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1. Introduction

Many physical systems are modeled by second order nonlinear differential
equations of the type

(a(®)x’) +h(t, x, x")+q(t)f(x) = e(t, x, X")

where X(t, x, x") represents a damping or frictional force and e(t, x, x") represents
an external force or perturbation of the system. In this paper we give sufficient
conditions for solutions of the above equation to converge to zero. In so doing we
generalize some results of HATVANI [2] and WILLETT and WONG [6] who studied the
above equation when A(z, x, x")=e(t, x, x")=0. We also include some continuability
and boundedness theorems which extend results in [1—6]. None of the results in this
paper explicitly require that the forcing term e(7, x, x”) be “small”. For a discussion
of problems related to the ones in this paper we refer the reader to [1—6] and the
references contained therein.

2. Asymptotic properties of solutions
Consider the equation
(1) (a()x’) +h(t, x, x")+q(t)f(x) = e(t, x, x")
where q:[ty, =)—=R, f: R—R, h, e:[ty, ==) X R*—~R are continuous, a: [f,, =) =R is
differentiable, a(z)=0, g(1)>0, and there are nonnegative continuous functions
r, w:[ty, ==)=R such that
le(t, x, p)| = r(r)

—w(t)y* = yh(t, x, y)

and

*) Supported by Mississippi State University Biological and Physical Sciences Research
Institute.
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for all (7, x, y) in [t,, =) X R®. We will write equation (1) as the system

x'=y,
(2)
V' = (=d'@)y=ht,x, y)—q(t)f(x)+e(t, x, p))/a(?),

and make use of the following additional assumptions on the functions in (1):

() [ [rola)(a@) ds <=,

@) | [ Treas)s]ds < e,

) [ tvoa@nds < =,

(6) ,f [(a(s)g(s))-/a(s)q(s)]ds < <=,
) F(x) =.f fG)ds~ < as |x| =<,
®) , [ r6ats)ds < =,

©) [ tr@/g(sds < =

Ta

where (a(1)g(1))- =max {—(a(r)q(1)), 0}.

Theorem 1. If F(x) is bounded from below, then all solutions of (2) can be defined

Jor all t=t,.

PROOF. Suppose there is a solution (x(7), y(t)) of (2) and T=#, such that
l]__lr]p [[x(?)|+|»(2)|]=+<. Since F(x) is bounded from below, there exists K=0

such that F(x)>—K for all x. Defining v(x,y, 1)=a(t)y*/q(t)+2(F(x)+K)

and letting V(1)=v(x(2), y(r), 1) we have
"= 2a()yy[q(t)+y*(at)/q@t)) +2f(x)y =
=—(a(t)q(t)) y*/q*(t)—2h(t, x, ¥)y/q(t)+2e(t, x, y)y/q(t) =

= y*(a(t)q(0))_ /g2 () +2w(t)y* q(t)+2r(t)|y|/q ().
Since

(10) 2yl(g())2 = y2q(t)+1,
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we have
V' = y¥a(t)g() /g () +2w(2)y* q(0)+ r(2)y*(q(0)P 2+ r(0)/(q(1))V2 =
= [(a(t)q(r))_a(t)q(r)+2w(t)/a(t)+ r(t)/a(t)(q())' 2]V + r()/(q())2

Integrating, we obtain
V() = Vi) +

+ f [(a(s)q(s))-/a(s)q(s)+2w(s)/a(s)+r(s)a(s)q(s)) ]V (s)ds +

¥ f [r(s)/(g(s)) ] ds.

Noticing that the second integral above is bounded on [#,. 7] and applying Gron-
wall’s inequality we have

V(r) = K,exp f [(a(s)q(s))- [a(s)q(s)+2w(s)/a(s)+ r(s)/a(s)(q(s))'*]ds = K, < ==

To

so v (1)=K,q(1)/a(t)=K, on [t,, T). This implies that y(r)=x"(r) is bounded
on [ry, T), and an integration yields that x(r) is also bounded on [f,, T) con-
tradicting the assumption that (x(r), ¥(7)) is a solution of (2) with finite escape time.

Remark 1. Theorem 1 generalizes continuability results in [2] and [5] as well
as a special case of some results obtained by the authors in [4] for the equation

(a(t)X’) +q(1) f(x)g(x")=r(1).
Theorem 2. If (3)—(7) hold, then all solutions of (1) are bounded.

