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1. Introduction

Let % be a class of short exact sequences of abelian groups. (Henceforth the
word group will mean abelian group.) Let the notation 4<1B mean that the se-
quence 0—-A—~B—+BJ/A-0 isin €. ¥ issaid to be a proper class of sequences if the
following six properties are satisfied:

(P1) A sequence that is equivalent to an element of % isin .
(P2) If A is a direct summand of B, then 4<B.

(P3) If AB and AcHCB, then A< H.

(P4) If A<sB and Kc A, then A/K<B/K.

(P5) If AH and H<B, then A<B.

(P6) If K<aB and A/K<=aB/K, then A<aB.

An exposition of the relative homological algebra associated with a proper class may
be found in Ref. [4] and Ref. [6]. The projectives and injectives relative to various
proper classes have proved to be of considerable interest. In the category of
abelian p-groups, for example, the totally projective groups are found to arise as the
projectives relative to the proper class of balanced sequences (see Ref. [3]).

The purpose of this paper is to present a method for constructing proper classes
of short exact sequences of groups by means of functorial topologies on the category
of abelian groups. The precise formulation is given in section three. An illustration of
the results of section three is given in section four, where we apply some of the results
of Ref. [5] to compute the projectives and injectives for the proper class determined
by the Z-adic topology.

The notation and terminology used here will be almost entirely that of Ref. [2].

2. Functorial topologies and imbedded subgroups

For each group A let t(A) be a topology on A relative to which 4 is a topo-
logical group. Let ¢*(A4) denote the set of open subgroups of 4. Then we say
that ¢ is a linear functorial topology on the category of Abelian groups provided
that
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(1) 27 (A) is a neighborhood basis of zero for every group A4: and

(2) Every homomorphism, f:A— B, is continuous relative to 7(A4) and 7(B).
The notion of a functorial topology 1s due to CHARLES [1].

A general method of obtaining linear functorial topologies is mentioned in
Ref. [2]. Let X be any class of groups. For each group A4 let X(A) be the set of
subgroups of 4 which are finite intersections of the subgroups in the set
{Hc A|A/HcX}. The X-topology. 7,(A4), on A is defined to be the smallest
topology containing the subgroups in X(4) and their cosets. It is easy to see that
A 1s a topological group relative to the X-topology and that X(A4) is a neighborhood
basis of zero. It is also easily shown that . is a linear functorial topology if and
only if X is closed under subgroups (that is, each subgroup of 4 isin X if 4 is
in X). E may be shown that the class of finite direct sums of elements of X deter-
mines the same topology as X for each group. Moreover, if X and Y are distinct
classes of groups and are closed under subgroups and finite direct sums, then 1,
and t, are distinct linear functorial topologies on the category of Abelian groups.
In the sequel we shall be concerned with linear functorial topologies relative to which
each group epimorphism is an open function. We mention that 7, has this property
if and only if X is closed under epimorphic images (provided, of course, that X is
closed also under subgroups and finite direct sums). The most familiar linear functorial
topologies are, perhaps, the Z-adic and finite index topologies. These are both
X-topologies, the former determined by the class of bounded groups and the later
determined by the class of finite groups. It should be noted that not every linear
functorial topology is an X-topology.

Definition 2.1. Let t be a linear functorial topology, B a group and A
a subgroup of B. Let t(B. A) denote the relative topology on A induced by t(B).
If t(A)=t(B. A), then we shall say that A is imbedded in B with respect to t (or,
simply, t-imbedded in B).

It is clear that the set 77(B, A) of subgroups of A4 that are open relative to
1(B, A) is precisely {A(H|H¢t*(B)} and that t*(B, A) is a neighborhood basis
of zero. Moreover, since the inclusion homorphism 1:4—- 58 is continuous and
1"Y(H)=ANH. it follows that AN Het*(A) if Het*(B). Thus t7(B, A)Ct*(A).
Hence A4 will be r-imbedded in B whenever t*(4)ct*(B. A). This leads to the
following obvious criterion.

Proposition 2.2. The subgroup A is t-imbedded in B if and only if there
exists a function ¥W:t*(A)—~t*(B) satisfying ANY(K)CK for each Ket*(A).
(We shall say that ¥ is a r-imbedding function for 4 in B.)

