On the mean convergence of interpolatory processes

By P. VÉRTESI (Budapest)

- 1. Introduction and preliminary results.
- 1.1. Let us denote by

(1.1)
$$x_{kn} \equiv \cos \theta_{kn} = \cos \frac{2k-1}{2n} \pi \quad (k=1,2,...,n; n=1,2,...)$$

the roots of the Chebysheff polynomials $T_n(x) = \cos n\vartheta$ ($x = \cos \vartheta$), $L_n(f; x) = \sum_{k=1}^n f(x_{kn}) l_{kn}(x)$ the Lagrange interpolatory polynomials of degree $\le n-1$, $H_n(f; x) = \sum_{k=1}^n f(x_{kn}) h_{kn}(x)$ the Hermite — Fejér interpolatory polynomials of degree $\le 2n-1$. Here

$$(1.2) l_{kn}(x) = \frac{T_n(x)}{T'_n(x_{kn})(x - x_{kn})} = \frac{(-1)^{k+1} T_n(x) \sqrt{1 - x_{kn}^2}}{n(x - x_{kn})} (k = 1, 2, ..., n),$$

(1.3)

$$h_{kn}(x) = \left[1 - \frac{T_n''(x_{kn})}{T_n'(x_{kn})}(x - x_{kn})\right] l_{kn}^2(x) = \left[\frac{T_n(x)}{n(x - x_{kn})}\right]^2 (1 - xx_{kn}) \quad (k = 1, 2, ..., n).$$

As it is well known

$$(1.4) L_n(f; x_{kn}) = f(x_{kn}) (k = 1, 2, ..., n; n = 1, 2, ...),$$

$$(1.5) \ H_n(f;x_{kn}) = f(x_{kn}), \ H'_n(f;x_{kn}) = 0 \qquad (k=1,2,...,n;n=1,2,...).$$

1.2. According with a classical result of L. Fejér [1] if $f(x) \in C[-1, 1]$ (i.e. f(x) is a continuous function on [-1, 1]) we have with the notation $||g(x)|| = \max_{-1 \le x \le 1} |g(x)|$

(1.6)
$$\lim_{n \to \infty} ||H_n(f; x) - f(x)|| = 0.$$

So

(1.7)
$$\lim_{n \to \infty} \int_{-1}^{1} [H_n(f; x) - f(x)]^2 \frac{dx}{\sqrt{1 - x^2}} = 0 \quad \text{if} \quad f \in \mathbb{C}[-1, 1].$$

230 P. Vértesi

For the L_n process as a special case of the paper P. Erdős and P. Turán shows ([2], (13))

(1.8)
$$\lim_{n\to\infty} \int_{-1}^{1} [L_n(f;x) - f(x)]^2 \frac{dx}{\sqrt{1-x^2}} = 0 \quad \text{if} \quad f \in C[-1,1].$$

1.3. In his paper [3] P. Turán investigated the quasi Hermite—Fejér process from the point of view of uniform convergence. More exactly he considered the polynomial $H_n^*(f; x)$ of degree $\leq 2n-2$ whose first derivative vanishes at all nodes except at the exceptional $\eta_{1(n)} = x_{r(n),n}$, i.e.

$$(1.9) \quad H_n^*(f; x_{kn}) = f(x_{kn}) \quad (k = 1, 2, ..., n); \quad H_n^{*\prime}(f; x_{kn}) = 0 \quad (x_{kn} \neq \eta_{1(n)}).$$

Later in [4] we considered the polynomial $H_n^{**}(f;x)$ of degree $\leq 2n-3$ such that

$$(1.10) \ \ H_n^{**}(f;x_{kn}) = f(x_{kn}) \ \ (k=1,2,...,n); \ H_n^{**}(f;x_{kn}) = 0 \ (x_{kn} \neq \eta_{1(n)},\eta_{2(n)}).$$

In both papers phenomena were found which were unexpected after (1.6). (In the papers [5] and [6] were considered the processes whose first derivative vanishes at all nodes except k or $m_n(m_n/\infty)$ exceptional roots.)

1.4. In connection with the good mean convergence behaviour of the L_n and H_n processes (see. (1.7) and (1.8)) P. Turán asked whether the "middle" processes $(H_n^*, H_n^{**}, \text{a.s.o.})$ preserve or not the mentioned good convergence property. The aim of this paper to give some theorems in this direction.

2. New results.

The following two theorems show that the H_n^* and the H_n^{**} sometimes are not good processes.

