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§ 1. Introduction

A well-known generalization of Metrical Geometries is the so called General
Geometry of Paths (DouGLAS [1], KNEBELMAN [2], RAPCSAK [3]), defined by intro-
ducing a system of differential equations of form

d*xi
dr?
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(1 dr

+2G* [xf, =0,

where G'(x/, x/) are given functions of the line-elements of an underlying manifold
M, . It is also assumed that these functions are positively homogeneous of the second
degree in the %/’s and that the transformation properties of the G"s are such as
they leave the equations (1) invariant.

A basic method of the study of differential geometric spaces is the use of
tensor calculus by introduction a covariant derivative. In the General Geometry
of Paths this is possible in two ways: one is the BERWALD’s connection theory [4]
the other is the theory of the non-linear connection (FRIESECKE [5], BorTOLOTTI [6],
VAGNER [7], KawaGucH! [8], BARTHEL [9], [10], KANDATU [11], TAMASSsY [12]).

The covariant derivative of a non-linear connection (in the following: non-
linear covariant derivative) is defined by

oXi
(2) Vel = a—xg'#Gi(xj, X7),
i
where G} = % (G'-s are the functions in (1)).

In the following we shall give a characterization of the non-linear covariant
derivative in the case, when homogeneity of the first degree in the x’’s of the
functions Gi’s in (2) is assumed (generally the positive homogeneity is assumed
only).

In§ 2. weshall give a global definition of a non-linear connection by a modi-
fication of the KoszuL’s definition of a linear connection. In [11] A. KANDATU
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has given a definition in a similar way, but we show in Theorem 1. that KAN-
DATU’s postulate (c) follows from the other ones.

In § 3. we shall define the connection map of the non-linear connection, and
by making use of this map we shall show that the non-linear connection uniquely
determines a horizontal distribution on 7M. Our construction is similar to that of
P. DomBrROWSKI in the case of a linear connection (cl‘. App. (IV) of [13] and §2.4
of [14]). It is to be noted that a non-linear connection was defined as a horizontal
distribution on the tangent bundle in the first global formulation of the theory of
non-linear connections (BARTHEL [10]).

In §4. we shall give a functional analytic characterization of a smooth non-
linear covariant derivative. The smoothness of a non-linear connection is studied
by GAHLER [15] in an other approach.

Notation. The manifolds and maps of class C= are called smooth. If M is
a smooth manifold, then 7,M will denote the tangent space of M at the
point pe M, TM will denote the tangent bundle, 7"M C TM is the open subset of
all nonzero tangent vectors. FM will denote the ring of the smooth functions on M.
The FM-module of the smooth vectorfields on M is denoted by S=(TM), the
FM-module of all vectorfields on M will be denoted by S(TM). If f: M—N is
a smooth map of the smooth manifold M into the smooth manifold N, then df
will denote the differential of f, df : TM —~TN.

§ 2. The non-linear covariant derivative
Definition. We define the covariant derivative of a non-linear connection
on the smooth manifold M as a mapping
V:(X, Y)ES=(TM)X S=(TM) - Vyx Y€ S(TM)

satisfying the following conditions:

1° Vo fY = X)Y+fVY;
I 2° Vx+x, Y= Vx, Y+ Vy,Y;

¥ VY =fWY;

4° if peM and Y|, =0 then Vy(¥;+ Yo)|, = Vx¥il, + Vx Yalps
where X, X7, X,, Y, Y; and Y, are arbitrary elements of S=(7M) and f is an ar-
bitrary element of FM.

Let U be a coordinate neighbourhood of the manifold M with the local coor-

dinates x', ..., x" and let the local representation of the vector fields X" and Y be
¢ ¥ . i
X i and Y I respectively.

Theorem 1. The non-linear covariant derivative VY has the following local
representation:
g

2) VY= Xt W'{'G{(.’C&, Y*)]

0

£
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where the functions Gi(x', ..., x"; V', ..., V") are defined on x(U)X R" and are homo-
geneous of degree 1 with respecr ro A L B

ProOF. We identify the restriction Uc M of the tangent bundle {TM, n, M}
with the trivial bundle {x(U)XR", n, x(U)} by identifying the vector fields T
on U with »n linearly independent vectors of the vector space R". Then we can con-
sider the vector fields X and Y on U as maps x(U)—~R".

We put:

Y

(3) Gi(Y) = d;;‘ Y—-G,W.

G/ (Y) is a vector field on U, and so it can be written as a linear combination of the
0

xS
) GI(Y) = GH() —
1] i 8xj
Hence we have by (3) and (4)
oY’
Va ¥=
= oxt
The postulates 2° and 3° of (1) imply that

g 0
V. V= X |— i T4
e Y= X 6'+G (Y)]BJ
Now, we show that the vector-valued functions G;/(¥Y) on x(U)CR" can be
represented in the form

GH)(, ..., ¥ = GI(xY, ..., x*; (=, ..., ¥), ..., Y*(x}, ..., X)),

where the functions G/(x', ..., x"; ', ..., »") are uniquely determined by the non-
linear covariant derivative V.

