symbols systematically. We do not give further details since we plan another publication about this topic.

Algorithm 2.3 of constructing canonical fundamental domain \mathcal{F} and the tiling (\mathcal{T}, Γ) for a D-symbol. Consider $\mathcal{D}:=\left(\Sigma_{I}, \mathcal{D}\left(D_{1}\right), \mathcal{M}\right)$ by its smallest numbering. We proceed by Alg. 2.1: Glue $D_{2}=\sigma_{i_{1}}\left(D_{1}\right)$ to D_{1} by the first non-trivial $\sigma_{i_{1}}$-operation in Alg. 2.1.a, i.e. form $\left(D_{1} ; \Delta_{I}\right) \cup\left(D_{2} ; \Delta_{I}\right)$ identified along $\left(D_{1} ; \Delta_{I}^{i_{1}}\right) \sim\left(D_{2} ; \Delta_{I}^{i_{1}}\right)$ and form a convex affine chart to copy them in \mathbf{R}^{d}.
a) Assume, we have already glued $\left(D_{1} ; \Delta_{I}\right) \cup \cdots \cup\left(D_{r} ; \Delta_{I}\right)$ by the corresponding $\sigma_{i_{1}}-, \ldots, \sigma_{i_{r-1}}$-operations and imagine a convex "affine chart" in \mathbf{R}^{d} as follows. D_{r+1} join D_{r} along their free i_{r}-facet, i.e. D_{r} is not $\sigma_{i_{r}}$-related to the former simplices, and we keep convexity. (The convexity of a metric realization of \mathcal{F} is not guaranteed yet, in general.)
b) Else all facets of D_{r} are not free, either glued (covered) or paired by former facets. Any pair provides either a generating transformation or the identity for the group Γ. This also depends on the matrix function \mathcal{M}, namely on the rotational orders $v_{i j}$ in (2.10) (cf. the Alg. 6.1 in our paper [12]).
c) At the end we have \mathcal{F} glued of $n:=|\mathcal{D}|$ simplices, its interior is homeomorphic to an open d-simplex. The paired facets of \mathcal{F} provide a complete system \mathcal{I} of generators for Γ. The $(d-2)$-faces of simplices in \mathcal{F} are either covered, i.e. they are surrounded by facets as a consequence of \mathcal{M}; or they form Γ-equivalence classes, and \mathcal{M} implies for each class a defining relation for Γ by the Poincaré-Aleksandrov algorithm [12], as we indicated after Def. 2.6.
d) Consider the partial D-symbol $\left(\Sigma_{I \backslash\{k\}}, \mathcal{D}^{k}, \mathcal{M}^{k}\right)$ obtained from \mathcal{D} by deleting the σ_{k}-operation and by restricting $\mathcal{M}, k \in I$. Then \mathcal{D}^{k} falls into connected components. Any component ${ }^{c} \mathcal{D}^{k}$ describes a $(d-1)$ dimensional tiling ($\mathcal{T}^{k}, \Gamma^{k}$) and its simplicial subdivision around the
k-labelled midpoint of the tiling \mathcal{T} and around the Γ-images of this k-midpoint. Thus the components of $\mathcal{D}^{k}, k \in I$, give a complete combinatorial description of our tiling (\mathcal{T}, Γ) for \mathcal{D}, if the existence is guaranteed (cf. Def. 2.6).
e) Consider any partial D-symbol $\left(\Sigma_{i j k}, \mathcal{D}_{i j k}, \mathcal{M}_{i j k}\right)=: \mathcal{D}_{i j k}$ obtained from \mathcal{D} by keeping the $\sigma_{i^{-}}, \sigma_{j^{-}}, \sigma_{k^{-}}$operations and deleting the others. Moreover, we restrict the matrix function \mathcal{M} on entries $m_{i j}, m_{i k}, m_{j k}$ for any $i<j<k \in I$. Think of $d=3$ where steps \mathbf{d} and \mathbf{e} coincide! Any connected component ${ }^{c} \mathcal{D}_{i j k}$ is a 2 -dimensional D-symbol, and it may determine a corresponding tiling $\left({ }^{c} \mathcal{T}_{i j k},{ }^{c} \Gamma_{i j k}\right)$ and a simply connected covering 2 -surface \mathcal{S}^{2} dually round the ($d-3$)-simplex at the intersection of corresponding i-facets, j-facets and k-facets according to our topological realization $\operatorname{Top}\left(\Sigma_{I}, \mathcal{D}\right)$ in Def. 2.1.
We know that our tiling $\left({ }^{c} \mathcal{T}_{i j k},{ }^{c} \Gamma_{i j k}\right)$ may be equivariant to a spherical $\left(\mathbf{S}^{2}\right)$, Euclidean $\left(\mathbf{E}^{2}\right)$, hyperbolic $\left(\mathbf{H}^{2}\right)$ tiling if the curvature [4]

$$
K\left({ }^{c} \mathcal{D}_{i j k}\right)
$$

$$
\begin{equation*}
=\sum_{D \in^{c} \mathcal{D}_{i j k}}\left(\frac{1}{m_{i j}(D)}+\frac{1}{m_{i k}(D)}+\frac{1}{m_{j k}(D)}-1\right) \stackrel{\gtrless}{<} 0 \tag{2.15}
\end{equation*}
$$

respectively. Moreover, this condition is also satisfactory if in the first (' $>$ ') case the four types of bad orbifolds are excluded. We give them by the signature [9], [10], [17] (see also [4], [7]):

$$
\begin{array}{ll}
(+, 0 ;[u] ;\{ \}), & 1<u ; \\
(+, 0 ;[u, v] ;\{ \}), & 1<u<v ; \tag{2.16}\\
(+, 0 ;[] ;\{(u)\}), & 1<u ; \\
(+, 0 ;[] ;\{(u, v)\}), & 1<u<v
\end{array}
$$

Our general conjecture is that any D-symbol $(\mathcal{D}, \mathcal{M})$ determines its topological realization (\mathcal{T}, Γ) in a simply connected space \mathcal{S}^{d} if the fundamental domain \mathcal{F} of $(\mathcal{D}, \mathcal{M})$, with its facet pairings and presentation by Alg. 2.3, represents a good orbifold, i.e., if any 2-dimensional "suborbifold induced by $(\mathcal{D}, \mathcal{M})$ " is a good 2 -orbifold.

Although the last part of this conjecture is "folklore" by an analogous Thurston's conjecture for good orbifolds, the author intends to give a complete formulation and proof, since it seems to be not published yet, in general. In our case $d=3$ the proper l-vertices will be characterized by (2.15) if $\{i, j, k, l\}=\{0,1,2,3\}=I$ and $K\left({ }^{c} \mathcal{D}^{l}\right)>0$ if (2.16) is excluded. If $l=0$ or 3 then $K\left({ }^{c} \mathcal{D}^{l}\right)=0$ is also allowed for ideal 0 -vertex and

3 -centre as indicated in Sect. 1. The curvature $K\left({ }^{c} \mathcal{D}^{l}\right)<0$ is excluded from our investigation now. But the above subsymbols do not describe the 2 -suborbifolds of $(\mathcal{D}, \mathcal{M})$ yet. The examination of the fundamental domain by $(\mathcal{D}, \mathcal{M})$ provides still a local method for investigating these 2 -suborbifolds. Section 3 will show the difficulties of such investigations which are not algorithmized yet (see also [12]).

We do not describe the 8 Thurston geometries, listed in the Abstract, since in our classification $d=3$, till $|\mathcal{D}|=: n=3$ only few of them occur [1], [14], [15]. We suggest to the reader for studying again our introductory examples in Sect. 1. Then turn to Sect. 3 and to Figures and Tables. We shall elaborate the case at $\mathcal{D}_{\mathbf{3 . 2}}-\Gamma_{\mathbf{3 . 2}}$ in details. see also the corresponding Fig. 3.2. The other cases will be described more sketchily.

3. Classification of D-symbols and their optimal realizations, $d=3,1 \leq|\mathcal{D}| \leq 3$

In the introduction we have already discussed the series of matrix functions belonging to the D-diagram of 1 vertex with 4 loops Fig. $\boldsymbol{\Gamma}_{\mathbf{1}}$ and Tab. $\boldsymbol{\Gamma}_{\mathbf{1}}$ show the phenomena. The other cases will be enumerated in similar manner, so as $\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$ where $2 \leq x=y$ just refer to the situation mentioned in Alg. 2.3.e. Namely, our Tab. $\mathcal{D}_{\mathbf{2 . 1}}-\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$ contains a date

$$
\begin{equation*}
\Gamma^{1}\left(A_{1}\right)=(+, 0 ;[] ;\{(x, y)\}) \Longrightarrow x=y \tag{3.1}
\end{equation*}
$$

else the partial diagram $\mathcal{D}_{023}=\mathcal{D}^{1}$ with $\mathcal{M}^{1}: 2 \leq x \neq y$ would lead to the partial tiling $\left(\mathcal{T}^{1}, \Gamma^{1}\right)$ around the 1-midpoint A_{1}, where reflections m_{2} and m_{3} act on a sphere \mathbf{S}^{2} with different dihedral orders $x \neq y$ at the opposite poles which is impossible. This would be the fourth type of bad orbifolds in (2.16).