Theorem 2.1. If p is a fix positive even integer then for any $f \in C[-1, 1]$

$$(2.1) \left\{ \int_{-1}^{1} [H_n^*(f;x) - H_n(f;x)]^p \frac{dx}{\sqrt{1 - x^2}} \right\}^{\frac{1}{p}} = \begin{cases} O(n^{-\frac{1}{p}}) & \text{if } |\eta_{1(n)}| \leq 1 - \varepsilon \ (\varepsilon > 0), \\ O(n^{1 - \frac{1}{p}}) & \text{if } |\eta_{1(n)}| = x_{1n}, \end{cases}$$

or for the convergence of H_n^* process we have

(2.2)

$$\left\{\int_{-1}^{1} [H_n^*(f;x) - f(x)]^p \frac{dx}{\sqrt{1 - x^2}}\right\}^{\frac{1}{p}} = \begin{cases} o(1) + O(n^{-\frac{1}{p}}) & \text{if } |\eta_{1(n)}| \leq 1 - \varepsilon & (\varepsilon > 0), \\ O(n^{1 - \frac{1}{p}}) & \text{if } |\eta_{1(n)}| = x_{1n}. \end{cases}$$

Further for a suitable $f_1(x) \in C[-1, 1]$ we get¹)

$$(2.3) \left\{ \int_{-1}^{1} \left[H_n^*(f_1; x) - H_n(f_1; x) \right]^p \frac{dx}{\sqrt{1 - x^2}} \right\}^{\frac{1}{p}} \sim \begin{cases} n^{-\frac{1}{p}} & \text{if } |\eta_{1(n)}| \leq 1 - \varepsilon & (\varepsilon > 0), \\ n^{-\frac{1}{p}} & \text{if } |\eta_{1(n)}| = x_{1n} \end{cases}$$

¹⁾ $a_n \sim b_n$ means that $a_n = O(b_n)$ and $b_n = O(a_n)$.

Theorem 2.2. If p is a fix positive even integer then we can choose the sequences $\{\eta_{1(n)}\}$ and $\{\eta_{2(n)}\}$ such that for any $f \in C[-1, 1]$ (2.4)

$$\left\{\int_{-1}^{1} [H_{n}^{**}(f;x) - H_{n}(f;x)]^{p} \frac{dx}{\sqrt{1-x^{2}}}\right\}^{\frac{1}{p}} = \begin{cases} O(n^{-\frac{1}{p}}) & \text{for certain } \{\eta_{1(n)}\}, \{\eta_{2(n)}\}, \\ O(n^{1-\frac{1}{p}}) & \text{for certain } \{\eta_{1(n)}\}, \{\eta_{2(n)}\}, \\ O(n^{3-\frac{1}{p}}) & \text{for certain } \{\eta_{1(n)}\}, \{\eta_{2(n)}\}, \end{cases}$$

or

$$\left\{ \int_{-1}^{1} [H_{n}^{**}(f;x) - f(x)]^{p} \frac{dx}{\sqrt{1 - x^{2}}} \right\}^{\frac{1}{p}} = \begin{cases} o(1) + O(n^{-\frac{1}{p}}) & \text{for certain} \quad \{\eta_{1(n)}\}, \ \{\eta_{2(n)}\}, \\ O(n^{1 - \frac{1}{p}}) & \text{for certain} \quad \{\eta_{1(n)}\}, \ \{\eta_{2(n)}\}, \\ O(n^{3 - \frac{1}{p}}) & \text{for certain} \quad \{\eta_{1(n)}\}, \ \{\eta_{2(n)}\}. \end{cases}$$

Further for a suitable $f_2 \in C[-1, 1]$

(2.6)

$$\left\{\int_{-1}^{1} \left[H_{n}^{**}(f_{2};x) - H_{n}(f_{2};x)\right]^{p} \frac{dx}{\sqrt{1-x^{2}}}\right\}^{\frac{1}{p}} \sim \begin{cases} n^{-\frac{1}{p}} & \text{for certain} & \{\eta_{1(n)}\}, \ \{\eta_{2(n)}\}, \\ n^{1-\frac{1}{p}} & \text{for certain} & \{\eta_{1(n)}\}, \ \{\eta_{2(n)}\}, \\ n^{3-\frac{1}{p}} & \text{for certain} & \{\eta_{1(n)}\}, \ \{\eta_{2(n)}\}. \end{cases}$$

Finally we mention the following interesting result.

