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Translations in normed spaces

By ZYGFRYD KOMINEK (Katowice)

Abstract. Using the methods of theory of functional equations we give some
characterization of traslations in a real normed spaces.

S. Mazur and S. Ulam [2] have shown that every isometry of one real
normed space X onto another Y is affine (i.e. X 3 x → f(x) − f(0) ∈ Y
is linear). In [1] J. A. Baker has observed that the assumption “onto” is
superflous in the case where Y is strictly convex. In this note we shall give
a characterization of translation in the case of X being an arbitrary real
linear normed space. By N and R we denote the set of all positive integers
and the set of all reals, respectively, and for any f : X → X and x ∈ X
we put

f0(x) := x and fn(x) := f(fn−1(x)), n ∈ N.

Theorem 1. Let X be a real linear normed space and let f : X → X
be an isometry satisfying the following assumptions;

(1)
{

there exists an n ∈ N such that the function

X 3 x → fn(x) ∈ X has no fixed point

and

(2) for every x ∈ X the points x, f(x) and f2(x) are collinear.

Then there exists an a ∈ X \ {0} such that f(x) = x + a, x ∈ X.

Proof. By virtue of (2) there exists a function ϕ : X → R such that

(3) f2(x)− f(x) = ϕ(x)[f(x)− x], x ∈ X.
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Since f is an isometry and on account of (1) ϕ is a continuous function
and |ϕ(x)| = 1 for every x ∈ X. Thus either

ϕ(x) = 1, x ∈ X,(4)

or

ϕ(x) = −1, x ∈ X.(5)

Assume (4). Then (3) can be written in the form

f2(x)− f(x) = f(x)− x, x ∈ X,

which (using the method of induction) gives

f(x)− x = fk+1(x)− fk(x), x ∈ X, k ∈ N.

Consequently,

n[f(x)− x] =
n−1∑

k=0

[fk+1(x)− fk(x)] = fn(x)− x, x ∈ X, n ∈ N.

Hence we get the following representation

f(x)− x = lim
n→∞

fn(x)
n

.

Note that for x, y ∈ X we have

‖f(x)− x− [f(y)− y]‖ = lim
n→∞

∥∥∥∥
fn(x)− fn(y)

n

∥∥∥∥ = lim
n→∞

‖x− y‖
n

= 0,

which implies that

f(x)− x = f(y)− y, x, y ∈ X.

Setting y = 0 and denoting a := f(0) we obtain

f(x) = x + a, x ∈ X.

To end the proof it is enough to show that condition (5) cannot hold.
Indeed, assume (5). Now (3) has the form

(6) f2(x) = x, x ∈ X.

In particular f transforms X onto X. By a result of Mazur and Ulam [2]
there exists a linear isometry g : X → X such that

(7) f(x) = g(x) + a, x ∈ X,



Translations in normed spaces 297

where

(8) a = f(0).

Hence and by (6) f(a) = 0 and using (7) we get

(9) g(a) = −a.

Now, by virtue of (7), the linearity of g, and (9)

f
(a

2

)
= g

(a

2

)
+ a =

1
2
g(a) + a =

a

2
,

which means that a
2 is a fixed point of f and contradicts (1). This ends

the proof of Theorem 1.

Remark. The assumption (1) is essential in the Theorem 1. The func-
tion f(x) = −x, x ∈ X, is not a translation and fulfils condition (2).

To see the essence of assumption (2) let us consider the function f
defined by the formula

f((x, y)) := (x + 1,−y), x, y ∈ R.

It is easily seen that f is an isometry of R2(= R × R) onto itself and
the points (x, y), f(x, y) and f2(x, y) are collinear if and only if y = 0.
Evidently f is not a translation.

If the condition (1) is not assumed we have the following

Theorem 2. Let X be a real linear normed space and let f be an
isometry of X into X satisfying the condition (2). Then there exist a
constant a and a linear isometry g such that f(x) = g(x) + a, x ∈ X.
Moreover, g2(x) = x for every x ∈ X.

Proof. As in the proof of Theorem 1 we obtain condition (3). Now
we define the sets S0, S+ and S− as follows:

S0 = {x ∈ X; f(x) = x},
S+ = {x ∈ X; f2(x)− f(x) = f(x)− x},
S− = {x ∈ X; f2(x) = x}.

It is not hard to check that

(10) S+ ∩ S− = S0, S+ ∪ S− = X.
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We shall show that

f(S0) ⊂ S0,(11)

f(S+ \ S0) ⊂ S+ \ S0(12)

and

f(S− \ S0) ⊂ S− \ S0.(13)

The inclusion (11) is a simple consequence of the definition of S0. Take an
arbitrary x ∈ S+ \S0. Assume that f(x) ∈ S0. Then f2(x) = f(x) and by
the definition of S+ f(x) = x, which means that x ∈ S0, a contradiction.
Now assume that f(x) ∈ S−\S0. Then f3(x) = f(x) and hence f2(x) = x.
Consequently x ∈ S−. This contradiction proves (12). Take an arbitrary
x ∈ S− \ S0. Assume that f(x) ∈ S0. Hence and by the definitions
of S− and S0 we have x = f2(x) = f(x) which implies that x ∈ S0, a
contradiction. If f(x) ∈ S+ \ S0 then f3(x) − f2(x) = f2(x) − f(x) and
since x ∈ S− \ S0 then f2(x) = x and therefore f3(x) = f(x). Thus
f(x) − x = x − f(x) and, consequently, f(x) = x, a contradiction. This
proves (13).

We shall consider two cases:

S+ \ S0 6= ∅(14)

and

S+ \ S0 = ∅.(15)

First assume (14). Similarly as in the proof of Theorem 1 we get

(16) f(x) = x + a, x ∈ S+ \ S0,

where a(∈ X \ {0}) is a constant. In this case S0 has to be the empty set.
In fact, if x0 ∈ S0 then for x ∈ S+ \ S0

‖x− x0‖ = ‖fn(x)− fn(x0)‖ = ‖x + na− x0‖, n ∈ N,

which can be written in the form
‖x− x0‖

n
=

∥∥∥x

n
+ a− x0

n

∥∥∥ .

Letting n tend to infinity we obtain a = 0, a contradiction. By the defini-
tion of S0, S+, S−, and by (3) and (10) we get S+ \S0 = X and therefore
on account of (16) we have f(x) = x + a, x ∈ X.
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Now, assume (15). According to (10) and by the definition of S−

(17) f2(x) = x, x ∈ X.

In particular f transforms X onto X and by a result of Mazur and Ulam
mentioned in the proof of Theorem 1 there exists a linear isometry
g : X → X fulfilling the conditions (7) and (9). Moreover, by the lin-
earity of g, (17) and (9) we obtain

g2(x) = g(g(x)) = g(f(x)− a) = g(f(x))− g(a)

= f(f(x))− a− g(a) = f2(x) = x.

This ends the proof of Theorem 2.

The proof of Theorem 2 yields the following

Corollary. If f fulfills the assumptions of Theorem 2 then either
f(x) = x + a, x ∈ X, with some a ∈ X \ {0} or f is an involution
(i.e. f2(x) = x, x ∈ X).
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