A short exact sequence 0-A2BL C~0is said to be r-imbedded if o(A)
is a r-imbedded subgroup of B. The class of r-imbedded sequences is denoted by
%,. We shall see in the next section that %, is frequently a proper class of short
exact sequences.
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3. Proper classes of imbedded sequences

We are now ready for the main result of this paper. The proof consists of the
two lemmas that follows the comments beneath the theorem.

Theorem 3.1. Let t be a linear functorial topology relative to which each group
epimorphism is an open function. Then the class €, of t-imbedded sequences is a proper
class of sequences.

As was indicated in section two, there is an abundance of topologies in which
epimorphisms are open. It should be noted, however, that the condition that epi-
morphism be open is not necessary for %, to be a proper class. For example, let
X, be the class of torsion free groups and %, the class of short exact sequences
that are imbedded relative to the X,-topology. X, is not closed under epimorphic
images, so group epimorphisms are not open, in general. It is easy to show, however,
that %, contains every short exact sequence. We do have an example of a linear
functorial topology (not given here) for which properties (P4) and (P6) fail to hold.
A precise necessary and sufficient condition for %, to be a proper class is not known
by the authors.

Lemma 3.2. Let t be any linear functorial topology. Then €, satisfies properties
(P1), (P2), (P3), and (PS5) for a proper class.

Proor. If E, and E, are equivalent sequences, then we have the following
commuting diagram:
51:0"14 _"B!"'C"O
b e

Eg:O"‘A"“Bg’"C"O-‘

In each sequence we are regarding 4 as a subgroup of B;. Let E,<%, with
r-imbedding function ¥,. Since homomorphisms are continuous, then group iso-
morphisms are, in fact, homeomorphisms. Thus one may readily verify that a
t-imbedding function for E, is the function ¥;:7"(A4)—~1"(B,) defined by ¥,(K)=
=(0¥,071) (K) for every K<t*(A). This verifies (P1).

Next let 4 be a direct summand of B and let n: B—~A be the projection.
One may readily verify that the function ¥:t"(A4)—-¢"(B) defined by ¥ (K)=n"1(K)
for each K€t*(A) is a r-imbedding function for 4 in B. This verifies (P2).

Next let ¥, be a 7-imbedding function for 4 in B and let A HCB. Since
HNJet*(H) if Jet™(B)., it follows that the function ¥,:7*(4)—t*(H) defined
by Y,(K)=HN¥,(K) is a t-imbedding function for 4 in H. This verifies (P3).

Finally let ¥, and ¥, be a r-imbedding functions for 4 in H and H in B,
respectively. Define W:t*(4)—~t"(B) by Y(K)=(¥,¥,) (K). Then

ANY(K) = ANHNP,(¥,(K))cAN Y, (K)C K.

Thus ¥ is a r-imbedding function for 4 in B, as desired. This verifies (P5).

Lemma 3.3. Let t be a linear functorial topology relative to which each group
epimorphism is open. Then €, satisfies properties (P4) and (P6) for a proper class.
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Proor. Let ¥, be a t-imbedding function for 4 in B and let KCA4. Let
®,:A+A/K and @,: B—~B/K be the canonical epimorphisms. Let J/K€t*(A/K).
Then J=®;'(J/K)Et*(4) and ¥y(J)€t”(B). Thus (¥,(J)+K)/K=dy(¥,(J))€
£1*(B/K), since epimorphisms are open relative to 7. Let us define ¥:1*(4/K)—~
—~1*(B/K) by Y(J/K)=(¥,(J)+K)/K. Then ¥ is, indeed, a r-imbedding function
for A/K in B/K, since

(A/IK)NY(IK) = (A/K)N[(¥1())+K)/K] = (AN¥,())+K)/Kc K.

This verifies (P4).