Proor. First note that (7) implies that F(x)= — K for some K=0. Now define
V' as in the proof of Theorem 1 and differentiate to obtain

V' = y*(a(t)q(1))-/q*(1)+2w(t)y*/q(t) +2r(1)|y|/q(1).
Applying inequality (10), integrating, and using condition (4), we have

T
V) = Ky + f [(a(s)g())- [a(s)q(s)+2w(s)/a(s)+ r(s)/a(s)(q(s))" 2]V (s)ds.
It then follows from Gronwall’s inequality and conditions (3) and (5)—(6) that V(r)
is bounded. Hence F(x(r)) is bounded and so x(r) is bounded by (7).

Theorem 3. If (5)—(9) hold, then all solutions of (1) are bounded.

PRrOOF. Proceeding exactly as in the proof of Theorem 2 but replacing (10) by
the inequality

10y 2|y| = y*+1,
we have

V' =y (a(t)q(t))- [ g* () +2w()y*q(t) +r(0)y*/q(t) +r(1)/q(2).
The remainder of the proof then follows as before.
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Notice that Theorems 2 and 3 are independent of each other, for the equation
BxY+8t=18 >0

satisfies the hypotheses of Theorem 2 but (9) does not hold. On the other hand, the
equation
(2x)Y+e2x*=1, t>0

satisfies Theorem 3 but (4) does not hold.

Remark 2. It follows from the proofs of Theorems 2 and 3 that if g(¢)/a(r)
is bounded, then y(r)=x"(¢) is also bounded.

Remark 3. The boundedness results above improve work of BAKER [1], HATVANI
[2, 3], Mamnr and Mirzov [5], WiLLETT and WONG [6], and the present authors [4]
as noted in Remark 1.

It will be convenient to classify solutions of (1) in the following way (see [4]).
A solution x(r) will be called nonoscillatory if there exists 7, =1, such that x(r)=0
for t=t,; the solution will be called oscillatory if for any given #,=¢, there exist
1, and t, satisfying ¢, <t,<t;, x(#,) =0, and x(t;)<0; and it will be called a Z-type
solution if it has arbitrarily large zeros but is ultimately nonnegative or nonpositive.

To see that equations of the type (1) can have solutions possessing these various
types of behavior, consider

x"tx=1

This equation has the nonoscillatory solution x(r)=1+(1/2)sin ¢, the oscillatory
solution x(z)=1+2sin ¢, and the Z-type solution x(z)=1+sin z.
The following lemma will be needed in the proof of Theorem 5.

Lemma 4. Suppose there is a continuous function wy:[ty, ==)—~R such that
lh(t, x, ¥)|=wy (1), xf(x)=0 if x=0,f(x) is bounded away from zero if x is bounded
.away from zero, and

Ay [ (Na@lds+ [ 1/a@)( [ Do)+ r() Mg du)ds = — =

Jor all positive constants N and M. If x(t) is a nonoscillatory solution of (1), then
lifn inf [x ()| =0.

Proor. Let x(r) be a nonoscillatory solution of (1), say x(z)=0 for t=t,=¢,
and assume that lign inf x(#)=0. Then there exists #,=t, such that x(1)=A4=0

for t=t,, so there exists M >0 such that f(x(r))>M for t=t,. From (1) we have

(a()x'()) = wy(t)+r(r)—Mq(r)
and integrating twice we obtain

x(1) = x(t)+ [ [a(t) ¥ (t2)/a(s))ds+

+ [11/a(s))( [ [wa(u)+r(u) — Mg ()] du) ds.
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Hence by (11), x(#)—-—= as t—--= which is a contradiction. The proof in case
x(1) is ultimately negative is similar.

Theorem 5. If, in addition to the hypotheses of Lemma 4, either (3)—(7) or (5)—(9)
hold, then every nonoscillatory or Z-type solution x(t) of (1) satisfies lim x(t)=0.

Proor. We offer a proof only for the case when (3)—(7) hold. The proof of the
other case is similar and is left to the reader. Notice first that xf(x)=0 for x=0
implies that F(x)=0 for x#0, so begin as in the proof of Theorem 2 with K=0.
Let ¢=0 be given and let x(¢) be a nonoscillatory solution of (1) which is not
ultimately monotonic. Then by conditions (3)—(6) and Lemma 4, there exists #,=1,
such that

»(1) =0, F(x(1y) < e/de', [ [r()/(q(s))"*]ds < ¢/2e",

and

[ [(a(9)4(s)- [a(s)g(s) + 2w(s)/a(s) + r(s)/a(s)(q(s))3] ds = 1.