Now we run through the 15 classes of D-diagrams with 2 elements (vertices).
$\mathcal{D}_{\mathbf{2 . 2}}-\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$ leads to 5 reflections, indicated at the simplified Coxeter diagram in Fig. $\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$. We briefly describe every matrix function \mathcal{M}, analogous to (1.16). For instance $m_{01}\left(D_{1}\right)=m_{01}\left(D_{2}\right)=2 u$ in $\mathcal{D}_{\mathbf{2 . 2}}-\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$ describes the reflections m_{0} and m_{0}^{\prime} at $A_{2} A_{3}$ by the relation $\left(m_{0} m_{0}^{\prime}\right)^{u}$. The signature of $\Gamma^{3}\left(A_{3}\right)$, or the curvature formula by (2.15) with $(2 \leq u, v)$ for optimal cases yield

$$
\begin{gather*}
K\left(\mathcal{D}_{012}\right)=\left(\frac{1}{2 u}+\frac{1}{2 v}-\frac{1}{2}\right)+\left(\frac{1}{2 u}+\frac{1}{2 v}-\frac{1}{2}\right)=\frac{1}{u}+\frac{1}{v}-1 \geq 0 \tag{3.2}\\
\text { if } u=v=2, \text { then } K\left(\mathcal{D}_{012}\right)=0,
\end{gather*}
$$

i.e. $\Gamma^{3}\left(A_{3}\right)$ is an \mathbf{E}^{2}-group and A_{3} is an ideal point. In Tab. $\mathcal{D}_{\mathbf{2 . 2}}-\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$ we find the series of $\mathbf{H}^{2} \times \mathbf{R}$ realizations $(u ; v ; w ; x)=(2 ; 2 ; 2 ; x)$ depending on $x \geq 3$. Indeed, Fig. $\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$ show the triangle $A_{3} A_{2}{ }^{2} A_{1}$ with angles $0, \frac{\pi}{2}$, $\frac{\pi}{x}$ realizable in \mathbf{H}^{2} and the "prism" over it in direction \mathbf{R} with $A_{3} A_{2}{ }^{2} A_{1^{-}}$ congruent "parallel sections", e.g. $A_{3}{ }^{1} A_{1} A_{0}$. To the \mathbf{H}^{3}-realizations we start with the proper or ideal vertex-domain A_{0} with face angles $\frac{\pi}{V}=\frac{\pi}{2}$, $\frac{\pi}{W}, \frac{\pi}{\mathrm{x}}$ at the rays $A_{0} A_{3}, A_{0}{ }^{1} A_{1}, A_{0}{ }^{2} A_{1}$, respectively. The plane ${ }^{1} A_{1} A_{2} A_{3}$ is orthogonal to the ray $A_{0}{ }^{1} A_{1}$ and hyperbolic parallel with the ray $A_{0} A_{3}$. This determines the place of ${ }^{1} A_{1}$ uniquely. Similarly, we get ${ }^{2} A_{1}$, then A_{2}. In the ideal point A_{3} there meet 4 planes with 3 rectangles at $A_{0} A_{3}$, ${ }^{1} A_{1} A_{3},{ }^{2} A_{1} A_{3}$, then we have perpendicular faces also at $A_{2} A_{3}$, and we are done with the construction in \mathbf{H}^{3}.
Fig. and Tab. $\mathcal{D}_{\mathbf{2 . 3}}-\boldsymbol{\Gamma}_{\mathbf{2 . 3}}$ show that $m_{23}\left(D_{1}\right)=w=x=m_{23}\left(D_{2}\right)$ is necessary to a topological realization, again by $\Gamma^{1}\left(A_{1}\right)$ and (2.16.). But then $\boldsymbol{\Gamma}_{\mathbf{1}}(\bar{x}=u ; \bar{y}=2 v ; \bar{z}=w)$ is a normalizer supergroup of $\boldsymbol{\Gamma}_{\mathbf{2 . 3}}$ (bars only distinguish the parameters of the two group series). We have as many \mathbf{S}^{3}-, \mathbf{H}^{3}-realization as the supergroup series tell us, we have the only degenerate \mathbf{E}^{3}-realizations with A_{0} and A_{0}^{\prime} as Γ-equivalent ideal vertices.
" $\mathcal{D}_{\mathbf{2 . 4}}-\boldsymbol{\Gamma}_{\mathbf{2 . 4}}$ is dual to $\mathcal{D}_{\mathbf{2 . 2}}-\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$ " means that if we change $\sigma_{0} \rightarrow \bar{\sigma}_{3}$, $\sigma_{1} \rightarrow \bar{\sigma}_{2}, \sigma_{2} \rightarrow \bar{\sigma}_{1}, \sigma_{3} \rightarrow \bar{\sigma}_{0}$ in D-diagram $\mathcal{D}_{\mathbf{2 . 2}}$ and the corresponding matrix entries $m_{01} \leftrightarrow m_{23}, m_{12} \leftrightarrow m_{12}$ then we get D-symbol $\mathcal{D}_{2.4}$. The group $\boldsymbol{\Gamma}_{\mathbf{2 . 4}}$ is equivariantly isomorphic to $\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$, the equivariance is defined by the duality above.
$\mathcal{D}_{\mathbf{2 . 5}}-\boldsymbol{\Gamma}_{\mathbf{2 . 5}}$ leads to non-optimal groups and tilings with D-normalizer supergroups $\boldsymbol{\Gamma}_{\mathbf{1}}$ by parameters $\bar{x}=2 u, \bar{y}=2 v, \bar{z}=2 w$. Thus only $u=1$, $v=2, w=2$ leads to a degenerate \mathbf{E}^{3}-realization according to our assumptions.
$\mathcal{D}_{\mathbf{2 . 6}}-\boldsymbol{\Gamma}_{\mathbf{2 . 6}}$ leads to non-optimal groups and tilings again. $\mathcal{D}_{\mathbf{2 . 6}}$ is a selfdual diagram, so $m_{01}:=2 u \leq 2 w=: m_{23}$ can be assumed to obtain non-equivariant groups. From $\boldsymbol{\Gamma}_{\mathbf{1}}(\bar{x}=2 u ; \bar{y}=v ; \bar{z}=2 w)$ we derive the corresponding metric tilings, e.g. $u=2, v=3, w=3$ yield the marked cube tiling in \mathbf{E}^{3} with the crystallographic group $\mathbf{P m} \overline{\mathbf{3}}$.
$\mathcal{D}_{2.7}-\boldsymbol{\Gamma}_{\mathbf{2 . 7}}$ yields again the D-normalizer supergroups $\boldsymbol{\Gamma}_{\mathbf{1}}(\bar{x}=u ; \bar{y}=$ $v ; \bar{z}=2 w)$, and e.g. the \mathbf{E}^{3}-tiling with marked cubes under the group 226.Fm $\overline{3} \mathbf{c}$.
$\mathcal{D}_{\mathbf{2 . 8}}-\boldsymbol{\Gamma}_{\mathbf{2 . 8}}$ leads to dually equivariant tilings to $\mathcal{D}_{\mathbf{2 . 1}}-\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$.
$\mathcal{D}_{2.9}-\boldsymbol{\Gamma}_{2.9}$ leads to self-dual optimal tilings if $v \leq w$. Now $u \leq x$ is assumed. The reflection subgroups, with Coxeter diagram pictured there, are well-known [16]. These imply our cases, among them 2 Euclidean ones.

The cases $\mathcal{D}_{2.10}-\Gamma_{2.10}, \ldots, \mathcal{D}_{2.14}-\Gamma_{2.14}$ lead to analogous tilings.
$\mathcal{D}_{2.15}-\boldsymbol{\Gamma}_{2.15}$ leads to self-dual non-optimal tilings with D-normalizer supergroups $\boldsymbol{\Gamma}_{\mathbf{1}}(u ; v ; w)$ just with the same parameters. An \mathbf{E}^{3}-tiling is the cube tiling under 207.P432.