Theorem 2.3. For any $f \in C[-1, 1]$

(2.7)
$$\int_{-1}^{1} [H_n^*(f;x) - H_n(f;x)] \frac{dx}{\sqrt{1 - x^2}} = \int_{-1}^{1} [H_n^{**}(f;x) - H_n(f;x)] \frac{dx}{\sqrt{1 - x^2}} = 0$$

(2.8)
$$\int_{-1}^{1} \left[H_n^*(f; x) - f(x) \right] \frac{dx}{\sqrt{1 - x^2}} = \int_{-1}^{1} \left[H_n^{**}(f; x) - f(x) \right] \frac{dx}{\sqrt{1 - x^2}} =$$

$$= \int_{-1}^{1} [H_n(f; x) - f(x)] \frac{dx}{\sqrt{1 - x^2}} = o(1)$$

further

(2.9)
$$\left| \int_{-1}^{1} [L_n(f; x) - f(x)] \frac{dx}{\sqrt{1 - x^2}} \right| = O\left(\omega_m \left(f; \frac{1}{n}\right)\right)$$

or

(2.10)
$$\int_{-1}^{1} \left[L_n(f; x) - H_n(f; x) \right] \frac{dx}{\sqrt{1 - x^2}} = o(1).$$

Here $\omega_m(f;t)$ is the m-th modulus of smoothness of f(x).

P. Vértesi

Remark. Some theorems at $p = \infty$ were proved for the H_n^* and the H_n^{**} in [3] and [4].

- 3. PROOFS.
- 3.1. Proof of theorem 2.1. As Turán proved in [3], (5.1)

(3.1)
$$H_n^*(f; x) = \sum_{k=1}^n f(x_{kn}) h_{kn}(x) + \frac{T_n^2(x)}{x - \eta_1} \frac{1}{n^2} \sum_{k=1}^n x_{kn} f(x_{kn}),$$
 so by $H_n(f; x) = \sum_{k=1}^n f(x_{kn}) h_{kn}(x)$ for any positive even integer p (3.2)

$$\left\{ \int_{-1}^{1} [H_n^*(f;x) - H_n(f;x)]^p \frac{dx}{\sqrt{1-x^2}} \right\}^{\frac{1}{p}} = \left\{ \int_{-1}^{1} \left[\frac{T_n^2(x)}{x-\eta_1} \frac{1}{n^2} \sum_{k=1}^n x_{kn} f(x_{kn}) \right]^p \frac{dx}{\sqrt{1-x^2}} \right\}^{\frac{1}{p}} = \\
= \frac{1}{n^2} \left| \sum_{k=1}^n x_{kn} f(x_{kn}) \right| \left[\int_{1}^{1} \frac{T_n^{2p}(x)}{(x-\eta_1)^p} \frac{dx}{\sqrt{1-x^2}} \right]^{\frac{1}{p}} = W.$$

Here $\sum_{k=1}^{n} x_{kn} f(x_{kn}) = O(n)$ further using for the polynomial $Q_{2np-p} = T_n^{2p}(x)(x-\eta_1)^{-p}$ of degree 2np-p the Gauss—Jacobi quadrature formula we have

$$W \le \frac{c}{n} \left[\frac{\pi}{np} \sum_{k=1}^{np} \frac{T_n^{2p} \left(\cos \frac{2k-1}{2np} \pi \right)}{\left(\cos \frac{2k-1}{2np} \pi - \eta_1 \right)^p} \right]^{\frac{1}{p}} = V.$$

Now $\left| T_n \left(\cos \frac{2k-1}{2np} \pi \right) \right| \ge c_1 > 0$, $\cos \frac{2k-1}{2np} \pi - \cos \frac{|2s-1|}{2n} \pi = -2 \sin \left(\frac{2k-1}{4np} + \frac{2s-1}{4n} \right) \pi \sin \left(\frac{2k-1}{4np} - \frac{2s-1}{4n} \right) \pi$ where $\eta_1 = \cos \frac{2s-1}{2n} \pi$. If $|\eta_1| \le 1 - \varepsilon$ then $s \sim n$ on the other hand for $\eta_1 = x_{1n}$, s = 1. So

$$V \sim \frac{1}{n} \left[\frac{1}{n} \sum_{\substack{k=1 \ k \neq s}}^{n} \frac{1}{\left(\frac{k-s}{n}\right)^{p} \left(\frac{k+s}{n}\right)^{p}} \right]^{\frac{1}{p}} \sim \begin{cases} n^{-\frac{1}{p}} & \text{for } |\eta_{1}| \leq 1-\varepsilon, \\ n^{-\frac{1}{p}} & \text{for } |\eta_{1}| \leq 1-\varepsilon, \end{cases}$$

according with (2.1).

To prove (2.2) let us consider that

(3.3)
$$H_n^*(f;x) - f(x) = H_n^*(f;x) - H_n(f;x) H_n(f;x) - f(x).$$

Using (1.7) and (2.1) we obtain (2.2).

Finally, if we take the function $f_1(x) = x$ into account we get that $\sum_{k=1}^{n} x_{kn} f_1(x_{kn}) = \sum_{k=1}^{n} x_{kn}^2 \sim n$. The remaining parts are the same as above.