Now if x(t) isa Z-type solution, we could choose y(,)=F(x(#))=0, so in either
case we have

V(t) = V(1) +e/2e' exp [ [(a(s)g(5)) [a(s)q(s)+

+2w(s)/a(s)+r(s)/a(s)(q(s))"*] ds = [e/e'] exp (1) = &.

Thus F(x(1))<e for t=t; so F(x(r))~0 as r--<s, which in turn implies that
x(t)~0 as r—+-c. To complete the proof we note that if x(¢) is a nonoscillatory
solution of (1) which is ultimately monotonic, then by Lemma 4, x(¢)—~0 as t—+=s,

Remark 4. Theorem 5 generalizes Theorem 2.2 in [2].
We note that condition (11) is not an unreasonable assumption in Theorem 5
since Hatvani [2; Theorem 2.1] showed that if

h(t,x,y)=e(t,x,y)=0, then f[l/a(s)][fq(u)du]ds = oo

is a necessary condition for all solutions of (1) to converge to zero. The following
theorem shows that condition (11) is “close™ to being necessary for solutions of (1) to
converge to zero. It includes the above mentioned result in [2] as a special case.

Theorem 6. If, in addition to the hypotheses of either Theorem 2 or Theorem 3,
we have

f[l/ﬂ(s)](f [r(u)+wy ()] du) ds <

[ /aen( [ o da)ds < =,

o
then there is a solution x(t) of (1) such that liin inf [x(r)| 0.
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Proo¥. From the proof of Theorem 2 or 3 we have
V(1) = ki (t)V (1) +kao(1)

where k,(r) and k,(t) are nonnegative continuous functions such that
[ ki)ds =Py <= and [ ky(s)ds= P, < ==.
To To
Hence if x(7) is a solution of (1) such that x(z,)=1, ¥(t,)=0 for any 1,=1¢, then

V() = V) + [ (V) +ks(9)]ds

S0
V(t) = [2(F(1)+ K)+P;] exp(Py) = Py < =

forall t=t,=1,. Thatis, F(x(#))=P; where P, is a constant which is independent
of the choice of 7,=¢,. Therefore there exists P,=0 such that |x(7)|=P, for
t=r, and so there is a constant 4=0 such that if(.\'(r))‘éA for all r=¢,.

Now choose 7T'=t1, such that

F [l/a(.s‘)][f[r(u]-i—wl(u)] du]a’s =1/4
T T
and

f[lfﬂ(s)][fs q(u)du]ds = 1/4A.
T T

Let z(7) be a solution of (1) such that z(7)=1 and z’(7)=0. Then
(a()=()) = —r(t) —w,(1)—Aq(t)

and integrating twice we obtain

z@) = 1— [[a@]( [ [r@)+wy(w)du)ds—
Tr T

ol f[l/a(s)](fq(u)du]ds:- 1—1/4—1/4=1/2
T T

for t=T7 and so lilln inf z(1)| # 0.

In the final two theorems in this paper we will need the following conditions.
Assume that

(12) (a()g(@®)) =0,
(13) cexf(x) =2F(x)=0 if x=0,

where ¢ is a constant, and if (x, y))éE M X R where M is a bounded subset of R,
then

(14) [e(f,x,Y)—h(f,x,y)]/Q(f) -0 as ¢ oo
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Also, there exist nonnegative continuous functions w,, wy:[f,, ==)—=R such that
(15) 1h(2, %, p)y| = wa(0)y*+w3(1)
for (x,y)e M xR, and

(16) J was)/as))ds <. and [ [wy(s)/g(s)]ds < ==.

Theorem 7. Suppose that conditions (5), (7), (12)—(16), and either (3)—(4) or
(8)—(9) hold. If there exists a positive function d: [t,, =)~ R, d<C* such that
d(t)=0 and d(t) == as t— =,
(17) E= lIm mf[d{t)(a(t}q(r)] [a(t)g(t)d'(1)] = ¢

and

f {[(d’(s)/q(s))’a(s)]'_}ds =o(d(t)) as t— ==,

then any oscillatory or Z-type solution x(t) of (1) satisfies ‘lim x()=0.

PrOOF. For t=u=t, let V,(t)=a(t)y*/q(t)+2F(x)+

+2 f [A(s, x(5), ¥(5)r(5)/q(s)] n’s—2f[e(s x(s), y(8))y(s)/q(s)] ds.

