Remark on Ky Fan convexity

By ISTVÁN JOÓ (Budapest)

Abstract. In the paper is proved that the Nikaido-Isolda's theorem fails to hold if concavity is replaced by Ky Fan concavity.

Let X, Y be arbitrary sets. The function

$$
f: X \times Y \rightarrow \mathbb{R}
$$

is called Ky Fan concave in the variable x if

$$
\begin{gathered}
\forall x_{1}, x_{2} \in X \quad \forall \lambda \in[0,1] \quad \exists x_{3} \in X \quad \forall y \\
f\left(x_{3}, y\right) \geq \lambda f\left(x_{1}, y\right)+(1-\lambda) f\left(x_{2}, y\right)
\end{gathered}
$$

The concavity with respect to y is defined symmetrically. In [1] the authors stated the following

Theorem. There exists functions $f_{1}, f_{2} \in C^{\infty}([0,1] \times[0,1])$ such that f_{1} is Ky Fan concave in the variable x, f_{2} is Ky Fan concave in the variable y and the pair f_{1}, f_{2} has no saddle point i.e. there is no point $\left(x_{0}, y_{0}\right)$ satisfying

$$
\begin{aligned}
& f_{1}\left(x_{0}, y_{0}\right) \geq f_{1}\left(x_{1} y_{0}\right) \quad \forall x \\
& f_{2}\left(x_{0}, y_{0}\right) \geq f_{2}\left(x_{0} y\right) \quad \forall y .
\end{aligned}
$$

This is a counterexample showing that the Nikadio-Isolda theorem fails to hold if concavity is replaced by Ky Fan concavity. The proof given in [1] was not correct; it suggested that there are polynomials f_{1}, f_{2}
satisfying Theorem. In fact we do not know whether there are analytical functions f_{1}, f_{2} satisfying Theorem.

Proof of Theorem. Define the functions $k_{1}, k_{2}:[0,1] \times[0,1]$ as follows. Let $0<\delta<\frac{1}{4}$ be fixed. For $0 \leq x \leq \frac{1}{4}$ the function $k_{1}\left((x), k_{2}(x)\right)$ varies linearly from $(0,1)$ to $\left(\frac{1}{2}+\delta, \frac{1}{2}-\delta\right)$; for $\frac{1}{4} \leq x \leq \frac{1}{2}$ it goes linearly from $\left(\frac{1}{2}+\delta, \frac{1}{2}-\delta\right)$ to $(0,0)$, for $\frac{1}{2} \leq x \leq \frac{3}{4}$ from $(0,0)$ to $\left(\frac{1}{2}-\delta, \frac{1}{2}+\delta\right)$ and for $\frac{3}{4} \leq x \leq 1$ from $\left(\frac{1}{2}-\delta, \frac{1}{2}+\delta\right)$ to $(1,0)$.

We can suppose that $\left(\left(k_{1}(x), k_{2}(x)\right)\right.$ is extended linearly from $\left[0, \frac{1}{4}\right]$ to $\left(-\infty, \frac{1}{4}\right]$ and from $\left[\frac{3}{4}, 1\right]$ to $\left[\frac{3}{4}, \infty\right)$. Consider a function

$$
\varphi \in C_{0}^{\infty}(\mathbb{R}), \operatorname{supp} \varphi=[-\delta, \delta], \quad \varphi \geq 0, \varphi(x)=\varphi(-x) \forall x, \int_{-\infty}^{\infty} \varphi=1
$$

The existence of a such a function is widely known.
Define

$$
\hat{k}_{1}=k_{1} * \varphi \quad \hat{k}_{2}=k_{2} * \varphi .
$$

Introduce thes sets

$$
\begin{aligned}
& A=\left\{\left(k_{1}(x), k_{2}(x)\right): x \in[0,1]\right\}, \\
& \hat{A}=\left\{\left(\hat{k}_{1}(x), \hat{k}_{2}(x)\right): x \in[0,1]\right\} .
\end{aligned}
$$