Next we consider D-diagrams with 3 vertices. The first, by Alg. 2.2,
$\mathcal{D}_{3.1}-\Gamma_{3.1}$ yields Coxeter groups with diagrams in our picture. So again, $s=t$ is a necessary condition for topological realization in Tab. $\mathcal{D}_{3.1}-$ $\Gamma_{3.1}$. We find that our assumptions exclude the optimal realizations.
$\mathcal{D}_{3.2}-\Gamma_{3.2}$ is our most interesting self-dual case. The fundamental domain \mathcal{F} consist of 3 glued simplices with 6 free reflection facets, at most. Our assumptions allow this maximal number of reflections for parameters $(p ; q ; r ; s ; t)=(2 ; 2 ; 2 ; 2 ; 2)$ where

$$
\begin{equation*}
\Gamma^{3}\left(A_{3}\right)=(+, 0 ;[] ;\{(r, 2, p, q)\}) \tag{3.3}
\end{equation*}
$$

is the stabilizer of A_{3}, and

$$
\begin{equation*}
\Gamma^{0}\left(A_{0}\right)=(+, 0 ;[] ;\{(r, 2, t, s)\}) \tag{3.4}
\end{equation*}
$$

the stabilizer of A_{0} are just \mathbf{E}^{2}-groups. This Coxeter diagram and the corresponding last picture show that non-isometric realizations occur in the 8 Thurston geometries. The reason is the suborbifold $\mathbf{E}^{2} / \mathbf{p m m}$ whose groups are generated by 4 reflections

$$
\begin{gather*}
m_{0}^{\prime}:{ }^{2} A_{1}{ }^{2} A_{2} A_{3}{ }^{1} A_{2}, \quad m_{1}:{ }^{2} A_{2} A_{3} A_{0}, \\
m_{2}: A_{3} A_{0}{ }^{1} A_{1}, \quad m_{3}: A_{0}{ }^{1} A_{1}{ }^{1} A_{2}{ }^{2} A_{1} \tag{3.5}\\
\text { with }\left(m_{0}^{\prime} m_{1}\right)^{2}=\left(m_{1} m_{2}\right)^{2}=\left(m_{2} m_{3}\right)^{2}=\left(m_{3} m_{0}^{\prime}\right)^{2}=1 .
\end{gather*}
$$

The corresponding surface is transversally placed in the middle of \mathcal{F} up to equivariant isotopy. Splitting our \mathcal{F} along this \mathbf{E}^{2}-suborbifold [2], we get two pieces, both can wear the metric of a $\mathbf{H}^{2} \times \mathbf{R}$-orbifold as the last picture shows. Each \mathbf{H}^{2}-component is a Lambert quadrangle with ideal vertex (at A_{3} and A_{0}, respectively) and 3 rectangles.

We have 5 generating reflections if $p=1$, i.e. $m_{0}=m_{0}^{\prime}$, or $r=1$, i.e. $m_{1}=m_{2}$ as our specialized Coxeter diagrams indicate in the second row of our picture page $\boldsymbol{\Gamma}_{3.2}$.

Our case $p=1 ; 1<r, t, s$ with non- \mathbf{H}^{2}-stabilizer for A_{0}, implies $s=2=r=t$, and the earlier $\mathcal{D}_{\mathbf{2 . 2}}-\boldsymbol{\Gamma}_{\mathbf{2 . 2}}(\bar{u}=t=2 ; \bar{v}=r=2 ; \bar{w}=$ 2; $\overline{\mathrm{x}}=q$) provides simpler presentation. The choice $p=1, t=1$ implies Γ_{1} again.

The case $r=1$ (see the corresponding Coxeter diagram and Fig. $\boldsymbol{\Gamma}_{\mathbf{3 . 2}}$ in the 3rd row) leads to the most interesting optimal cases. An exceptional non-maximal group $\boldsymbol{\Gamma}_{\mathbf{3 . 2}}(2 p=4=q ; 3 r=3 ; s=4=2 t)$ is just the \mathbf{E}^{3} space group $\mathbf{1 2 3 . P} \mathbf{4} / \mathbf{m m m}$ to the cubic tiling with maximal supergroup $\boldsymbol{\Gamma}_{\mathbf{1}}(4 ; 3 ; 4)$. The \mathbf{E}^{3}-optimal realization with $\boldsymbol{\Gamma}_{\mathbf{3 . 2}}(2 \cdot 2,3 ; 3 \cdot 1 ; 6,2 \cdot 2) \cong$ $\mathbf{P 6} / \mathbf{m m m}$ leads to a Euclidean tiling with regular trigonal prisms.

In general, $r=1, \quad p=2=t$ leads to prismatic tilings

$$
\begin{equation*}
\text { in } \mathbf{S}^{2} \times \mathbf{R}, \text { if } \quad \frac{1}{q}+\frac{1}{S}>\frac{1}{2} ; \quad \text { in } \mathbf{H}^{2} \times \mathbf{R}, \text { if } \quad \frac{1}{q}+\frac{1}{S}<\frac{1}{2} . \tag{3.6}
\end{equation*}
$$

Non-geometric good orbifolds occur in the following cases

$$
\begin{gather*}
r=1<p, 3 \leq t \text { and } \quad \frac{1}{q}+\frac{1}{S}>\frac{1}{2}, \quad \text { i.e. } \mathbf{S}^{2}-\text { splittings } \\
\text { or } \quad \frac{1}{q}+\frac{1}{S}=\frac{1}{2} \quad \text { i.e. } \mathbf{E}^{2}-\text { splittings } \tag{3.7}
\end{gather*}
$$

are possible in the "middle" of our fundamental domain \mathcal{F}. The two splitted parts of \mathcal{F} have the Coxeter diagrams as our Fig. $\boldsymbol{\Gamma}_{3.2}$ in the 3rd row shows. Each \mathbf{S}^{2}-splitting becomes a proper point of the corresponding part. Each \mathbf{E}^{2}-splitting becomes an ideal point. The Coxeter diagrams serve us the isometric realizations, may be different for the two parts.

The cases

$$
\begin{equation*}
r=1<p, 3 \leq t \text { and } \quad \frac{1}{q}+\frac{1}{S}<\frac{1}{2}, \quad \text { i.e. } \mathbf{H}^{2}-\text { suborbifolds } \tag{3.8}
\end{equation*}
$$

characterize \mathbf{H}^{3}-realizations, may be not optimal. For instance $\boldsymbol{\Gamma}_{\mathbf{3 . 2}}(2 p=$ $4=q ; 3 r=3 ; s=6=2 t)$ leads to the maximal \mathbf{H}^{3}-group $\boldsymbol{\Gamma}_{\mathbf{1}}(x=$ $4 ; y=3 ; z=6)$ and tiling \mathcal{T}_{1} of cubes with proper A_{3} and ideal A_{0}. $\boldsymbol{\Gamma}_{\mathbf{3 . 2}}(2 p=4=q ; 3 r=3 ; s=5,2 t=6)$ leads to a nice maximal \mathbf{H}^{3} tiling \mathcal{T} with $\boldsymbol{\Gamma}_{\mathbf{3 . 2}}=$ Aut \mathcal{T}. The tiles are cubes with 1Γ-class of proper vertices but 2Γ-classes of faces and edges, the latter ones are surrounded by $m_{12}\left(D_{1}\right)=s=5$ and $m_{12}\left(D_{2}\right)=m_{12}\left(D_{3}\right)=2 t=6$ neighbours, respectively.
$\mathcal{D}_{\mathbf{3 . 3}}-\boldsymbol{\Gamma}_{\mathbf{3 . 3}}$ leads to maximal tilings and groups if $r \neq 2 s$. Our Figures and Tables show the cases in details. From $\Gamma^{3}\left(A_{3}\right)$ we see that only $(p ; q)=$ $(2 ; 1)$ and $(1 ; 2)$ provide optimal cases with ideal centre $A_{3} . \Gamma^{0}\left(A_{0}, A_{0}^{\prime}\right)$ shows many values of parameters when they are proper or ideal vertices. Our pictures indicate the fundamental domain \mathcal{F} and its r-image about ${ }^{2} A_{1} A_{3}$ together, so that we see a domain whose reflection images fil the space. Again, we have obtained 2 infinite series of optimal tilings in $\mathbf{H}^{2} \times \mathbf{R}$
according to running s (left hand side) resp. r (right hand side picture), the \mathbf{R}-direction is $A_{0} A_{0}^{\prime}$ resp. $A_{0}{ }^{1} A_{1}$. We have interesting \mathbf{H}^{3}-tilings, optimal and non-optimal, too. An optimal \mathbf{H}^{3}-series is $(p ; q ; r ; s)=(2 ; 1 ; r ; 2)$ $3 \leq r$. But the case $r=4$ is not maximal because $r=2 s$. Then the maximal $\boldsymbol{\Gamma}_{\mathbf{1}}(\bar{x}=3 p=6 ; \bar{y}=3 q=3 ; \bar{z}=r=2 s=4)$ provides a regular hyperbolic tiling with "horospherical" solid: A_{3} is ideal, 3 hexagons meet in each proper vertex, any edge is surrounded 4 solids (the edges fall into 2 classes under the original $\boldsymbol{\Gamma}_{\mathbf{3 . 3}}$).