Then ¥V, (l)-——-(a(f)q(r}) v2g2 (1) =0, so I_:_rEV(r) R where possibly R = — ==,

Let x(¢) be an oscillatory or Z-type solution of (1). By Theorem 2 or 3, |x(¢)|=
=B and |y(r) (a(1))"?/(q(r))"*=D for some costants B and D. Therefore from
conditions (3)—(4) (respectively (8)—(9)) and by an application of the estimate
(10) (respectively (10)°), we obtain

-2 [ [e(s. x (). y(&))y(s)/g(s)] ds < =.
Also, from (15) '

[ [h(s, x(5), ¥($))p(s)/q(s)]ds = [ [D*wy(s)/a(s)+wy(s)/q(s)]ds < ==.

Next, we will show that if L=0, then there exists 7=7, such that lim V()<L
for each u=T. Let L=0 be given and let K=E—¢=0. Choose T}rn such that

-2 f [e(s. x(s), ¥())y(s)/q(s)] ds < m,
T

2 [ [h(s, x(s), p(9)y(s)/g(s)] ds < m,
X

and

cx(t)[e(t, x(2), y(0)) —h(1. x(2), y(1))]/q(t) < 2m
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for t=T where m=min {KL/32, L/32). Let k=K/2(2—K) if K<2, and k=1
otherwise. Now suppose there exists w,=7 such that V, (1)-P=L as (oo,
Then there exists 7;=u, so that P=V, (1)<(1+k)P for t=T,. Let

W(t) = dt)V, (1) +cd'(t)a()x(0)y(1)/q(1) —e(d'(1)/q (1)) a(t) x*(1)/2.
Then
W’ = d(t)V, () +d' ()W, (1) +c[d'(1)a'(t)/q(t) +
+(d'(0)/q(0))a(t)] x(t)y(t)+cd (t)a(t)[x()y'(r) +
+32(1)]/q()—c[(d'()/q(1)) a(t)] x*(2)/2—
—c(d'()/q(t))a(t)x(t)y(t) =
= —d(t)(a(t)q(t)) v*(t)/q*(t)+d"(t){a(t)y*(1)/q (1) +

+2F(x(1))+2 [ [h(s, x(s), p(5))y(s)/q(s)] ds+
Hy

=2 [ [e(s x(s). y©)y(s)/g(s)] ds}+
y

+ed'(1)a'(1)x(1)y(1)/q(t) +cd' (1) [x(0)e(t, x(1), ¥(1)) -

—a' () x(0)y(0) —x(h(t, x(1), y(1))—
—=x(0)g(N)f(x(1)]/q(1)+cd'()a(r)y*(1)/q(2) -
—c[(d'(t)/q(n))a()] x*(1))2 =
= d'(n)a()y*()[(1+c)—d(t)(a(t)q(r)) [a(t)q(1)d’(1)]/q (1) +

+2d'(t) f {[h(s, x(s), y(s))—e(s, x(s), y{s))]y(s)/q(s)}ds-i-
+2md’'(t)—c[(d'(1)/q(1)) a(1)] x*(1)/2.

By (17), there exists 7,= T, such that

d(t)(a(t)q()) [a(t)g()d'(t) = (E+¢)/2
for t=7, and so

W’ = d'(Da()y*(1 - K/2)/q(0)+2d'(t) [ {[h(s, x(s), p(s))—

—e(s, x(5), ¥(9))]y(9)/q(s)} ds+2md’(r) + K, [(d"(1)/ g (1)) a ()]~

for some constant K,>0 and all r=7,. If K=2, then

W’ = amd'(1)+ K [(d'(1)/q(1)) a(2)]
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and if K<2,
W’ = d'(1) [a()y*(t)/q() +

+2 [ {[h(s, x(5), y(5)) —e(s, x(s), ¥)]($)/g()} ds] (1 — K/2) +

+ Kad'(t) [ {[h(s, x(s), y(s))—e(s, x(s), y(s))](s)/g(s)} ds+

+2md’ (1) + K [(d"(1)/q()y a(1)]~ =
= d'(1)(1 - K1)V, (1) +(K/2)(2m)d"(1) +
+2md'(t)+ K, [(d"(1)/q(1))a(t)]~ <
< (1= K/2)(1+Kk)Pd'(t)+4md’' (1) + Ky[(d'(1)/q(1)) a(1)]_ =
= (1—K/4)Pd’(t)+ KLd'(1)/8 + Kl[(d’(r)/q(r))’a(t)]'_ :

Let {7,} be an increasing sequence of zeros of x(r) such that #,=7, and 1, >
as n— =, Integrating for the case K<=2 we obtain

Pd(t,) = d(t,)V, (1) = W(t,) =

= Ky+(1—- K/4) Pd(1,) + KLA(1)/8+ K, [ {[(d'(5)/q(s)) a(s)].}ds
for each n=1. Since P=L, we have
1 = K,/Pd(1,)+1—-K/8+ K, f"{[(d’(s)/q(s))'a(s)]’_}ds/Pd(t,,)

which yields a contradiction since 7,—~< as n—-<o. A similar contradiction is
obtained if K=2.

