On a conjecture concerning additive number theoretical functions

By KATALIN KOVÁCS (Budapest)

Abstract

The main result of the paper is as follows: If f is completely additive and $f(2 n+4 k+1)-f(n)$ is monotonic from some number on, then $f(n)=c \log n$.

In 1946 Erdős [2] proved the following theorem:
Theorem 1 (Erdős). If the real valued additive function f is monotonic, then $f(n)=c \log n$.

As a possible generalization of this result I proposed the following conjecture.

Conjecture. Let f be an additive function. If $f(a n+b)-f(c n+d)$ is monotonic from some number on, then $f(n)=c \log n$ for all n coprime to $a c(a d-b c)$.

If f is bounded, then $f(a n+b)-f(c n+d)$ is convergent and the conjecture is true by a theorem of Elliott [1]. In [3] we proved some special cases of the conjecture, including the following theorem.

Theorem 2. Let f be an additive function and let a and b be different integers. If $f(n+a)-f(n+b)$ is monotonic, or it is of constant sign from some number on, then $f(n)=c \log n$ for all n coprime to $a-b$. If f is completely additive, then $f(n)=c \log n$ for all n.

Here we prove the conjecture in certain further special cases.

[^0]Theorem. Let f be a completely additive function.
(i) If $A-2 B \not \equiv-1 \bmod 4$ and

$$
\begin{equation*}
f(2 n+A)-f(n+B) \tag{1}
\end{equation*}
$$

is monotonic from some number on, then $f(n)=c \log n$ for all n.
(ii) If

$$
\begin{equation*}
f(2 n+1)-f(n-1) \tag{2}
\end{equation*}
$$

is monotonic, then $f(n)=c \log n$ for all n.
Proof of the Theorem.
(i) Let us replace n by $n-B$ in (1). So

$$
\begin{equation*}
f(2 n+A-2 B)-f(n) \tag{3}
\end{equation*}
$$

is monotonic from some number on. We may assume that it is increasing.
If $2 \mid A-2 B$, then by Theorem $2 f(n)=c \log n$ for all n.
Otherwise $A-2 B=4 k+1$ with some k. So

$$
\begin{equation*}
f(2 n+4 k+1)-f(n) \tag{4}
\end{equation*}
$$

is increasing from some number on. By comparing the value of (4) at the numbers $n-(k+1)$ and $n^{2}-(k+1)^{2}$ we obtain

$$
f\left(2 n^{2}-2 k^{2}-1\right)-f\left(n^{2}-(k+1)^{2} \geq f(2 n+2 k-1)-f(n-(k+1)) .\right.
$$

By comparing its values at $n-3 k$ and $2 n^{2}-2 k^{2}-1$ we get

$$
f\left(4 n^{2}-(2 k-1)^{2}\right)-f\left(2 n^{2}-2 k^{2}-1\right) \geq f(2 n-2 k+1)-f(n-3 k)
$$

By adding these inequalities we obtain

$$
f(n-3 k)-f(n+k+1) \geq 0
$$

from some number on. By Th.2. $f(n)=c \log n$ for all n.
Background of the proof. A has to be odd and we may assume that B is even (otherwise replace n by $n-1$ in (1)). Therefore $A-2 B \equiv 1$ $\bmod 4$ yields $A \equiv 1 \bmod 4$.

Let us replace n by $2 n^{2}+d$ in (1). We have

$$
\begin{equation*}
f\left(4 n^{2}+2 d+A\right)-f\left(2 n^{2}+d+B\right) \geq f\left(2 N_{1}+A\right)-f\left(N_{1}+B\right) \tag{5}
\end{equation*}
$$

By the suitable choice of d we have $2 d+A=-u^{2}$ with some odd integer u. So

$$
f\left(4 n^{2}+2 d+A\right)=f(2 n+u)+f(2 n-u)
$$

on the left hand side of (5). Let us choose N_{1} such that $2 N_{1}+A=2 n+u$ appears also on the right hand side. So (5) transforms into

$$
\begin{align*}
f(2 n+u)+f(2 n-u)-f & \left(2 n^{2}+d+B\right) \tag{6}\\
& \geq f(2 n+u)-f\left(n+\frac{u-A}{2}+B\right)
\end{align*}
$$

To gain $f\left(2 n^{2}+d+B\right)$ on the left and $f(2 n-u)$ on the right of an inequality let us compair (1) replacing n by N_{2} ans N_{3} such that $2 N_{2}+A=2 n^{2}+d+B$ and $2 N_{3}+A=2 n-u$. So we have

$$
\begin{align*}
& f\left(2 n^{2}+d+B\right)-f\left(n^{2}+\frac{d+B-A}{2}+B\right) \tag{7}\\
& \geq f(2 n-u)-f\left(n-\frac{u+A}{2}+B\right)
\end{align*}
$$

Here d has to be odd to get integers in the arguments.
Adding (6) and (7) we have
$f\left(n-\frac{u+A}{2}+B\right)+f\left(n+\frac{u-A}{2}+B\right) \geq f\left(n^{2}+\frac{d+B-A}{2}+B\right)$.
If $\frac{d+B-A}{2}+B=-v^{2}$ with some integer v and $v=\frac{u-A}{2}+B$, then

$$
f\left(n-\frac{u+A}{2}+B\right)-f(n-v) \geq 0
$$

i.e. by Theorem $2 f(n)=c \log n$ for all n.

We are looking for an odd integer u. As $d=\frac{-u^{2}-A}{2}$ and $v^{2}=\frac{A-3 B-d}{2}$, so u must be the solution of

$$
A-2 B=u-2 v=u \pm \sqrt{u^{2}+3 A-6 B}
$$

For odd A and even $B, u=\frac{A-2 B-3}{2}$ is a satisfactory choice for u.
(ii) We compare the value of the function (2) at n and $2 n^{2}+2 n$, then at n and $n^{2}+n-1$. By adding the resulting inequalities

$$
f\left[(2 n+1)^{2}\right]-f\left(2 n^{2}+2 n-1\right) \geq f(2 n+1)-f(n-1)
$$

and

$$
f\left(2 n^{2}+2 n-1\right)-f\left(n^{2}+n-2\right) \geq f(2 n+1)-f(n-1)
$$

we obtain $f(n-1)-f(n+2) \geq 0$, hence by Theorem 2 we infer that $f(n)=c \log n$ for all n.

References

[1] P. D. T. A. Elliott, Arithmetic functions and integer products, Grundlehren der mathematischen Wissenschaften, Bd. 272, Springer Verlag, New York-Berlin, 1985, MR 86j: 11095.
[2] P. Erdős, On the distribution function of additive functions, Ann. of Math. (2) 47 (1946), 1-20, MR 7-416.
[3] K. KovÁcs, On a generalization of an old theorem of Erdős, Studia Sci. Math. Hung. 29 (1994), 209-212.

KATALIN KOVÁCS
EÖTVÖS UNIVERSITY
DEPT. OF ALGEBRA AND NUMBER THEORY
H-1088, BUDAPEST, MÚZEUM KRT. 6-8
HUNGARY
(Received January 3, 1996; revised March 2, 1996)

[^0]: Partially supported by the Hungarian National Foundation for Scientific Research Grant No. T 017433, by CEC grant No. CIPA-CT92-4022 and by Fulbright Grant.