Remark 1. For $d=3,|\mathcal{D}|=: n=4$ we have 82 non-isomorphic D diagrams listed by Alg. 2.2 for another publication. An important open problem is, how many non-isomorphic D-diagrams exist for a fixed dimension d, and fixed $n:=|\mathcal{D}|$. Give an estimate, e.g. a good upper bound, at least.

Remark 2. For any space group in \mathbf{E}^{3} the minimal D-symbol seems to be very important. For \mathbf{E}^{2} and \mathbf{S}^{2} this is simple and solved. For \mathbf{E}^{3} we have determined the minimal D-symbol in cases of many space groups, we are working on this problem.

Remark 3. While having prepared this paper, I have learned that O. Delgado Friedrichs: Euclidicity criteria for three-dimensional branched triangulations, Ph. D. Dissertation, Bielefeld, 1994 - among other results - enumerated all D-symbols up to cardinality $|\mathcal{D}|=10$ which have \mathbf{E}^{3}-realizations.

Remark 4. The recent paper "Higher toroidal regular polytopes" by P. McMullen and E. Schulte, Advances in Math. 117 (1996), 17-51 determines nearly all regular toroids for each dimension. This corresponds to D-symbols on 1 node where (\mathcal{T}, Γ) is realized on the Euclidean n-torus. For this information and other useful advices I would like to thank the Referees.

The author thanks I. Prok for typesetting the text in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and J. Szirmai for drawing the figures.