To complete the proof of the theorem, let ¢=0 be given and choose T=t1,
such that :liTo V.(t)=e¢/4 for each u=T. Choose t,=T such that

2 [{le(s, x(s), y(s)—h(s, x(s), ¥(£)]¥(s)/g(s)} ds < &/2

and
Vu(t) < ¢/2
for t=t,. Then
2F(x(@) =V, (1) +e2<e¢

for t=1,. Hence F(x(¢))~0 andso x(r)—0 as t—-=.

Remark 5. Notice that it follows immediately from the last part of the proof
that (a(r)/q(1))**y(1)~0 as - and so Theorem 7 is a direct extension of Theo-
rem 3.1 in [2].
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Remark 6. If, in addition to the hypotheses of Theorem 7, we have g(t)/a(r)
bounded, then y(z) would be bounded as was noted in Remark 2. In this case
conditions (14) and (15) need only to hold for (x, y)¢ M XN where M and N are
bounded subsets of R.

Theorem 8. Suppose that conditions (5), (7), (12)—(16), and either (3)—(4) or
(8)—(9) hold. If there exists a positive continuous function b: [t,, =<=)—R such that

[ [1/b(s))ds = ==,

li?linf [(a(r)q(t)y b(t)/a(r)g(t)] = O,
and

(18) f [(a(s)/6()). [(a(s)q(s))V*] ds = o[f [1/b(s)]ds) as t— ==,

then every solution x(¢) of (1) satisfies :lim x(1)=0.

PROOF. Let x(t) be a solution of (1) and £=0 be given. As in the proof of
Theorem 7, |x(t)|=B and |y(1)|(a(1))"*/(g(1))V*=D for t=t,. so choose t,=t,
such that

-2 f [e(s, x(5). ¥()¥(s)/q(s)] ds < &/8,

2 f [2(s, x(5), ¥())y(s)/q(s)] ds < /8,
and %

ex(t)[e(t, x(1), y())—h(t, x(1), y(1))]/q(t) < /4

for t=t,. Define
V(t) = a(t)y*(t)/q(t)+2F(x(1))+
+2 f [A(s, x(5), ¥())y(5)/q(s)]ds—2 f [e(s, x(s), ¥())y(s)/g(s)] ds;

then V'(t)=—(a(t)q(r)) »*(1)/g*(1)=0. Now let

W) =v(t) [ [1/b(s)ds

and so

W(t) = V(0)/b(0)~[(a(g(0) y(0)/g*@)] [ [1/b(s))ds.
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Since for r=1,.
V(t) = a(t)y*(t)/q(t)+2F(x(1))+¢/4 =

= (1+c)a()y*(1)/q(t)+2F(x(1)) —ex(2)f(x(2)) —
—cla()x()y(0)]/q(t)+cx(t)[e(t, x(2), y(1))—
—h(t, x(1), y(1))]/q(1) +e/4 =

= (1+c)a(t)y*(2)/q(t)—cla(t) x(t)y ()] /q(t) +¢/2,
we have

w(t) = {1 +c—[(a(q(0) b(t)/a(t)g(®)] [ [1/b(s)]ds} a(t)y*(6)/q(t)b(t) —

—cla@)x()y())/q()b(1)+&/2b(r) = —c[a(t)x(t)y(1)]'/q(1)b(1)+¢/2b(2)
for t=t,, for some t,=¢,. Integrating, we have

W(t) = W(t)—c [ [(a(s)x(s)y(s)) /q(s)b(s)]ds+(e/2) [ [1/b(s)]ds.