Let be p€ U, and stipulate for the vector fields Y, and Y, that Y,|,=Y,|,. Than
we show that Gi(Y))|, = G(Y,)|,. We apply postulate 4° of (1) for the vector
fields Y, and Y,—Y, at the point pEU

Vi (Hh+(Ye— i, = Vo H,+V, (Y- )|,
i a.l.'i

o0x dxt

+G*’(Y)]

We again apply postulate 4°:

Va Z[(Y’ Y’)aj]

Fray

0
Z' ¢ (P 1y
lvd‘jﬁ(Y Y)axj

(here we do not sum for the index j, as Einstein’s convention would require).
By postulate 1° we can write:

Y{—Y/)
Bx‘ [( d

P

-1V, 5.

B(Yj Y)) o
oxt ox’
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Since we have Y|,

=Y,/,, the last term of this equation vanishes and so we have:
Y- Y 0

ox' ox’ |,

Vi (h+(Ye— ), = Y& Yo+

dxt dxt

According to (3), this is equivalent to the desired equality:

0
)95 |,

r 0 .
G?’(YQW p= GH(Y,
Now, we can define the functions GJ(x', ..., x"; »',...,»"). Let (x}, ..., x};
Vs, ..., Vo) be an arbitrary, fixed element of x(U)XR".
Assume that the point p € U, coincides with that having coordinates xj, ..., xj.
Let Y': x(U)—~R! be arbitrary functions such that Y'(x}, ..., x3) = ;. Let Y be
the vectorfield on U having coordinate functions Y'(x, ..., x"). Then we define
the functions: _
GI (x5 -+ s X33 Ybs ---» W) = GI(Y),-

According to the results obtained above this is a correct definition.

k
}v" =S,

We apply property 1° of (1):

6N =9, 2D (L yipv, r] (& ver 3% 2] = et
Frg dxi

From this the desired property follows.

§ 3. The connection map of the nonlinear connection

Let us consider the second tangent bundle of M: {TTM, n,, TM} (n;:TTM ~TM
is the projection map). {VTM, n,, TM} denotes the vertical subbundle of the second
tangent bundle, i.e. the fiber V,,7M of the vertical subbundle on the point wé TM
is the set of the tangent vectors to the tangent space 7, M. In other words, it is
the kernel of the map dn ;T\, TM —~ T, M.

It is well known that the non-vertical vectors of TTM are of form dY(v), where
YES=(TM), veTM (cf. §2.4 of [14]).

Letbe ge M, we T M. Let ::T,M —TM denotes the inclusion map, and /,,: T, M —~
-+T.(T,M) denotes the canonical vector space isomorphism of the vector space
T,M onto its tangent space at we T, M.

Definition. The connection map K : 7TM - TM of the non-linear connection
V is defined by
V.Y if a has form a = dYv,
K@ =\ a-1(a) it acv, ™.
Let x, ..., x" be the local coordinates in a neighbourhood Uc M, and denote
the induced coordinates on the neighbourhood TUC TM by X', ... .. It easily



On the non-linear covariant derivative... 119

follows from Theorem 1 that the connection map K has the following local repre-
sentation:

o 4k ikl =2n i
(5) K@) = 3 (@ +d GHE W), ... () 5z .

2n
where a€ T, TM, q = n(w), a= Z'a’—a:-, W= wfij. (Cf. formula (5) in § 2.4
of [14].) i’ 0% o
It follows from the local representation of the connection map that the defini-
tion of this map is independent of the choice of the representation a=dY(v) of
the vector a€ TTM and that the connection map is a linear map in the second tangent

space.

Theorem 2. The non-linear connection V on the manifold M uniquely determines
the horizontal subbundle {HTM, n,, TM} of the second tangent bundle {TTM, n,, TM},
which has the following properties:

1° HTM& V,TM = T, TM holds for any veTM,

2° deH, M = H_.,TM holds for any real number c,
where the real number c is considered as the homothety vETM —c-veETM.

Proor. The horizontal subbundle {HTM, n,, TM} is defined as the kernel
of the connection map K i. e. for any ve TM

H,TM = {ac T,TM: K(a) = 0.

Property 1° of the horizontal subbundle follows from the local representation
(5) of the connection map K immediately (cf. § 2.4 of [14]). Property 2° follows
similarly from (5) and from the fact that the functions Gi(x', ..., x": !, ..., ")
are homogeneous with respect to (), ..., »") (Theorem 1).