Tables

$\mathcal{D}_{\mathbf{1}}-\boldsymbol{\Gamma}_{\mathbf{1}}(\mathrm{x} ; \mathrm{y} ; \mathrm{z}) 2 \leq \mathrm{x}, \mathrm{y}, \mathrm{z}-S d: \mathrm{x} \leq \mathrm{z}-\boldsymbol{\Gamma}_{\mathbf{1}}$ is maximal $\bullet m_{0}: A_{1} A_{2} A_{3}$, $m_{1}: A_{2} A_{3} A_{0}, m_{2}: A_{3} A_{0} A_{1}, m_{3}: A_{0} A_{1} A_{2}-m_{0}^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2} ;\left(m_{0} m_{1}\right)^{x}$, $\left(m_{0} m_{2}\right)^{2},\left(m_{0} m_{3}\right)^{2} ;\left(m_{1} m_{2}\right)^{y},\left(m_{1} m_{3}\right)^{2} ;\left(m_{2} m_{3}\right)^{z} \bullet$
$\Gamma^{3}\left(A_{3}\right)=(+, 0 ;[] ;\{(x, 2, y)\})-(x, y)-\mathbf{S}^{2}:(2, y),(3,3),(3,4),(3,5)-$ $\mathbf{E}^{2}:(3,6),(4,4)-\mathbf{H}^{2}:$ else $\circ \Gamma^{0}\left(A_{0}\right)=(+, 0 ;[] ;\{(y, 2, z)\})-(y, z)-$ $\mathbf{S}^{2}:(2, z),(3,3),(3,4),(3,5)-\mathbf{E}^{2}:(3,6),(4,4)-\mathbf{H}^{2}:$ else • $(x ; y ; z)-$ $\mathbf{S}^{3}:(x ; 2 ; z),(2 ; 3 ; 3),(2 ; 3 ; 4),(2 ; 3 ; 5) ;(2 ; 4 ; 3),(2 ; 5 ; 3) ;(3 ; 3 ; 3),(3 ; 3 ; 4)$, $(3 ; 3 ; 5),(3 ; 4 ; 3)-\mathbf{E}^{3}:(4 ; 3 ; 4)$ 221.Pm $\mathbf{3} \mathbf{m} /(2 ; 3 ; 6),(2 ; 4 ; 4),(2 ; 6 ; 3) A_{0}$ id. v. $-\mathbf{H}^{3}:(3 ; 5 ; 3),(4 ; 3 ; 5),(5 ; 3 ; 5)$ proper vertices $/(3 ; 3 ; 6),(3 ; 4 ; 4)$, $(4 ; 3 ; 6),(5 ; 3 ; 6), A_{0}$ id. v. / $(3 ; 6 ; 3),(4 ; 4 ; 4),(6 ; 3 ; 6) \quad A_{3}$ and A_{0} ideal vertices / else outer vertex occurs
$\mathcal{D}_{\mathbf{2 . 1}}-\boldsymbol{\Gamma}_{\mathbf{2 . 1}}(2 u ; v, w ; x=y) 1 \leq u ; 2 \leq v \leq w ; 2 \leq x-\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$ is max. iff $v<w$; else $\boldsymbol{\Gamma}_{\mathbf{1}}(2 u ; v=w ; x=y)$ is supergroup $-\boldsymbol{\Gamma}_{\mathbf{2 . 1}}$ is optimal iff, in addition, $3 \leq v$, x; else $\boldsymbol{\Gamma}_{\mathbf{1}}$ provides simpler presentation. • $m_{1}: A_{2} A_{3}{ }^{1} A_{0}, m_{1}^{\prime}: A_{2} A_{3}{ }^{2} A_{0}, m_{2}: A_{3}{ }^{1} A_{0}{ }^{2} A_{0}, m_{3}:{ }^{1} A_{0}{ }^{2} A_{0} A_{2}-m_{1}^{2}, m_{1}^{\prime 2}$, $m_{2}^{2}, m_{3}^{2} ;\left(m_{1} m_{1}^{\prime}\right)^{u},\left(m_{1} m_{2}\right)^{V},\left(m_{1}^{\prime} m_{2}\right)^{W},\left(m_{1} m_{3}\right)^{2},\left(m_{1}^{\prime} m_{3}\right)^{2} ;\left(m_{2} m_{3}\right)^{\mathrm{X}} \bullet$ $\Gamma^{3}\left(A_{3}\right)=(+, 0 ;[] ;\{(u, v, w)\}) \Rightarrow 2 \leq u-(u, v, w)-\mathbf{S}^{2}:(2,3,4),(2,3,5)$ $-\mathbf{E}^{2}:(2,3,6)-\mathbf{H}^{2}:$ else $\circ \Gamma^{1}\left(A_{1}\right)=(+, 0 ;[] ;\{(x, y)\}) \Rightarrow x=y \circ$ $\Gamma^{0}\left({ }^{1} A_{0}\right)=(+, 0 ;[] ;\{(v, 2, x)\})-(v, x)-\mathbf{S}^{2}:(3,3),(3,4),(3,5)-\mathbf{E}^{2}:$ $(3,6),(4,4)-\mathbf{H}^{2}:$ else $\circ \Gamma^{0}\left({ }^{2} A_{0}\right)=(+, 0 ;[] ;\{(w, 2, y)\})-(w, y)-\mathbf{S}^{2}$: $(3,3) ;(3,4),(3,5)-\mathbf{E}^{2}:(3,6),(4,4)-\mathbf{H}^{2}:$ else • $(u ; v ; w ; x)-\mathbf{E}^{3}:$ $(2 ; 3 ; 4 ; 3) \quad \mathbf{2 2 5 . F m} \overline{3} \mathbf{m}-\mathbf{H}^{3}:(2 ; 3 ; 5 ; 3)$ pr.v. $/(2 ; 3 ; 4 ; 4)^{2} A_{0}$ id. v. / $(2 ; 3 ; 6 ; 3) \quad A_{3}$ and ${ }^{2} A_{0}$ id. v.
$\mathcal{D}_{\mathbf{2 . 2}}-\boldsymbol{\Gamma}_{\mathbf{2 . 2}}(2 u ; 2 v ; w, x) 1 \leq u, v ; 2 \leq w \leq x-\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$ is max. iff $w<x ;$ else $\boldsymbol{\Gamma}_{\mathbf{1}}$ provides simpler presentation • $m_{0}:{ }^{1} A_{1} A_{2} A_{3}, \quad m_{0}^{\prime}:{ }^{2} A_{1} A_{2} A_{3}$, $m_{2}: A_{3} A_{0}{ }^{1} A_{1}, m_{2}^{\prime}: A_{3} A_{0}^{2} A_{1}, m_{3}: A_{0}{ }^{1} A_{1} A_{2}{ }^{2} A_{1}-m_{0}^{2}, m_{0}^{\prime 2}, m_{2}^{2}, m_{2}^{\prime 2}, m_{3}^{2}$; $\left(m_{0} m_{0}^{\prime}\right)^{u},\left(m_{0} m_{2}\right)^{2},\left(m_{0}^{\prime} m_{2}^{\prime}\right)^{2}\left(m_{0} m_{3}\right)^{2},\left(m_{0}^{\prime} m_{3}\right)^{2},\left(m_{2} m_{2}^{\prime}\right)^{V},\left(m_{2} m_{3}\right)^{W}$, $\left(m_{2}^{\prime} m_{3}\right)^{x} \bullet \Gamma^{3}\left(A_{3}\right)=(+, 0 ;[] ;\{(u, 2, v, 2)\}) \Rightarrow u=v=2-(u ; v)-$ $\mathbf{E}^{2}:(2 ; 2)-\mathbf{H}^{2}:$ else $\circ \Gamma^{0}\left(A_{0}\right)=(+, 0 ;[] ;\{(v, w, x)\})-(v ; w ; x)-$ $\mathbf{S}^{2}:(2 ; 2 ; x) ;(2 ; 3 ; 4),(2 ; 3 ; 5)-\mathbf{E}^{2}:(2 ; 3 ; 6)-\mathbf{H}^{2}$: else • $(u ; v ; w ; x)-$ $\mathbf{H}^{2} \times \mathbf{R}:(2 ; 2 ; 2 ; x) 3 \leq x, A_{3}$ id. v. $-\mathbf{H}^{3}:(2 ; 2 ; 3 ; 4),(2 ; 2 ; 3 ; 5) A_{3}$ id. v. / $(2 ; 2 ; 3 ; 6) \quad A_{3}$ and A_{0} id. v.
$\mathcal{D}_{\mathbf{2 . 3}}-\boldsymbol{\Gamma}_{\mathbf{2 . 3}}\left(u^{+} ; 2 v ; \quad w=x\right) \quad 1 \leq v ; 2 \leq u, w-\boldsymbol{\Gamma}_{\mathbf{2 . 3}}$ is not maximal, $\boldsymbol{\Gamma}_{\mathbf{1}}(u ; 2 v ; w)$ is supergroup $\bullet r: A_{2} A_{3} A_{0} \rightarrow A_{2} A_{3} A_{0}^{\prime}, m_{2}: A_{3} A_{0} A_{0}^{\prime}$,
$m_{3}: A_{0} A_{0}^{\prime} A_{2}-r^{u}, m_{2}^{2}, m_{3}^{2} ;\left(m_{2} r m_{2} r^{-1}\right)^{v}, \quad m_{3} r m_{3} r^{-1},\left(m_{2} m_{3}\right)^{W}$ $(u ; v ; w)-\mathbf{S}^{3}-\mathbf{E}^{3}:(1 ; 2 ; 4),(1 ; 3 ; 3)\left(A_{0}, A_{0}^{\prime}\right)$ id. v. $-\mathbf{H}^{3}$
$\mathcal{D}_{2.4}-\boldsymbol{\Gamma}_{\mathbf{2 . 4}}$ is dual to $\mathcal{D}_{2.2}-\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$
$\mathcal{D}_{\mathbf{2 . 5}}-\boldsymbol{\Gamma}_{\mathbf{2 . 5}}(2 u ; 2 \mathrm{v} ; 2 \mathrm{w}) 1 \leq u, \mathrm{v}, \mathrm{w}-\boldsymbol{\Gamma}_{\mathbf{2 . 5}}$ is not max., $\boldsymbol{\Gamma}_{\mathbf{1}}(2 u ; 2 \mathrm{v} ; 2 \mathrm{w})$ is supergroup - $m_{1}: A_{2} A_{3} A_{0}, m_{1}^{\prime}: A_{2} A_{3} A_{0}^{\prime}, r: A_{3} A_{0} A_{1} \rightarrow A_{3} A_{0}^{\prime} A_{1}$, $m_{3}: A_{0} A_{0}^{\prime} A_{2}-m_{1}^{2}, m_{1}^{\prime 2}, r^{2}, m_{3}^{2} ; \quad\left(m_{1} m_{1}^{\prime}\right)^{u}, \quad\left(m_{1} r m_{1}^{\prime} r\right)^{v}, \quad\left(m_{1} m_{3}\right)^{2}$, $\left(m_{1}^{\prime} m_{3}\right)^{2}\left(m_{3} r m_{3} r\right)^{W}-(u ; v ; w)-\mathbf{S}^{3}-\mathbf{E}^{3}:(1 ; 2 ; 2)\left(A_{0} A_{0}^{\prime}\right)$ id. v. $-\mathbf{H}^{3}$
$\mathcal{D}_{\mathbf{2 . 6}}-\boldsymbol{\Gamma}_{\mathbf{2 . 6}}\left(2 u ; \mathrm{v}^{+} ; 2 \mathrm{w}\right) \quad 1 \leq u, \mathrm{w} ; \quad 2 \leq \mathrm{v}-S d: u \leq \mathrm{w}-\boldsymbol{\Gamma}_{\mathbf{2 . 6}}$ is not max., $\boldsymbol{\Gamma}_{\mathbf{1}}(2 u ; v ; 2 \mathrm{w})$ is supergroup - $m_{0}: A_{1} A_{2} A_{3}, m_{0}^{\prime}: A_{1}^{\prime} A_{2} A_{3}$, $r: A_{3} A_{0} A_{1} \rightarrow A_{3} A_{0} A_{1}^{\prime}, m_{3}: A_{0} A_{1} A_{2} A_{1}^{\prime}-m_{0}^{2}, m_{0}^{\prime 2}, r^{v}, m_{3}^{2} ;\left(m_{0} m_{0}^{\prime}\right)^{u}$, $m_{0} r m_{0}^{\prime} r^{-1},\left(m_{0} m_{3}\right)^{2},\left(m_{0}^{\prime} m_{3}\right)^{2},\left(m_{3} r m_{3} r^{-1}\right)^{W} \bullet(u ; v ; w)-\mathbf{S}^{3}-\mathbf{E}^{3}$: $(2 ; 3 ; 2) \quad 200 . \operatorname{Pm} \overline{3} /(1 ; 3 ; 3),(1 ; 4 ; 2)\left(A_{0}, A_{0}^{\prime}\right)$ id. v. $-\mathbf{H}^{3}$
