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On a conjecture concerning additive
number theoretical functions

By KATALIN KOV�ACS (Budapest)

Abstract. The main result of the paper is as follows: If f is completely additive
and f(2n + 4k + 1)− f(n) is monotonic from some number on, then f(n) = c log n.

In 1946 Erdős [2] proved the following theorem:

Theorem 1 (Erdős). If the real valued additive function f is mono-

tonic, then f(n) = c log n.

As a possible generalization of this result I proposed the following
conjecture.

Conjecture. Let f be an additive function. If f(an + b)− f(cn + d)
is monotonic from some number on, then f(n) = c log n for all n coprime

to ac(ad− bc).

If f is bounded, then f(an + b) − f(cn + d) is convergent and the
conjecture is true by a theorem of Elliott [1]. In [3] we proved some
special cases of the conjecture, including the following theorem.

Theorem 2. Let f be an additive function and let a and b be different

integers. If f(n + a)− f(n + b) is monotonic, or it is of constant sign from

some number on, then f(n) = c log n for all n coprime to a − b. If f is

completely additive, then f(n) = c log n for all n.

Here we prove the conjecture in certain further special cases.
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Theorem. Let f be a completely additive function.

(i) If A− 2B 6≡ −1 mod 4 and

(1) f(2n + A)− f(n + B)

is monotonic from some number on, then f(n) = c log n for all n.

(ii) If

(2) f(2n + 1)− f(n− 1)

is monotonic, then f(n) = c log n for all n.

Proof of the Theorem.

(i) Let us replace n by n−B in (1). So

(3) f(2n + A− 2B)− f(n)

is monotonic from some number on. We may assume that it is increasing.
If 2|A− 2B, then by Theorem 2 f(n) = c log n for all n.
Otherwise A− 2B = 4k + 1 with some k. So

(4) f(2n + 4k + 1)− f(n)

is increasing from some number on. By comparing the value of (4) at the
numbers n− (k + 1) and n2 − (k + 1)2 we obtain

f(2n2 − 2k2 − 1)− f(n2 − (k + 1)2 ≥ f(2n + 2k − 1)− f(n− (k + 1)).

By comparing its values at n− 3k and 2n2 − 2k2 − 1 we get

f
(
4n2 − (2k − 1)2

)− f(2n2 − 2k2 − 1) ≥ f(2n− 2k + 1)− f(n− 3k).

By adding these inequalities we obtain

f(n− 3k)− f(n + k + 1) ≥ 0

from some number on. By Th.2. f(n) = c log n for all n.

Background of the proof. A has to be odd and we may assume that
B is even (otherwise replace n by n − 1 in (1)). Therefore A − 2B ≡ 1
mod 4 yields A ≡ 1 mod 4.

Let us replace n by 2n2 + d in (1). We have

(5) f(4n2 + 2d + A)− f(2n2 + d + B) ≥ f(2N1 + A)− f(N1 + B).

By the suitable choice of d we have 2d + A = −u2 with some odd integer
u. So

f(4n2 + 2d + A) = f(2n + u) + f(2n− u)
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on the left hand side of (5). Let us choose N1 such that 2N1 + A = 2n +u
appears also on the right hand side. So (5) transforms into

(6) f(2n + u) + f(2n− u)− f(2n2 + d + B)

≥ f(2n + u)− f

(
n +

u−A

2
+ B

)
.

To gain f(2n2+d+B) on the left and f(2n−u) on the right of an inequality
let us compair (1) replacing n by N2 ans N3 such that 2N2+A = 2n2+d+B
and 2N3 + A = 2n− u. So we have

(7) f(2n2 + d + B)− f

(
n2 +

d + B −A

2
+ B

)

≥ f(2n− u)− f

(
n− u + A

2
+ B

)
.

Here d has to be odd to get integers in the arguments.
Adding (6) and (7) we have

f

(
n− u + A

2
+ B

)
+ f

(
n +

u−A

2
+ B

)
≥ f

(
n2 +

d + B −A

2
+ B

)
.

If d+B−A
2 + B = −v2 with some integer v and v = u−A

2 + B, then

f

(
n− u + A

2
+ B

)
− f(n− v) ≥ 0,

i.e. by Theorem 2 f(n) = c log n for all n.
We are looking for an odd integer u. As d = −u2−A

2 and v2 = A−3B−d
2 ,

so u must be the solution of

A− 2B = u− 2v = u±
√

u2 + 3A− 6B.

For odd A and even B, u = A−2B−3
2 is a satisfactory choice for u.

(ii) We compare the value of the function (2) at n and 2n2 + 2n, then at
n and n2 + n− 1. By adding the resulting inequalities

f
[
(2n + 1)2

]− f(2n2 + 2n− 1) ≥ f(2n + 1)− f(n− 1)

and
f(2n2 + 2n− 1)− f(n2 + n− 2) ≥ f(2n + 1)− f(n− 1),

we obtain f(n − 1) − f(n + 2) ≥ 0, hence by Theorem 2 we infer that
f(n) = c log n for all n.
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Hung. 29 (1994), 209–212.

KATALIN KOVÁCS
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