An integration by parts yields
[ [(a@x(s)y()) /g(s)b(s)] ds =

= Ki+a(t)x(t)y(t)/q(t)b(1) + f [(1/q()b(5)) a(s)x(s)y(s)] ds
where K 1s a constant. Now 2

la(t)x(¢)y(t)| = BD[a(t)q(1)]"*
so we have

cIf [(a(s)x()y(s)) [q(s)b(s)] dsl =c|K,|+

+eBD{(a(n))*/(q(0))"2b(0)+ [ [(1/g(s)b(s)) |[a(s)g(s)]2ds} ,

and thus
W(t) = Ko+ Ky {(a())2/(q(0))V2b (1) +

+ [1(/a@bO)|la(g()2dsh+/2) [ [1/b)ds.

Since

{la(@)/b()][1/a(t)g()]'2}Y =
= [a()/b(D)) [1/a(t)q()]"'* —[a(r)/b(t)][a(t)q()]) [2[a(t)q()]** =
= {[1/g)b")][a(t)g()]2}) =
= [1/q()b(0)) [a(t)q()]V*+[a(t)/b()][a(t)q (D)) [2[a(t)q ()2,

4D
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we have

(1/g()b(0)Y |[a(t)g(n)]? =
= |(a(0)/b (1)) | /la(t)g (1)) +a(2) [a(t)q()) [[a(t)g(1)]*b(t).
An integration by parts gives

J {a()[a(s)g(s) 1a(s)g ()b (s)} ds =

= Ky—2(a(0))2/(q(0))V2b(1)+2 f {la(s)/b(s)) [la(s)q(s)]"' %} ds

1 W(t) = Kot Ky{(a(0)V*/(q(0)*b(2) +
+‘f' {{(a()/b(9))|/la(s)a()]2} ds+ Ky —2(a(0))*/(q(1))2b (1) +
+2 [ (a@/bOT Maa@F*)as) +62) [ 1/b9Nds =
= K+ K, f {[[(a(s)/b(s)Y| +2La(s)/b(s)Y ] la(s)a (s} ds-+
er e L, sl ,z>ff'[1/b(s)1ds.

Hence, by (18), there exists T'=t, such that V(r)=3¢/4 for t=T. Thus
a(1)y*(1)/q(1)+2F(x(1)) = 3¢/4 -2 f [A(s, x(s), ¥())y(s)/q(s)] ds+
h

+2 f[e(s, x(s), y(5))y(s)/q(s)] ds < 3e/4+¢/8+¢/8 =&,

so F(x(r))=0 as t—-= and this implies that x(1)-~0 as 7—< completing the
proof of the theorem.

Remark 7. Again it is easy to see from the last part of the proof that
(a(t)/q(t))*y(1)~0 as t—-= and so Theorem 8 extends Theorem 1.1 of Willett
and Wong [6]. The content of Remark 6 also applies to Theorem 8.

To see that Theorem 8 does not actually include Theorem 5, consider the equation

x"+x=1/24+6/t', t=0
whose general solution is
x(t) = Asint+Bcost+1/r%

The nonoscillatory solution of this equation converges to zero whereas the oscillatory
solutions do not. Here Theorem 5 holds but Theorems 7 and 8 do not since

(a(t)gq(r)) =0.
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Several intersting variations of Theorems 7 and 8 can be obtained by altering
fome of the hypotheses of these theorems. For example, we can replace condition
(14) by asking instead that r(r)/g(1)—~0 as r— =, there are nonnegative continuous
sunctions vy, vy: [ty, ==)—~R such that

(19) (1, x, )| = v (D)]y| + s (1),
v,(1)/g(t)—~0 as t—<=, and either

i) vy (2)/(a(t)q(?))* -0,

ii) vy (1)/a()(g@)V2 ~ 0 and v, (1)/(g()"* 0,

iii) v,(7)/a(t) =0 and v,(2)/q(z) -0,
as t—-. The three possibilities depend on whether we use that
(a@))2|p(1)|/(g(0))"* = D,

inequality (10), or inequality (10)" respectively after applying (19).
Other variations can be obtained by replacing (15) by (19). In this case we

or,

would need to replace (16) by f [v,(s)/a(s)] ds <= and either
fo

D) [ [ea(9)/(a(s)q(s))?] ds < <=,

i) f [va(s)/a(s)(g(s))V?]ds < == and f [02(5)/(g())?] ds < ==,

or,
i) [ [a@/a@)ds < and [ fou(s)/g(©)]ds < ==

depending again on whether we use that (a(7))"2|y(¢)|/(¢(1))V* is bounded, inequal-
ity (10) or inequality (10)” respectively.

Acknowledgement. The authors wish to thank the referee for making several
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