$\mathcal{D}_{\mathbf{2 . 7}}-\boldsymbol{\Gamma}_{\mathbf{2 . 7}}\left(u^{+} ; \mathrm{v}^{+} ; 2 w\right) 1 \leq w ; 2 \leq u, v-\boldsymbol{\Gamma}_{\mathbf{2 . 7}}$ is not max. $\boldsymbol{\Gamma}_{\mathbf{1}}(u ; v ; 2 w)$ is supergroup - $r_{1}: A_{2} A_{3} A_{0} \rightarrow A_{2} A_{3} A_{0}^{\prime}, \quad r_{2}: A_{3} A_{0} A_{1} \rightarrow A_{3} A_{0}^{\prime} A_{1}$, $m_{3}: A_{0} A_{0}^{\prime} A_{2}-r_{1}^{u}, r_{2}^{2}, m_{3}^{2} ; \quad\left(r_{1} r_{2}\right)^{v}, \quad m_{3} r_{1} m_{3} r_{1}^{-1}, \quad\left(m_{3} r_{2} m_{3} r_{2}\right)^{W}$ • $(u ; v ; w)-\mathbf{S}^{3}-\mathbf{E}^{3}:(4 ; 3 ; 2) \quad$ 226.Fm $\overline{3} \mathbf{c} /(2 ; 3 ; 3),(2 ; 4 ; 2)\left(A_{0}, A_{0}^{\prime}\right)$ id. v. $-\mathbf{H}^{3}$
$\mathcal{D}_{2.8}-\Gamma_{2.8}$ is dual to $\mathcal{D}_{2.1}-\Gamma_{2.1}$
$\mathcal{D}_{\mathbf{2 . 9}}-\boldsymbol{\Gamma}_{\mathbf{2 . 9}}(2 u ; \mathrm{v}, \mathrm{w} ; 2 \mathrm{x}) \quad 1 \leq u, \mathrm{x} ; \quad 2 \leq \mathrm{v} \leq \mathrm{w}-S d: u \leq \mathrm{x}-\boldsymbol{\Gamma}_{\mathbf{2 . 9}}$ is max. iff $v<w$, else $\boldsymbol{\Gamma}_{\mathbf{1}}(2 u ; v=w ; 2 x)$ is supergroup $-\boldsymbol{\Gamma}_{\mathbf{2 . 9}}$ is not opt. if $u=1$, then $v=w$ and $\Gamma_{1}(2 ; v ; 2 x)$ is supergroup $m_{1}: A_{2} A_{3} A_{0}, \quad m_{1}^{\prime}: A_{2} A_{3} A_{0}^{\prime}, \quad m_{2}: A_{3} A_{0} A_{0}^{\prime}, \quad r: A_{0} A_{1} A_{2} \rightarrow A_{0}^{\prime} A_{1} A_{2}-$ $m_{1}^{2}, m_{1}^{\prime 2}, m_{2}^{2}, r^{2} ;\left(m_{1} m_{1}^{\prime}\right)^{u},\left(m_{1} m_{2}\right)^{v},\left(m_{1}^{\prime} m_{2}\right)^{W} m_{1} r m_{1}^{\prime} r,\left(m_{2} r m_{2} r\right)^{x}$ - $\Gamma^{3}\left(A_{3}\right)=(+, 0 ;[] ;\{(u, v, w)\}) \Rightarrow 2 \leq u-(u, v, w)-\mathbf{S}^{2}:(2,2, w)$, $(2,3,3),(2,3,4),(2,3,5)-\mathbf{E}^{2}:(2,3,6),(2,4,4)-\mathbf{H}^{2}:$ else \circ $\Gamma^{0}\left(A_{0}, A_{0}^{\prime}\right)=(+, 0 ;[] ;\{(\mathrm{v}, \mathrm{w}, \mathrm{x})\}) \Rightarrow 2 \leq \mathrm{x}-(\mathrm{v}, \mathrm{w}, \mathrm{x})-\mathbf{S}^{2}:(2,2, \mathrm{x})$, $(2,3,3),(2,3,4),(2,3,5)-\mathbf{E}^{2}:(2,3,6),(2,4,4)-\mathbf{H}^{2}$: else $(u ; v ; w ; x)-\mathbf{S}^{3}:(2 ; 2 ; w ; 2) 3 \leq w,(2 ; 2 ; 3 ; 3),(2 ; 2 ; 3 ; 4)-\mathbf{E}^{3}:(2 ; 2 ; 4 ; 3)$ 229.Im $\overline{3} \mathbf{m}, \quad(3 ; 2 ; 3 ; 3)$ 227.Fd $\mathbf{3} \mathbf{m}-\mathbf{H}^{3}:(2 ; 2 ; 3 ; 5),(2 ; 2 ; 5 ; 3),(2 ; 3 ; 4 ; 2)$, $(2 ; 3 ; 5 ; 2),(3 ; 2 ; 3 ; 4),(3 ; 2 ; 3 ; 5),(3 ; 2 ; 4 ; 3),(3 ; 2 ; 5 ; 3),(4 ; 2 ; 3 ; 4),(4 ; 2 ; 3 ; 5)$, $(5 ; 2 ; 3 ; 5)$ pr. v. $/(2 ; 2 ; 3 ; 6),(2 ; 2 ; 4 ; 4),(2 ; 2 ; 6 ; 3),(3 ; 2 ; 3 ; 6),(3 ; 2 ; 4 ; 4)$, $(4 ; 2 ; 3 ; 6),(5 ; 2 ; 3 ; 6)\left(A_{0}, A_{0}^{\prime}\right)$ id. v. $/(2 ; 3 ; 6 ; 2),(3 ; 2 ; 6 ; 3),(4 ; 2 ; 4 ; 4)$, $(6 ; 2 ; 3 ; 6) \quad A_{3},\left(A_{0}, A_{0}^{\prime}\right)$ id. v. $/$ else out. v.
$\mathcal{D}_{2.10}-\boldsymbol{\Gamma}_{\mathbf{2 . 1 0}}$ is dual to $\mathcal{D}_{\mathbf{2 . 5}}-\boldsymbol{\Gamma}_{\mathbf{2 . 5}}$
$\mathcal{D}_{2.11}-\boldsymbol{\Gamma}_{\mathbf{2 . 1 1}}$ is dual to $\mathcal{D}_{\mathbf{2 . 3}}-\boldsymbol{\Gamma}_{\mathbf{2 . 3}}$
$\mathcal{D}_{\mathbf{2 . 1 2}}-\boldsymbol{\Gamma}_{\mathbf{2 . 1 2}}\left(u^{+} ; 2 v ; 2 w\right) 1 \leq v, w ; 2 \leq u-\boldsymbol{\Gamma}_{\mathbf{2 . 1 2}}$ is not max., $\boldsymbol{\Gamma}_{\mathbf{1}}(u, 2 v, 2 w)$ is supergroup $\bullet r_{1}: A_{2} A_{3} A_{0} \rightarrow A_{2} A_{3} A_{0}^{\prime}, m_{2}: A_{3} A_{0} A_{0}^{\prime}$, $r_{3}: A_{0} A_{1} A_{2} \rightarrow A_{0}^{\prime} A_{1} A_{2}-r_{1}^{u}, m_{2}^{2}, r_{3}^{2} ;\left(m_{2} r_{1} m_{2} r_{1}^{-1}\right)^{v},\left(r_{1} r_{3}\right)^{2}$, $\left(m_{2} r_{3} m_{2} r_{3}\right)^{w} \bullet(u ; v ; w)-\mathbf{S}^{3}-\mathbf{E}^{3}:(2 ; 2 ; 2)\left(A_{0}, A_{0}^{\prime}\right)$ id. v. $-\mathbf{H}^{3}$
$\mathcal{D}_{\mathbf{2 . 1 3}}-\boldsymbol{\Gamma}_{\mathbf{2 . 1 3}}$ is dual to $\mathcal{D}_{\mathbf{2 . 1 2}}-\boldsymbol{\Gamma}_{\mathbf{2 . 1 2}}$
$\mathcal{D}_{2.14}-\boldsymbol{\Gamma}_{\mathbf{2 . 1 4}}$ is dual to $\mathcal{D}_{\mathbf{2 . 7}}-\boldsymbol{\Gamma}_{\mathbf{2 . 7}}$
$\mathcal{D}_{\mathbf{2 . 1 5}}-\boldsymbol{\Gamma}_{\mathbf{2 . 1 5}}\left(u^{+} ; v^{+} ; w^{+}\right) 2 \leq u, v, w-S d: u \leq w-\boldsymbol{\Gamma}_{\mathbf{2 . 1 5}}$ is not max., $\boldsymbol{\Gamma}_{\mathbf{1}}(u ; v ; w)$ is supergroup $\bullet r_{1}: A_{2} A_{3} A_{0} \rightarrow A_{2} A_{3} A_{0}^{\prime}, \quad r_{2}: A_{3} A_{0} A_{1} \rightarrow$ $A_{3} A_{0}^{\prime} A_{1}, r_{3}: A_{0} A_{1} A_{2} \rightarrow A_{0}^{\prime} A_{1} A_{2}-r_{1}^{u}, r_{2}^{2}, r_{3}^{2} ;\left(r_{1} r_{2}\right)^{V},\left(r_{1} r_{3}\right)^{2},\left(r_{2} r_{3}\right)^{W}$ - (u; v;w)- $\mathbf{S}^{3}-\mathbf{E}^{3}:(4 ; 3 ; 4)$ 207.P432 / $(2 ; 3 ; 6),(2 ; 4 ; 4)(2 ; 6 ; 3) A_{0}$ id. v. $-\mathbf{H}^{3}$
$\mathcal{D}_{\mathbf{3 . 1}}-\boldsymbol{\Gamma}_{\mathbf{3 . 1}}(3 p ; q, 2 r ; s=t ; u) 1 \leq p, 1 \leq r, 2 \leq q, s, u-\boldsymbol{\Gamma}_{\mathbf{3 . 1}}$ is max. iff $q \neq 2 r$ or $s \neq u$, else $\boldsymbol{\Gamma}_{\mathbf{1}}(3 p ; q=2 r ; s=u)$ is supergroup $-\boldsymbol{\Gamma}_{\mathbf{3 . 1}}$ is not optimal if $q=2$, then $\boldsymbol{\Gamma}_{\mathbf{2 . 2}}(\bar{u}=p, \bar{v}=r, \bar{w}=s, \bar{x}=u)$ provides simpler presentation $-\boldsymbol{\Gamma}_{\mathbf{3 . 1}}$ is not opt. if $p=1$, then $\boldsymbol{\Gamma}_{\mathbf{1}}(\bar{u}=u, \bar{v}=$ $r, \bar{w}=s, \bar{x}=q)$ is simpler $-\boldsymbol{\Gamma}_{\mathbf{3 . 1}}$ is not opt. if $r=1$, then $\boldsymbol{\Gamma}_{\mathbf{1}}(\bar{x}=$ $p, \bar{y}=q, \bar{z}=s=t=u$) is simpler $\bullet m_{0}:{ }^{2} A_{1} A_{2} A_{3}, m_{1}: A_{2} A_{3}{ }^{1} A_{0}$, $m_{2}: A_{3}{ }^{1} A_{0}^{2} A_{0}, m_{2}^{\prime}: A_{3}{ }^{2} A_{0}{ }^{2} A_{1}, m_{3}:{ }^{1} A_{0}{ }^{2} A_{0}{ }^{2} A_{1} A_{2}-m_{0}^{2}, m_{1}^{2}, m_{2}^{2}, m_{2}^{\prime 2}, m_{3}^{2}$; $\left(m_{0} m_{1}\right)^{p},\left(m_{0} m_{2}^{\prime}\right)^{2},\left(m_{0} m_{3}\right)^{2}\left(m_{1} m_{2}\right)^{q},\left(m_{1} m_{3}\right)^{2},\left(m_{2} m_{3}\right)^{s},\left(m_{2}^{\prime} m_{3}\right)^{u}$

