Translations in normed spaces

By ZYGFRYD KOMINEK (Katowice)

Abstract

Using the methods of theory of functional equations we give some characterization of traslations in a real normed spaces.

S. Mazur and S. Ulam [2] have shown that every isometry of one real normed space X onto another Y is affine (i.e. $X \ni x \rightarrow f(x)-f(0) \in Y$ is linear). In [1] J. A. Baker has observed that the assumption "onto" is superflous in the case where Y is strictly convex. In this note we shall give a characterization of translation in the case of X being an arbitrary real linear normed space. By \mathbb{N} and \mathbb{R} we denote the set of all positive integers and the set of all reals, respectively, and for any $f: X \rightarrow X$ and $x \in X$ we put

$$
f^{0}(x):=x \quad \text { and } \quad f^{n}(x):=f\left(f^{n-1}(x)\right), \quad n \in \mathbb{N} .
$$

Theorem 1. Let X be a real linear normed space and let $f: X \rightarrow X$ be an isometry satisfying the following assumptions;

$$
\left\{\begin{array}{l}
\text { there exists an } n \in \mathbb{N} \text { such that the function } \tag{1}\\
X \ni x \rightarrow f^{n}(x) \in X \text { has no fixed point }
\end{array}\right.
$$

and
(2) for every $x \in X$ the points $x, f(x)$ and $f^{2}(x)$ are collinear.

Then there exists an $a \in X \backslash\{0\}$ such that $f(x)=x+a, x \in X$.
Proof. By virtue of (2) there exists a function $\varphi: X \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f^{2}(x)-f(x)=\varphi(x)[f(x)-x], \quad x \in X \tag{3}
\end{equation*}
$$

Mathematics Subject Classification: 39B52.
Key words and phrases: functional equations, isometry.

Since f is an isometry and on account of (1) φ is a continuous function and $|\varphi(x)|=1$ for every $x \in X$. Thus either

$$
\begin{equation*}
\varphi(x)=1, \quad x \in X \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\varphi(x)=-1, \quad x \in X \tag{5}
\end{equation*}
$$

Assume (4). Then (3) can be written in the form

$$
f^{2}(x)-f(x)=f(x)-x, \quad x \in X
$$

which (using the method of induction) gives

$$
f(x)-x=f^{k+1}(x)-f^{k}(x), \quad x \in X, \quad k \in \mathbb{N} .
$$

Consequently,

$$
n[f(x)-x]=\sum_{k=0}^{n-1}\left[f^{k+1}(x)-f^{k}(x)\right]=f^{n}(x)-x, \quad x \in X, \quad n \in \mathbb{N}
$$

Hence we get the following representation

$$
f(x)-x=\lim _{n \rightarrow \infty} \frac{f^{n}(x)}{n}
$$

Note that for $x, y \in X$ we have

$$
\|f(x)-x-[f(y)-y]\|=\lim _{n \rightarrow \infty}\left\|\frac{f^{n}(x)-f^{n}(y)}{n}\right\|=\lim _{n \rightarrow \infty} \frac{\|x-y\|}{n}=0
$$

which implies that

$$
f(x)-x=f(y)-y, \quad x, y \in X
$$

Setting $y=0$ and denoting $a:=f(0)$ we obtain

$$
f(x)=x+a, \quad x \in X
$$

To end the proof it is enough to show that condition (5) cannot hold. Indeed, assume (5). Now (3) has the form

$$
\begin{equation*}
f^{2}(x)=x, \quad x \in X \tag{6}
\end{equation*}
$$

In particular f transforms X onto X. By a result of Mazur and Ulam [2] there exists a linear isometry $g: X \rightarrow X$ such that

$$
\begin{equation*}
f(x)=g(x)+a, \quad x \in X \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
a=f(0) . \tag{8}
\end{equation*}
$$

Hence and by (6) $f(a)=0$ and using (7) we get

$$
\begin{equation*}
g(a)=-a . \tag{9}
\end{equation*}
$$

Now, by virtue of (7), the linearity of g, and (9)

$$
f\left(\frac{a}{2}\right)=g\left(\frac{a}{2}\right)+a=\frac{1}{2} g(a)+a=\frac{a}{2},
$$

which means that $\frac{a}{2}$ is a fixed point of f and contradicts (1). This ends the proof of Theorem 1.

Remark. The assumption (1) is essential in the Theorem 1. The function $f(x)=-x, x \in X$, is not a translation and fulfils condition (2).

To see the essence of assumption (2) let us consider the function f defined by the formula

$$
f((x, y)):=(x+1,-y), \quad x, y \in \mathbb{R}
$$

It is easily seen that f is an isometry of $\mathbb{R}^{2}(=\mathbb{R} \times \mathbb{R})$ onto itself and the points $(x, y), f(x, y)$ and $f^{2}(x, y)$ are collinear if and only if $y=0$. Evidently f is not a translation.

If the condition (1) is not assumed we have the following
Theorem 2. Let X be a real linear normed space and let f be an isometry of X into X satisfying the condition (2). Then there exist a constant a and a linear isometry g such that $f(x)=g(x)+a, x \in X$. Moreover, $g^{2}(x)=x$ for every $x \in X$.