§ 4. The smoothness of the non-linear connection

Definition. We say that a non-linear connection V is smooth if the functions
Gi(x: y) occurring in its local representation are of class C* on the set (x(U)X R")\
\(x(U)x {0}) and continuous on their whole domain (x(U)X R").

It should be noted that the assumption of the continuity on (x(U)X {0}) is not
an essential condition, since it is easy to show that continuity on the set (x( U)X R")\
\(x(U)x {0}) and homogeneity with respect to the variables ()", ..., »") of the
functions in question imply the existence of a continuous extension of them to
(x(U)X R") having the value 0 on (x(U)Xx {0}).

We summarize some concepts and notations related to the Gateaux’s differen-
tiability of maps of topological vector spaces (cf. [16]).

Let H and K be topological vector spaces and 7 :H—-K a map. T is differen-
tiable in Gateaux’s sense at the point Y¢ H if the limit:

T(Y+1Z)—-T(Y)
!

3, T(Y) = lim

exists for every Z¢ H. We then say that 6,7(Y)€H is the (Gateaux) derivative in
the direction Z€ H at the point Y€ H, of the map 7. Higher derivatives are defined
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by recurrence: T is m-times differentiable at the point YeH if it is (m—1) time
differentiable and the limit:
5(z1 s )T{ Y) e llm 6{ fm 1) T(Y+ IrZm) 5(2[ ?m-llT(Y)

t

exists for every Z,, ..., Z,€H. We then say that 6, , ,T(Y)EH is the mth
derivative in the direction (Z,, ..., Z,,) at the point Y& H of the map 7. It is well-
known that the set of the smooth vectorfields S=(7M) (and similarly also S(7TM))
on a manifold M forms a topological vector space with respect to pointwise con-

vergence.
Let us denote the set of the nonvanishing global smooth vectorfields on M by

S’=(TM), and the set of all nonvanishing cross sections of 7M by S’ (TM).

Lemma. Let V be a smooth non-linear connection on the manifold M. Then
for any nonvanishing vector field YcS'=(TM), and for any X€S=(TM) the map
Vy:S=(TM)-~S(TM) is infinitely many times differentiable at the point Y.

Proor. Let Uc M be a coordinate neighbourhood with local coordinates
., X". We compute the limit

-0 g

in local representation by using Theorem 1:

L e | SRR ] [aY" s ]
o — g+ G P+1ZD)| - |55 +Gi(; 1) %
10 t oxt
0Zi 0 .. Gi(x); Y+1Z)—-Gi(x'; YI) 9
e k ____3_ f 1 k i
=X et ; I
9z, 3G, )., 9
[Bx* g 2 4| X 50 oxi

since the functions G} are on UX(R™\{0}) of the class C= and since Z,= {Bi
is a smooth vectorfield on U. x
We determine the second derivative of the map Vy in the direction (Z,, Z,):

073 , IGL(; Y/ +1Z)) Z,] [82‘ AGL(x’; YY) Z]
Ix* 9y dy" g o
e 7 ax

AP i
— __—ay'ays ZIZQX W.
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Further analogous computation shows that the local representation of the
mth derivative of the map Vy in the direction (Z,, ..., Z,,) is the following:

I"Gi(x: Y9)
oYL dy'm

o2

©) oxt’

Znzy... Zm X

The formulas obtained prove the lemma.

Theorem 3. Let be V a non-linear connection on the smooth manifold M. V is
smooth if and only if for any open submanifold U= M and for any smoth vectorfield
X the restriction of the map Vx to S=(TU) has the following property: For any non-
vanishing vectorfield Y€ S'=(TU) the map Vy:S=(TU)—~S(TU) is infinitely many
times differentiable at Y and the derivatives belond to S=(TU).

ProoF. The necessity of the given condition follows from the preceding lemma.
Let be U a coordinate-neighbourhood, and let (x§, ..., x5: ¥, ..., YO EUX

X (R"™{0}). Let us consider the locally constant vectorfield Y:y{,% on U.

Then Vy Y is a smooth vectorfield on U. In wiev of the local representation of
VY, it follows from this that the functions G} are infinitely many times differen-
tiable with respect to the variables (x, ..., x") at the point (xJ, ..., Xp: Y8, ..., Vb).

Let us consider the vectorfields Z; = -d— on U. Then by (6), the functions

ox/
AR, v 2 W M)
(7) P T X

exist for any 1=5,, ..., 5,,=n. This proves that the functions G} are infinitely many
times differentiable with respect to the variables (', ..., ") at the point (x{, ..., xJ;
- - §

Moreover, the functions (7) are of class C= by our assumptions. It
follows that the mixed derivatives of the functions G} with respect to the variables
x' and ' also exist at the point (xj, ..., Xp: Vo, ..., Vi)
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