- $\Gamma^{3}\left(A_{3}\right)=(+, 0 ;[] ;\{(p, q, r, 2)\}) \quad \circ \quad{ }^{1} \Gamma^{0}\left({ }^{1} A_{0}\right)=(+, 0 ;[] ;\{(q, 2, s)\})$
- ${ }^{2} \Gamma^{0}\left({ }^{2} A_{0}\right)=(+, 0 ;[] ;\{(r, t, u)\}) \quad \circ \quad{ }^{1} \Gamma^{1}\left({ }^{1} A_{1}\right)=(+, 0 ;[] ;\{(s, t)\})$
$\Rightarrow s=t \bullet$ opt. $\Rightarrow A_{3}$ out. v.
$\mathcal{D}_{\mathbf{3 . 2}}-\boldsymbol{\Gamma}_{\mathbf{3 . 2}}(2 p, q ; 3 r ; s, 2 t) 1 \leq r ; 1 \leq p, t ; 2 \leq q, s-S d: p<t$ or $p=t, \quad q \leq s$ can be assumed $-\boldsymbol{\Gamma}_{\mathbf{3 . 2}}$ is max. if $2 p \neq q$ or $s \neq 2 t$, else $\boldsymbol{\Gamma}_{\mathbf{1}}(2 p=q, 3 r ; s=2 t)$ is supergroup $-\boldsymbol{\Gamma}_{\mathbf{3 . 2}}$ is not opt. if $p=1$, $s=2$, then $\boldsymbol{\Gamma}_{\mathbf{2 . 2}}(\bar{u}=t ; \bar{v}=r ; \bar{w}=2, \bar{x}=q)$ provides simpler presentation - dually $t=1, \quad q=2$ leads to $\boldsymbol{\Gamma}_{\mathbf{2 . 2}}$ as simpler presentation $\boldsymbol{\Gamma}_{\mathbf{3 . 2}}$ is not opt. if $r=1=p$, then $\boldsymbol{\Gamma}_{\mathbf{1}}(\bar{x}=q, \bar{y}=s, \bar{z}=t)$ provides simpler presentation - dually $r=1=t$ leads to $\boldsymbol{\Gamma}_{\mathbf{1}}$ as simpler presentation - $\boldsymbol{\Gamma}_{\mathbf{3 . 2}}$ is not opt. if $p=1=t$, then $\boldsymbol{\Gamma}_{\mathbf{1}}(\bar{x}=q ; \bar{y}=r ; \bar{z}=s)$ leads to simpler presentation • $m_{0}:{ }^{1} A_{1}{ }^{1} A_{2} A_{3}, m_{0}^{\prime}:{ }^{2} A_{1}{ }^{2} A_{2} A_{3}{ }^{1} A_{2}, m_{1}:{ }^{2} A_{2} A_{3} A_{0}$,
$m_{2}: A_{3} A_{0}{ }^{1} A_{1}, m_{3}: A_{0}{ }^{1} A_{1}{ }^{1} A_{2}^{2} A_{1}, m_{3}^{\prime}: A_{0}^{2} A_{1}^{2} A_{2}-m_{0}^{2}, m_{0}^{\prime 2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}$, $m_{3}^{\prime 2} ;\left(m_{0} m_{0}^{\prime}\right)^{p},\left(m_{0}^{\prime} m_{1}\right)^{q},\left(m_{0} m_{2}\right)^{2}, \quad\left(m_{0} m_{3}\right)^{2}, \quad\left(m_{0}^{\prime} m_{3}\right)^{2}, \quad\left(m_{0}^{\prime} m_{3}^{\prime}\right)^{2}$, $\left(m_{1} m_{2}\right)^{r},\left(m_{1} m_{3}^{\prime}\right)^{2},\left(m_{2} m_{3}\right)^{s},\left(m_{3} m_{3}^{\prime}\right)^{t} \bullet$
$\Gamma^{3}\left(A_{3}\right)=(+, 0 ;[] ;\{(r, 2, p, q)\})-(r, p, q)-\mathbf{S}^{2}:(1,1,2),(1,2, q),(1,3,3)$, $(1,3,4),(1,3,5)-\mathbf{E}^{2}:(1,3,6),(1,4,4),(2,2,2)-\mathbf{H}^{2}:$ else $\circ \Gamma^{0}\left(A_{0}\right)=$ $(+, 0 ;[] ;\{(r, 2, t, s)\})-(r, t, s)-\mathbf{S}^{2}:(1,1,2),(1,2, s),(1,3,3),(1,3,4)$, $(1,3,5)-\mathbf{E}^{2}:(1,3,6),(1,4,4),(2,2,2)-\mathbf{H}^{2}:$ else • $(p ; q ; r ; s ; t)-$ \mathbf{S}^{3} : not opt., e.g.: $(1 ; 3 ; 1 ; 3 ; 3)$ or $(1 ; 3 ; 3 ; 3 ; 1)-\mathbf{E}^{3}$: not opt., e.g.: $(1 ; 4 ; 3 ; 4 ; 1)$ and $(1 ; 4 ; 1 ; 3 ; 4)$ lead to $\mathbf{2 2 1 . P m} \mathbf{3} \mathbf{m},(2 ; 4 ; 1 ; 4 ; 2)$ leads to 123.P4/mmm - \mathbf{E}^{3} opt.: $(2 ; 3 ; 1 ; 6 ; 2) \quad$ 191.P6/mmm $-\mathbf{S}^{2} \times \mathbf{R}$ opt.: $(2 ; 2 ; 1 ; s ; 2) \quad 2 \leq s, \quad(2 ; 3 ; 1 ; 3 ; 2),(2 ; 3 ; 1 ; 4 ; 2),(2 ; 3 ; 1 ; 5 ; 2)-\mathbf{H}^{2} \times \mathbf{R}$ opt.: $(2 ; q ; 1 ; s ; 2) \quad \frac{1}{q}+\frac{1}{s}<\frac{1}{2}-\mathbf{S}^{2}$-splittings: $r=1<p, \quad 3 \leq t ; \quad \frac{1}{q}+\frac{1}{s}>\frac{1}{2}$ - e.g.: $\quad(3 ; 3 ; 1 ; 3 ; 3) \rightarrow \mathbf{S}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 3 ; 3)+\mathbf{S}^{\mathbf{3}}: \boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 3 ; 3) ; \quad(3 ; 4 ; 1 ; 3 ; 4) \rightarrow$ $\mathbf{S}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 4 ; 3)+\mathbf{E}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(4 ; 3 ; 4) ; \quad(3 ; 4 ; 1 ; 3 ; 5) \rightarrow \mathbf{S}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 4 ; 3)+\mathbf{H}^{3}:$ $\boldsymbol{\Gamma}_{\mathbf{1}}(4 ; 3 ; 5) ;(4 ; 3 ; 1 ; 4 ; 4) \rightarrow \mathbf{E}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(4 ; 3 ; 4)+\mathbf{H}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 4 ; 4) ;(3 ; 5 ; 1 ; 3 ; 5)$ $\rightarrow \mathbf{H}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 5 ; 3)+\mathbf{H}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(5 ; 3 ; 5) ;-\mathbf{E}^{2}$-splittings: $r=1<p, 3 \leq t$, $\frac{1}{q}+\frac{1}{s}=\frac{1}{2}-$ e.g.: $(2 ; 3 ; 1 ; 6 ; 3) \rightarrow \mathbf{E}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(2 ; 3 ; 6)+\mathbf{H}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 6 ; 3) ;$
$(3 ; 3 ; 1 ; 6 ; 3) \rightarrow \mathbf{H}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 3 ; 6)+\mathbf{H}^{3}: \boldsymbol{\Gamma}_{\mathbf{1}}(3 ; 6 ; 3) ;-\mathbf{H}^{3}:$ not opt., e.g.: $(1 ; 5 ; 1 ; 3 ; 5)$ and $(1 ; 5 ; 3 ; 5 ; 1)$ lead to $\boldsymbol{\Gamma}_{\mathbf{1}}(5 ; 3 ; 5)-\mathbf{H}^{3}$ opt.: $r=1 ; 3 \leq t$, $\frac{1}{q}+\frac{1}{s}<\frac{1}{2}-$ e.g.: $(2 ; 4 ; 1 ; 5 ; 3)-\mathbf{E}^{2}$-splitting: $(2 ; 2 ; 2 ; 2 ; 2) \rightarrow \mathbf{H}^{2} \times \mathbf{R}+$ $\mathbf{H}^{2} \times \mathbf{R}$
$\mathcal{D}_{\mathbf{3 . 3}}-\boldsymbol{\Gamma}_{\mathbf{3 . 3}}(3 p ; 3 q ; r, 2 s) 1 \leq p, q ; 1 \leq s ; 2 \leq r-\boldsymbol{\Gamma}_{\mathbf{3 . 3}}$ is max. iff $r \neq 2 s$, else $\boldsymbol{\Gamma}_{\mathbf{1}}(3 p ; 3 q ; r=2 s)$ is supergroup $-\boldsymbol{\Gamma}_{3.3}$ is not opt. if $p=1=q$, then $\boldsymbol{\Gamma}_{\mathbf{2 . 9}}(\bar{u}=2 ; \bar{v}=2 ; \bar{w}=r ; \bar{X}=s)$ provides simpler presentation - $m_{0}:{ }^{1} A_{1} A_{2} A_{3}, \quad m_{1}: A_{2} A_{3} A_{0}^{\prime}, \quad m_{2}: A_{3} A_{0}{ }^{1} A_{1}, \quad m_{3}: A_{0}{ }^{1} A_{1} A_{2} A_{0}^{\prime}$, $r: A_{3} A_{0}^{2} A_{1} \rightarrow A_{3} A_{0}^{2} A_{1}-m_{0}^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, r^{2} ;\left(m_{0} m_{1}\right)^{p},\left(m_{0} m_{2}\right)^{2}$, $\left(m_{0} m_{3}\right)^{3}, \quad\left(m_{1} r m_{2} r\right)^{q}, \quad\left(m_{1} m_{3}\right)^{2},\left(m_{2} m_{3}\right)^{2}, \quad\left(m_{3} r m_{3} r\right)^{s} \bullet \Gamma^{3}\left(A_{3}\right)=$ $(+, 0 ;[2] ;\{(p, 2, q)\})-(p, q)-\mathbf{S}^{2}:(1,1)$ is not opt. $-\mathbf{E}^{2}:(1,2)-\mathbf{H}^{2}:$ else $\circ \Gamma^{0}\left(A_{0}, A_{0}^{\prime}\right)=(+, 0 ;[] ;\{(q, 2, s, r)\})-(q, s, r)-\mathbf{S}^{2}:(1,1,2)$ is not opt., $(1,2, r),(1,3,3),(1,3,4),(1,3,5)-\mathbf{E}^{2}:(1,3,6),(1,4,4),(2,2,2)-$ \mathbf{H}^{2} : else - $(p ; q ; r ; s)-\mathbf{S}^{3}$: not opt., e.g.: $(1 ; 1 ; r ; 2),(1 ; 1 ; 3 ; 3),(1 ; 1 ; 3 ; 4)$ $-\mathbf{E}^{3}$: not opt., $(1 ; 1 ; 4 ; 3)$ 229.Im $\overline{3} \mathbf{m} /(1 ; 2 ; 2 ; 1) \quad A_{3}$ id. v. $-\mathbf{H}^{2} \times \mathbf{R}$ opt.: $(1 ; 2 ; r ; 1) 3 \leq r, \quad A_{3}$ id. v. $/(2 ; 1 ; 2 ; s) 2 \leq s, A_{3}$ id. v. $-\mathbf{H}^{3}$ not opt. $-\mathbf{H}^{3}$ opt.: $(2 ; 1 ; r ; 2) 3 \leq r(r=4$ is not max. $),(2 ; 1 ; 3 ; 3),(2 ; 1 ; 3 ; 4)$, $(2 ; 1 ; 3 ; 5),(2 ; 1 ; 4 ; 3),(2 ; 1 ; 5 ; 3) A_{3}$ id. v. $/(1 ; 2 ; 2 ; 2) ;(2 ; 1 ; 3 ; 6),(2 ; 1 ; 4 ; 4)$ A_{3} and $\left(A_{0}, A_{0}^{\prime}\right)$ are id. v.
$\mathcal{D}_{3.4}-\boldsymbol{\Gamma}_{3.4}$ is dual to $\mathcal{D}_{\mathbf{3 . 1}}-\boldsymbol{\Gamma}_{\mathbf{3 . 1}}$
$\mathcal{D}_{3.5}-\boldsymbol{\Gamma}_{3.5}$ is dual to $\mathcal{D}_{3.3}-\boldsymbol{\Gamma}_{3.3}$

