Publ. Math. Debrecen
49 / 3-4 (1996), 301-304

Remark on local degrees of simplicial mappings

By YU. A. SHASHKIN (Ekaterinburg)

Abstract

Let K^{n} and M^{n} be dimensionally homogeneous simplicial n-complexes, M^{n} being a pseudomanifold and $f: K^{n} \rightarrow M^{n}$ a simplicial mapping. Both K^{n} and M^{n} have orientations, M^{n} has a coherent one. Let $$
\left\{\tau_{1}^{n}, \tau_{1}^{n-1}, \tau_{2}^{n}, \tau_{2}^{n-1}, \ldots, \tau_{p-1}^{n-1}, \tau_{p}^{n}\right\}
$$ be a sequence of alternately n - and ($n-1$)-simplices of M^{n} such that every $(n-1)$ simplex is the common face of the two neighbouring n-simplices. The simplex τ_{i}^{n-1} $(i=1, \ldots, p-1)$ has the orientation induced by that of τ_{i+1}^{n}. Let $d\left(\tau^{n}\right)$ denote the local degree of the mapping f on $\tau^{n} \in M^{n}$ and $d\left(\tau_{i}^{n-1}\right)$ denote the local degree of the restriction $f \mid \partial K^{n}$ on τ_{i}^{n-1}. Then we have the following equality $$
d\left(\tau_{p}^{n}\right)-d\left(\tau_{1}^{n}\right)=\sum_{i=1}^{p-1} d\left(\tau_{i}^{n-1}\right)
$$ which should be reduced modulo 2 in the non-oriented case. This statement generalizes the main result of the foregoing author's paper (Publ. Math. Debrecen, 1994, 45, 407-

 413).In this short note we wish to show that the main result of the paper [1] (Theorem 1, or "difference formula") is valid under more general assumptions, namely, for simplicial mappings of a dimensionally homogeneous simplicial complex into a simplicial pseudomanifold. We refer the reader to [1] for the necessary definitions.

In what follows let K^{n} be a finite, n-dimensional simplicial complex that is dimensionally homogeneous, i.e., such that every simplex (of any dimension) of K^{n} is a face of at least one n-simplex of K^{n}; let M^{n} be a

[^0]finite simplicial n-pseudomanifold and $f: K^{n} \rightarrow M^{n}$ a simplicial mapping. The pseudomanifold M^{n} is supposed to have a coherent orientation and the complex K^{n} to have an arbitrary one.

We use some properties of integral n-chains and ($n-1$)-cochains defined on the set of oriented n - and ($n-1$)-simplices of K^{n}, respectively, as well as of their boundary ∂ and coboundary δ operators (see, for example, [2], p. 297).

Let x^{n} be the integral n-chain on K^{n} assuming the value 1 on every oriented n-simplex. Under the geometrical boundary (or simply boundary) ∂K^{n} of the complex K^{n} we understand the set of all its $(n-1)$-simplices σ^{n-1} such that $\partial x^{n}\left(\sigma^{n-1}\right) \neq 0$. Each simplex $\sigma^{n-1} \in \partial K^{n}$ has the orientation induced by that of K^{n}.

For a simplicial mapping $f: K^{n} \rightarrow M^{n}$ we denote by $f \mid \partial K^{n}$ the restriction of f on the boundary ∂K^{n}, i.e. the mapping $f \mid \partial K^{n}: \partial K^{n} \rightarrow$ $\operatorname{skel}_{n-1} M^{n}$. Let τ^{n-1} be a fixed simplex of $\operatorname{skel}_{n-1} M^{n}$. We call the local degree of $f \mid \partial K^{n}$ on τ^{n-1} the difference

$$
\sum_{i} \partial x^{n}\left(\sigma_{i}^{n-1}\right)-\sum_{j} \partial x^{n}\left(\sigma_{j}^{n-1}\right)
$$

where the sum \sum_{i} (resp., \sum_{j}) is taken over all the simplices $\sigma^{n-1} \in \partial K^{n}$ which are mapped by $f \mid \partial K^{n}$ on τ^{n-1} with preserving (resp., reversing) of the orientation. In the case of a pseudomanifold K^{n} this definition coincides with that given in the paper [1].

Let us consider a finite sequence

$$
\begin{equation*}
\left\{\tau_{1}^{n}, \tau_{1}^{n-1}, \tau_{2}^{n}, \tau_{2}^{n-1}, \ldots, \tau_{p-1}^{n-1}, \tau_{p}^{n}\right\} \tag{1}
\end{equation*}
$$

of alternately n - and $(n-1)$-simplices of M^{n} such that every $(n-1)$ simplex is the common face of the two neighbouring n-simplices and these two n-simplices are distinct. We assume in what follows that the simplex $\tau_{i}^{n-1}(i=1, \ldots, p-1)$ in the sequence (1) has the orientation induced by that of the simplex τ_{i+1}^{n}. Let $d\left(\tau^{n}\right)$ denote the local degree of the mapping f on $\tau^{n} \in M^{n}$ and let $d\left(\tau_{i}^{n-1}\right)$ denote the local degree of the restriction $f \mid \partial K^{n}$ on $\tau_{i}^{n-1}(i=1, \ldots, p-1)$.