3.2. Proof of theorem 2.2. As we proved in [4], (3.10)

$$H_n^{-r}(f;x) =$$

$$= \sum_{k=1}^n f(x_{kn}) h_{kn}(x) + \frac{T_n^2(x)}{(x - \eta_1)(\eta_2 - \eta_1)n^2} \left[\eta_2 \sum_{j=1}^n f(x_{jn}) x_{jn} + \sum_{j=1}^n f(x_{jn}) (1 - 2x_{jn}^2) \right] +$$

$$+ \frac{T_n^2(x)}{(x - \eta_2)(\eta_1 - \eta_2)n^2} \left[\eta_1 \sum_{j=1}^n f(x_{jn}) x_{jn} + \sum_{j=1}^n f(x_{jn}) (1 - 2x_{jn}) \right].$$

To prove the relations (2.4) and (2.5) let e.g. $\eta_{1(n)} = x_{\left[\frac{n}{4}\right],n} \eta_2 = x_{\left[\frac{n}{2}\right],n}$ (so $\eta_1 - \eta_2 \ge c > 0$); $\eta_1 = x_{\left[\frac{n}{4}\right],n} \eta_2 = x_{\left[\frac{n}{4}\right]+1,n}$ (so $\eta_1 - \eta_2 \sim \frac{1}{n}$); $\eta_1 = x_{1n}, \eta_2 = x_{2n}$ (so $\eta_1 - \eta_2 \sim \frac{1}{n^2}$), respectively. Using that $[\ldots] = O(n)$ and the above mentioned quadrature formula, we obtain the relations.

For (2.6) we can use the same η' s and the function $f_2(x) = 1 - 2x^2$ because $\sum_{k=1}^n x_k \cdot (1 - 2x_{kn}^2) = 0$ and $\sum_{k=1}^n (1 - 2x_{kn}^2)^2 \sim n$.

The remaining part is the same as above.

3.3. PROOF of theorem 2.3. By $Q_{n-1}(x) = \frac{T_n(x)}{(x-\eta_1)n^2} \sum_{k=1}^n x_{kn} f(x_{kn})$ we obtain from (3.1)

$$\int_{-1}^{1} [H_n^*(f;x) - H_n(f;x)] \frac{dx}{\sqrt{1-x^2}} = \int_{-1}^{1} T_n(x) Q_{n-1}(x) \frac{dx}{\sqrt{1-x^2}} = 0.$$

We can use similar argument for H_n^{**} . We get (2.8) by (3.3) and (2.7). To prove (2.9) let $P_n(f;x)$ be a polynomial such that $\max_{-1 \le x \le 1} |f(x) - P_n(f;x)| \le c\omega_m \left(f; \frac{1}{n}\right)$. Then

$$\begin{vmatrix} \int_{-1}^{1} [L_{n}(f;x) - f(x)] \frac{dx}{\sqrt{1 - x^{2}}} \end{vmatrix} = \begin{vmatrix} \int_{-1}^{1} L_{n}(f;x) \frac{dx}{\sqrt{1 - x^{2}}} - \int_{-1}^{1} P_{n}(f;x) \frac{dx}{\sqrt{1 - x^{2}}} + \\ + \int_{-1}^{1} [P_{n}(f;x) - f(x)] \frac{dx}{\sqrt{1 - x^{2}}} \end{vmatrix} \leq \frac{1}{n} \sum_{k=1}^{n} f(x_{kn}) - \frac{\pi}{n} \sum_{k=1}^{n} P_{n}(f;x_{kn}) + c_{1} \omega_{m} \left(f; \frac{1}{n}\right) \leq \\ \leq c_{2} \omega_{m} \left(f; \frac{1}{n}\right)$$

Using that $L_n(f; x) - H_n(f; x) = L_n(f; x) - f(x) + f(x) - H_n(f; x)$ and (1.6) we get (2.10).

234 P. Vértesi

References

L. Fejér, Die Abschätzung eines Polynomes, Math. Z., 32 (1930), 426—457.
 P. Erdős—P. Turán, On interpolation, Ann. of Math., 38 (1937), 142—155.

[3] P. Turán, A remark on Hermite—Fejér interpolation, Ann. Univ. Budapest, (Sectio Math.), 3—4 (1960/61), 369—377.
[4] P. Vértesi, On a problem of P. Turán, Canad. Math. Bull. 180 (1975), 283—288.

[5] A. Meir, A. Sharma, J. Tzimbalario, Hermite—Fejér type interpolation processes, Analysis Math. (in press).

[6] P. Vértesi, Hermite-Fejér interpolation omitting some derivatives, Acta Math. Acad. Sci. Hungar., 26 (1975), 199-204.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES 1053 BUDAPEST. REÁLTANODA U. 13-15, HUNGARY

(Received 22 May, 1974)