Figures

References

[1] B. N. Apanasov, Discrete groups in Space and Uniformization Problems, Kluwer Acad. Publishers, Dordrecht-Boston-London, Math. and Its Appl. (Soviet Series) 40.
[2] F. Bonahon and L. C. Siebenmann, The characteristic toric splitting of irreducibile compact 3 orbifold, Math. Annalen 278 (1987), 441-479.
[3] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups (4th, eds.), Springer, Berlin-Heidelberg-New York, 1980.
[4] A. W. M. Dress, Presentation of discrete groups acting on simply connected manifolds in terms of parametrized systems of Coxeter matrices, Advances in Math. 63 (1987), 196-212.
[5] A. W. M. Dress, D. H. Huson and E. Molnár, The classifications of face-transitive periodic three-dimensional tilings, Acta Crystallographica A 49 (1993), 806-817.
[6] W. D. Dunbar, Geometric orbifolds, Revista Mat. Univ. Complutense de Madrid 1 No. 1, 2, 3 (1988), 67-99.
[7] D. H. Huson, The generation and classification of tile-k-transitive tilings of the Euclidean plane, the sphere and the hyperbolic plane, Geometriae Dedicata 47 (1993), 269-296.
[8] International Tables for Crystallography (T. Hahn, ed.), Vol. A, Reidel Publishing Company, Dordrecht-Boston, 1983.
[9] Z. LuČIĆ and E. MolnÁr, Combinatorial classification of fundamental domains of finite area for planar discontinuous isometry groups, Arch. Math. 54 (1990), 511-520.
[10] A. M. Macbeath, The classification of non-Euclidean plane crystallographic groups, Canadian J. Math. 19 (1967), 1192-1205.
[11] E. Molnár, Non-geometric good orbifolds, Bolyai Society Mathematical Studies, Vol. 4, Topology with Applications, Szekszárd (Hungary), 1993, pp. 351-378.
[12] E. Molnár, Polyhedron complexes with simply transitive group actions and their realizations, Acta Math. Hung. 59, 175-216.
[13] E. Molnár, Symmetry breaking of the cube tiling and the spatial chess board by D-symbols, Beitr. Alg. Geom. (Contributions to Algebra and Geometry) 35 No. 2, (1994), 205-238.
[14] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487, Russian translation: Moscow "Mir" 1986.
[15] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1992), 357-382.
[16] E. B. Vinberg and O. V. Shvartsman, Discrete transformation groups of spaces of constant curvature, Geometriya 2 VINITI Itogi Nauki i Techniki, Sovr. Probl. Mat. Fund Napr. 29 (1988), 147-259, (in Russian); English: E. B. Vinberg, editor, Geometry II., Vol. 29 of Encyclopedia of Math. Sci. Springer, Berlin-Heidelberg, 1993.
[17] H. Zieschang, E. Vogt and H. D. Coldewey, Surfaces and planar discontinuous groups, Lect. Notes in Math., Vol. 835, Springer, Berlin-Heidelberg-New York, 1980.

```
EMIL MOLNÁR
DEPARTMENT OF GEOMETRY
MATHEMATICAL INSTITUTE
TECHNICAL UNIVERSITY OF BUDAPEST
H-1521 BUDAPEST XI
EGRY J. U. 1. H. II. 22.
HUNGARY
E-mail: geometry@ccmail.bme.hu
```

(Received March 4, 1995; revised June 28, 1996)

[^0]: Supported by the Hungarian National Foundation for Scientific Research (OTKA) No. T 7351 (1993) and by the Foundation Universitas Győr.

