Close packing and loose covering with balls

By L. FEJES TOTH

To the memory of A. Kertész

The problem of the densest packing of balls, as well as the problem of the
thinnest covering with balls have a vast literature [1, 2]. In this paper we want to call
the attention to a variant of these problems which seems to offer ample scope for work.

Problem 1. In a space of constant curvature let P be a packing of balls of radius
r. Let p=9(P) be the supremum of the radii of those balls which have no point in
common with any ball of P. Find the infimum g=5(r) of ¢ extended over all packings
P of balls of radius r.

Problem 2. In a space of constant curvature let C be a covering of balls of
radius R. Let P=P(C) be the supremum of the radii of those balls which are con-

tained in the intersection of two balls of C. Find the infimum P=P(R) of P extended
over all coverings C with balls of radius R.

We call a packing with ¢=0 a closest packing, in short a close packing and a
covering with P=P a loosest covering, in short a loose covering. In certain special
cases, as for instance in spherical spaces or in the Euclidean plane, the existence of a
close packing and a loose covering with equal balls is obvious. But in Euclidean
n-space with n>2 the question of existence seems to be difficult. Apart from the
“regular’ cases the same can be said about hyperbolic n-space with n=1.

In order to avoid a separate discussion of some uninteresting cases, we shall
mean by a spherical ball only a ball not greater than a half-space, i.e. a ball of
radius =n/2.

If we have a packing of balls of radius r then concentric balls of radius R=r+9
cover the space. Similarly, if a set of balls with radius R cover the space then con-
centric balls with radius r=R—P will form a packing. Thus, completing with the
question of existence, the above problems can be summarized as follows: In the
(r, R)-plane find the set of points such that balls of radius r form a packing and
concentric balls of radius R form a covering.

Let us scrutinize this problem in spherical 2-space. Here the points (r;, R))
i=1, 2, 3 will play a special part, where r,, r,, r; are the inradii and R,, R,, R; are
the circumradii of a face of the tessellation {5, 3}, {4, 3} and {3, 3}, respectively.

Let the unit sphere be packed with n circles ¢,, ..., ¢, of radius » and covered
with concentric circles C,, ..., C, of radius R. Let Dy, ..., D, be the Dirichlet cells of
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the centers. If p; is the number of sides of D, then, as a well known consequence of
Euler’s polyhedron theorem,
t...+p, = 6n—-12

with equality only if the Dirichlet cells form a trihedral tessellation. Therefore there
is among the Dirichlet cells one, say, D; which has at most five sides. Since ¢;= D;=C;,
it follows that C; cannot be smaller than the circumcircle of a regular pentagon
circumscribed about ¢;. Therefore tan R=tan r/cos 36°.

It is known (see e.g. [1]) that the number n of circles of radius r=r, which can be
packed on the sphere is less than 12. But for n<12 the above inequality for the p;’s
implies that there is a p; less than five. Thus for r=r; C; cannot be smaller than the
circumcircle of a regular quadrangle circumscribed about ¢;, i.e. tan R=tan r /cos 45°.

Now we refer to the fact that at most four circles of radius =>r,, and at most
three circles of radius =r; can be packed on the sphere. On the other hand, the radius
of four circles covering the sphere is at least Ry, and the radius of three circles cover-
ing the sphere is n/2. Thus for r>r, we have R= R,, and for r>r; we have R=nr/2.

To sum up we phrase the following
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Theorem. If the sphere is packed with at least two circles of radius r and covered
with concentric circles of radius R then we have

tanr _ Jcos36° for O<r=r,
tan R ~ [cos45° for ry<r=r,.

For ry<r=r; we have R=R; and for ry<r we have R=n/2,

These bounds are represented in Fig. 1.

It is interesting to observe, that, apart from the regular cases corresponding to
the points (r;, R) (i=1, 2, 3) and the cases with r>r,, equality can be attained also
in several other cases. Let ABCD be a regular spherical quadrangle centered at the
northpole N such that the images 7, U, ¥V and W of N reflected in the sides AB,
BC, CD and DA, respectively, are the vertices of a quadrangle congruent to ABCD.
Adding to the points N, A4, ..., W the southpole S we obtain the vertices of an anti-
prismatic doublepyramid [3). This solid is bounded by 16 equal isosceles triangles
one of which is NAB. Since in the spherical triangle NAB < A=< B=270°/4< 4 N=
=90°, we have AB>NA=NB. Therefore circles of radius r=NA/2 centered at the
vertices of the solid will form a packing. In this packing the Dirichlet cells belonging
to N and S are regular quadrangles (Fig. 2) circumscribed about the respective circles
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Fig. 2.

On the other hand, the radius R of the circle circumscribed about one of these
quadrangles is nothing else as the circumradius of NAB, showing that the circles of
radius R with centers N, A4, ..., S cover the sphere. Since r and R are the inradius and
circumradius of a regular quadrangle, we have tan R=tan r /cos 45°.

As a second example consider the set S of 32 points consisting of the vertices
and face-centers of the tessellation {5, 3}. The Dirichlet cells are regular pentagons
concentric with the faces of {5.3} and (not regular) hexagons about the vertices of
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{5, 3}. For the inradius r and circumradius R of the pentagons we have tan R=
=tan r/cos 36°. Since, on the other hand, the hexagons have the same inradius and
circumradius as the pentagons, the circles of radius r and R about the points of S
form a packing and a covering, respectively.

The question whether there are further cases with r<r, in which equality is
attained is still open. _

If we have at least three circles then r=60°. Throwing a glance to Fig. 1 we see
that the set of admissible points (r, R) with r=60° lies above the half-line connecting
the origin (0, 0) with the point (ry, R,). Thus we have the following

Corollary. If the sphere is packed with at least three circles of radius r and cov-
ered with concentric circles of radius R then R/r=R,/ry.

To conclude we mention some further problems.

In Euclidean 3-space an interesting problem seems to be to find the closest
lattice-packing of balls. It is very likely that in this packing the centers form a space-
centered cubic lattice. This would mean that the loosest lattice-covering is identical
with the thinnest lattice-covering.

We can define a closest packing of convex bodies as a packing in which the
“biggest gap-ball” is as small as possible. Measuring the closeness of a packing with
the curvature of the biggest gap-ball we can ask various questions similar to those
which arise in connection with the density. For instance, is it true that in the Euclidean
plane the closeness of a packing of equal centro-symmetric convex plates cannot
exceed the closeness of the closest lattice-packing of the plates?

In a packing of translates of a convex plate p of area 4 we can measure the
closeness also by the quotient 4/a, where a is the supremum of the area of those
plates homothetic to p which have no point in common with any plate of the packing.
It may be conjectured that in a closest packing in this sense we have 4/a=16 with
equality only if p is a triangle.
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