Theorem. We have the following equality

$$
\begin{equation*}
d\left(\tau_{p}^{n}\right)-d\left(\tau_{1}^{n}\right)=\sum_{i=1}^{p-1} d\left(\tau_{i}^{n-1}\right) \tag{2}
\end{equation*}
$$

In the non-oriented case this equality should be reduced modulo 2 .

Proof. It is sufficient to prove equality (2) only in the case when sequence (1) is of the form $\left\{\tau_{1}^{n}, \tau^{n-1}, \tau_{2}^{n}\right\}$. The simplest proof may be received by using the combinatorial form of Stokes' theorem

$$
\begin{equation*}
\left(x^{n}, \delta y^{n-1}\right)=\left(\partial x^{n}, y^{n-1}\right) \tag{3}
\end{equation*}
$$

written for any n-chain x^{n} and any ($n-1$)-cochain y^{n-1} on K^{n} (see, for example, [2], p. 301). Put the chain x^{n} being equal to 1 on every oriented n-simplex of K^{n} and the cochain y^{n-1} being equal to 1 (resp., to -1) on every ($n-1$)-simplex $\sigma^{n-1} \in \operatorname{skel}_{n-1} K^{n}$ that is mapped onto τ^{n-1} with preserving (resp., reversing) of the orientation, and $y^{n-1}\left(\sigma^{n-1}\right)=0$ for any other simplex $\sigma^{n-1} \in \operatorname{skel}_{n-1} K^{n}$. Let us calculate the values of δy^{n-1} on all n-simplices σ^{n} of K^{n}. If no $(n-1)$-face of a simpex σ^{n} is mapped onto τ^{n-1}, then $\delta y^{n-1}\left(\sigma^{n}\right)=0$. If $f\left(\sigma^{n}\right)=\tau^{n-1}$, then the simplex σ^{n} has precisely two ($n-1$)-faces, namely σ_{1}^{n-1} and σ_{2}^{n-1}, such that $f\left(\sigma_{1}^{n-1}\right)=f\left(\sigma_{2}^{n-1}\right)=\tau^{n-1}$. In this case we have $\delta y^{n-1}\left(\sigma^{n}\right)=0$, too. Finally, let the simplex σ^{n} has a unique $(n-1)$-face σ^{n-1} such that $f\left(\sigma^{n-1}\right)=\tau^{n-1}$. Then we distinguish the following cases:

1) the simplex σ^{n} is mapped onto τ_{1}^{n} with preserving (resp., reversing) of the orientation, and therefore $\delta y^{n-1}\left(\sigma^{n}\right)=-1$ (resp., $\delta y^{n-1}\left(\sigma^{n}\right)=1$) (here we take into account that the orientation of τ^{n-1} is induced by that of τ_{2}^{n}),
2) the simplex σ^{n} is mapped onto τ_{2}^{n} with preserving (resp., reversing) of the orientation, and therefore $\delta y^{n-1}\left(\sigma^{n}\right)=1$ (resp., $\delta y^{n-1}\left(\sigma^{n}\right)=-1$).
So the inner product $\left(x^{n}, \delta y^{n-1}\right)$ is equal to the difference of local degrees $d\left(\tau_{2}^{n}\right)-d\left(\tau_{1}^{n}\right)$. On the other hand, $\left(\partial x^{n}, y^{n-1}\right)$ is equal to the local degree $d\left(\tau^{n-1}\right)$, and Stokes' theorem (3) gives us

$$
d\left(\tau_{2}^{n}\right)-d\left(\tau_{1}^{n}\right)=d\left(\tau^{n-1}\right)
$$

Let σ^{n-1} be an $(n-1)$-simplex of a simplicial complex M^{n}. We call σ^{n-1} a ramification simplex if it is the common face of at least three distinct n-simplices of M^{n}. The following example shows that the difference formula (2), as well as its reduction modulo 2 , is false if the complex M^{n} has a ramification simplex. Let $K^{2}=M^{2}$ be the complex known as "book with three sheets", i.e. the complex with the set of vertices $\{a, b, c, d, e\}$ and with 2 -simplices ($b a c$), $(a b d)$, and (abe), oriented by these orderings of their vertices. Let $f: K^{2} \rightarrow M^{2}$ be the identical mapping. Then $d(b a c)=d(a b d)=1$, but $d(a b)=1$.

Note that our Theorem does not need the simplicial complex M^{n} to be an n-pseudomanifold. We may instead assume that M^{n} is dimensionally homogeneous and it has no ramification simplex. The author is indebted to the referee for this remark.

References

[1] Yu. A. Shashkin, Local degrees of simplicial mappings, Publ. Math. Debrecen 45 (1994), 407-413.
[2] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961.

YU. A. SHASHKIN
INSTITUTE OF MATHEMATICS AND MECHANICS
UL. S. KOVALEVSKOI 16, GSP-384
620219, EKATERINBURG
RUSSIA
E-mail: sha@top.imm.intec.ru
(Received September 15, 1995; revised February 27, 1996)

[^0]: This work was supported by the Foundation of Fundamental Researches of Russia Grant 93-011-01401.