Since the convolution by φ gives an average of the values $k_{i}(x)$, all points of \hat{A} belongs to the (closed) convex hull of A. Hence \hat{A} lies in the triangle of vertices $(0,0),(1,0),(0,1)$. On the other hand, $\int_{-\infty}^{\infty} x \varphi(x) d x=0$ implies that $\hat{k}_{i}(x)=k_{i}(x)$ whenever k_{i} varies linearly in $[x-\delta, x+\delta]$. Consequently \hat{A} contains the side $[(1,0)(0,1)]$ of the above mentioned triangle. This means that the function

$$
f_{1}(x, y)=(1-y) \hat{k}_{1}(x)+y \hat{k}_{2}(x)
$$

is Ky Fan-concave in x; this follows easily from the fact that

$$
\begin{gathered}
\forall x_{1}, x_{2} \in[0,1] \quad \forall \lambda \in[0,1] \quad \exists x_{3} \in[0,1]: \\
\lambda \hat{k}_{1}(x)+1(1-\lambda) \hat{k}_{1}\left(x_{2}\right) \leq \hat{k}_{1}(3), \\
\lambda \hat{k}_{2}\left(x_{1}\right)+(1-\lambda) \hat{k}_{2}\left(x_{2}\right) \leq \hat{k}_{2}\left(x_{3}\right) ;
\end{gathered}
$$

see [1], p. 138 or [2] p. 204-205 for more details. Investigate the set

$$
C_{1}=\left\{\left(x_{0}, y_{0}\right): f_{1}\left(x_{0}, y_{0}\right)=\max _{x \in[0,1]} f_{1}\left(x, y_{0}\right)\right\}
$$

For given y_{0}, those values x_{0} are involved for which the perpendicular projection of $\left.\left.\left(\hat{k}_{1}\left(x_{0}\right), \hat{k}_{2}\right) x_{0}\right)\right)$ to the line along the vector $\left(1-y_{0}, y_{0}\right)$ is the farthest from the origin. Keeping in mind what has been proved about the set \hat{A} we see that for $0 \leq y_{0}<\frac{1}{2}$ only the point $(1,0)$ is projected, for $y_{0}=\frac{1}{2}$ the whole segment $[(1,0),(0,-1)]$ and for $\frac{1}{2}<y_{0} \leq 1$ the only point $(0,1)$. Consequently (using $\operatorname{supp} \varphi=[-\delta, \delta]$)

$$
C_{1}=\{1\} \times\left[0, \frac{1}{2}\right) \cup\left[0, \frac{1}{4}\right] \times\left\{\frac{1}{2}\right\} \cup\left[\frac{3}{4}, 1\right] \times\left\{\frac{1}{2}\right\} \cup\{0\} \times\left(\frac{1}{2}, 1\right] .
$$

Considered the function

$$
f_{2}(x, y)=-(x-y)^{2}
$$

it is obviously concave hence also Ky Fan-concave in y. On the other hand

$$
C_{2}=\left\{\left(x_{0}, y_{0}\right): f_{2}\left(x_{0}, y_{0}\right)=\max _{y \in[0,1]} f_{2}\left(x_{0}, y\right)\right\}
$$

is the line segment $y=x, 0 \leq x \leq 1$ which does not meet C_{1},

$$
C_{1} \cap C_{2}=\emptyset
$$

which proves Theorem.

References

[1] M. HorvÁth and I. Joó, On Ky Fan convexity, Matematikai Lapok 34 (1-3) (1987), 137-140.
[2] I. Joó, Answer to a problem of M. Horváth and A. Sövegjártó, Annales Univ. Sci. Budapest, Sectio Math. 29 (1986), 203-207.

```
ISTVÁN JOÓ
```

DEPARTMENT OF ANALYSIS
L. EÖTVÖS UNIVERSITY

H-1088 BUDAPEST
MÚZEUM KRT. 6-8
HUNGARY
(Received October 6, 1995; revised March 11, 1996)