Now let ¥, and ¥, be r-imbedding functions for K in B and 4/K in B/K,
respectively. For each Jet*(4) we wish to define ¥Y(J)€t*(B) such that AN
N¥Y(J)cJ. Now KNJEt*(K); so Y, (KNJ)et*(B). Then J,=¥,(KNJ)NJ
isin 7%(A), and we note that (J;+K)NY¥Y,(JNK)cJ. Also (J;+K)/Kisint*(4/K),
since epimorphisms are open. Now let W ((J;+K)/K)=L/K. Then LéEt*(B),
so LNY,(JNK)Et™(B). We now claim that ¥ (J)=L(¥,(JNK) works. First
note that (ANL)/K=(4/K)((L/K)c(J;+K)/K, so that ANLcJ,+K. Thus
ANYJ)=AN(LNY,(JNK))c(,+K)N¥,(JNK)cJ, as desired. This verifies
(P6).

4. The Z-adic projectives and injectives

Let us review some basic concepts. A group G is projective relative to the short

exact sequence 0-+A42 BL.C—~0 provided that for each homomorphism f:G—+C
there is a homomorphism f:G—B satisfying bf=f. Injectivity is defined dually.
If % is a proper class of sequences, then the class of projectives, (%), associated
with € is the class of groups that are projective relative to every sequence in ¥.
The injectives, Z (%), are defined similarly. If %, is the proper class of pure-exact
sequences, then 2(%,) is precisely the class of all direct sums of cyclic groups
(see Ref. [2]). We need the following elementary result.

Lemma 4.1. Let E, denote the short exact sequence 0—nZ—Z—+ZnZ—0,
where Z is the infinite cyclic group of integers, n a positive integer and 1 the inclusion
map.

(1) If G is injective relative to E,, then nG=G.

(2) If G is projective relative to E, and G<P(€,), then G[n]=0, where
G[n)={g€G|ng=0}.

ProOF. Let G be injective relative to E,. Let g¢G and let 0:nZ—~G be the
homomorphism defined by 0(nk)=kg for each kcZ. Then there exists 0: Z—~G
satisfying 0(nk)=0(nk) for each kcZ. Thus g=0(mn)=0mn)=nb(1); so genG,
as desired.

Next suppose GEZ2(€,) and that G[n]=0. Then G has a finite cyclic sum-
mand (g) whose order divides n. Thus there exists an epimorphism f: G—~Z/nZ
satisfying f(g)=0. But every homomorphism f:G-~Z takes g to zero. Hence
G is not projective relative to E,, as desired.

According to the discussion in section two, the Z-adic topology is a linear
functorial topology relative to which group epimorphisms are open. Thus the class
€. of Z-imbedded short exact sequences is a proper class of sequences. We wish to
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determine 2(%¢.) and Z(%.). One may easily check that for each group G, the
set {nG|n a positive integer} is a neighborhood basis for zero for the Z-adic topology.
Thus we have the following modification of Proposition 2.2 for the Z-adic topology.

Proposition 4.2 Let N denote the positive integers. A subgroup A is Z-
imbedded in a group B if and only if there exists a function ¥:N—-N satisfying Al
(Y (m)BcmA for every méN.

Theorem 4. 3. 2(¥€.) is the class of free groups and Z(%.) is the class of divisible
groups.

Proor. First we observe that E, €% for every n<N, since the function ¥(m)=
=m-+n serves as a Z-imbedding function for nZ in Z. Thus each member of
Z(%.) is divisible, by lemma 4.1. Clearly each divisible group isin Z(%,). Next we
observe that ¥(m)=m is a Z-imbedding function for each pure subgroup. Thus
€, C€.: so P(€,)c?(€,. Thus each member of Z(%.) is torsion free and,
hence, free. Conversely, every free group is in 2(%.). This proves the theorem.

Let & denote the class of all short exact sequences. It follows from Lemma 4.4
below that €. is strictly contained in &. But 2(8)=2(%.) and 2(8)=2(%.).
Thus, in the terminology of Ref. [6], €. is neither projectively nor injectively closed.

Finally we observe that %. contains neither enough projectives nor enough
injectives. This observation is a consequence of lemma 4.4 whose proof may be
found in Ref. [5].

Lemma 4.4. Let E denote a short exact sequence. 0-~A—~B—C—0.

(1) If B is torsion free, then E€%. if and only if each p-primary component of
C is bounded.

(2) If B is divisible, then E€€. if and only if A is divisible.
Thus. in particular, only the divisible groups have injective resolutions and only
the groups with bounded primary components have projective resolutions.
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