Proof. As in the proof of Theorem 1 we obtain condition (3). Now we define the sets S_{0}, S_{+}and S_{-}as follows:

$$
\begin{aligned}
& S_{0}=\{x \in X ; f(x)=x\}, \\
& S_{+}=\left\{x \in X ; f^{2}(x)-f(x)=f(x)-x\right\}, \\
& S_{-}=\left\{x \in X ; f^{2}(x)=x\right\}
\end{aligned}
$$

It is not hard to check that

$$
\begin{equation*}
S_{+} \cap S_{-}=S_{0}, \quad S_{+} \cup S_{-}=X \tag{10}
\end{equation*}
$$

We shall show that

$$
\begin{align*}
f\left(S_{0}\right) & \subset S_{0} \tag{11}\\
f\left(S_{+} \backslash S_{0}\right) & \subset S_{+} \backslash S_{0} \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
f\left(S_{-} \backslash S_{0}\right) \subset S_{-} \backslash S_{0} \tag{13}
\end{equation*}
$$

The inclusion (11) is a simple consequence of the definition of S_{0}. Take an arbitrary $x \in S_{+} \backslash S_{0}$. Assume that $f(x) \in S_{0}$. Then $f^{2}(x)=f(x)$ and by the definition of $S_{+} f(x)=x$, which means that $x \in S_{0}$, a contradiction. Now assume that $f(x) \in S_{-} \backslash S_{0}$. Then $f^{3}(x)=f(x)$ and hence $f^{2}(x)=x$. Consequently $x \in S_{-}$. This contradiction proves (12). Take an arbitrary $x \in S_{-} \backslash S_{0}$. Assume that $f(x) \in S_{0}$. Hence and by the definitions of S_{-}and S_{0} we have $x=f^{2}(x)=f(x)$ which implies that $x \in S_{0}$, a contradiction. If $f(x) \in S_{+} \backslash S_{0}$ then $f^{3}(x)-f^{2}(x)=f^{2}(x)-f(x)$ and since $x \in S_{-} \backslash S_{0}$ then $f^{2}(x)=x$ and therefore $f^{3}(x)=f(x)$. Thus $f(x)-x=x-f(x)$ and, consequently, $f(x)=x$, a contradiction. This proves (13).

We shall consider two cases:

$$
\begin{equation*}
S_{+} \backslash S_{0} \neq \emptyset \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{+} \backslash S_{0}=\emptyset \tag{15}
\end{equation*}
$$

First assume (14). Similarly as in the proof of Theorem 1 we get

$$
\begin{equation*}
f(x)=x+a, \quad x \in S_{+} \backslash S_{0}, \tag{16}
\end{equation*}
$$

where $a(\in X \backslash\{0\})$ is a constant. In this case S_{0} has to be the empty set. In fact, if $x_{0} \in S_{0}$ then for $x \in S_{+} \backslash S_{0}$

$$
\left\|x-x_{0}\right\|=\left\|f^{n}(x)-f^{n}\left(x_{0}\right)\right\|=\left\|x+n a-x_{0}\right\|, n \in \mathbb{N}
$$

which can be written in the form

$$
\frac{\left\|x-x_{0}\right\|}{n}=\left\|\frac{x}{n}+a-\frac{x_{0}}{n}\right\| .
$$

Letting n tend to infinity we obtain $a=0$, a contradiction. By the definition of S_{0}, S_{+}, S_{-}, and by (3) and (10) we get $S_{+} \backslash S_{0}=X$ and therefore on account of (16) we have $f(x)=x+a, x \in X$.

Now, assume (15). According to (10) and by the definition of S_{-}

$$
\begin{equation*}
f^{2}(x)=x, \quad x \in X \tag{17}
\end{equation*}
$$

In particular f transforms X onto X and by a result of Mazur and Ulam mentioned in the proof of Theorem 1 there exists a linear isometry $g: X \rightarrow X$ fulfilling the conditions (7) and (9). Moreover, by the linearity of g, (17) and (9) we obtain

$$
\begin{aligned}
g^{2}(x) & =g(g(x))=g(f(x)-a)=g(f(x))-g(a) \\
& =f(f(x))-a-g(a)=f^{2}(x)=x
\end{aligned}
$$

This ends the proof of Theorem 2.
The proof of Theorem 2 yields the following
Corollary. If f fulfills the assumptions of Theorem 2 then either $f(x)=x+a, x \in X$, with some $a \in X \backslash\{0\}$ or f is an involution (i.e. $f^{2}(x)=x, x \in X$).

Acknowledgements. The author is greatly indebted to prof. J. TABOR and J. Tabor Jr., for their helpful comments during the preparation of the paper.

References

[1] J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655-658.
[2] S. Mazur and S. Ulam, Sur les transformations isometriques d'espaces vectoriels normes, C. R. Acad. Sci. Paris 194 (1932), 946-948.

ZYGFRYD KOMINEK
INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY
BANKOWA 14, PL-40-007 KATOWICE
POLAND
(Received August 15, 1995; revised February 8, 1996)

