On a continuous one parameter group of operator
transformations on the field of Mikusinski operators

By ZOLTAN PAPP (Debrecen)

Introduction

Denote by C the set of complex-valued continuous functions defined on the
interval [0, ==), by M the operator field of Mikusifski, and by K the field of
complex numbers embedded into M. Throughout the paper convergence of operator
sequences will mean type II. convergence in the sense of Mikusinski, i.e. we shall say
that the sequence of operators {a,};~, converges to the operator acM, denoted
by lim ag,=a, if there exists a sequence {g,};=, of functions in C, converging to

the function geC, ¢#0 almost uniformly on [0, =), so that the relations ¢,a,cC
n=1,2,... and gacC hold, and the sequence {g,a,};—, converges almost uni-
formly to qa.

Let R, denote the set of positive reals. Let Z€R. be arbitrary, and let us
denote the operator transformation U,: M—~M as follows (cf. [5]):

U, (N ZPfen} for f={f(n)ecC,

U@ %D o, a=-§w;ﬁgec, w0

U, (@)

For any A€R,, the transformation U, is a one-to-one mapping of M onto
itself, operation-preserving for both operations on M. It does always map C
onton itself, the image of each numerical operator is itself, and for any u, véR,
and any operator a¢ M one has

and

(0.1) ' U lUs(a)] = Uy, (@)
i.e.
Uw=UU, for pv=0
It is easy to check that the set {U,},., forms a commutativegroup with the
unit element U,.

In this paper we expose some properties of this one parameter group. It is well
known ([2]) that the operator transformation U, is continuous for every fixed
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2=0. In the first part we show that lim 4,=i¢R, and lim a,=acM together

n—-oc= n—-ece

imply lim U, (a,)=U,(a). This result contains as particular cases both the conti-

nuity of U;‘ (for /,=4) and the continuity of the one parameter group {U }iso (for
a,=a). Thereupon we prove that if the sequence of parameters {4,};~, is supposed
only to have a positive upper bound and a positive lower bound, whereas the sequence
of operators {a,};~, also obeys the additional requirement of having a numerical
operator as its limit, then the sequence {U; (a,)};=, will also be convergent, and
its limit will be the same as that of {a,};~;.

E. GeszTeLy! has shown in [2], that if the operator ac M satisfies the equality
U,(a)=a for any positive integer n, then a is a numerical operator. In the second
part of the paper, we answer the question concerning the set of those parameters
A€R, for wich the equality U,(a)=a holds. We show that these sets are R, or
else cyclic subgroups of R,, considered as multiplicative group.

In the third section we investigate the limits of sequences of type {U, (a)};.,
(ac M), where {/,);>, is a sequence of positive numbers tending to mﬁmty By an
immediate conscqucncc following from the theorem of E. Gesztelyi just mentioned,
a convergent sequence of operators of the form {U,(a)};>-, (ac M) can have only
a number as its limit. Here we answer the question, whether such a sequence can have
a limit which is no numerical operator, and how does this limit depend on the sequ-
ence of parameters.

We show that if the sequence of parameters is sufficiently “thin™, then the limit
is not necessarily a numerical operator. Moreover, if the sequence of parameters
is e.g. {n!};=,. then any operator can be represented as the limit of a sequence of
the form {U,,, (@)}, and a can be chosen also from C. From this the interesting
fact follows, that there exists a subring € of C, and a congruence 5 on this sub-
ring, so that the factor ring € mod n is already isomorphic with M.

Finally in the last chapter we define for operators, considered as generalized
functions, their integrals over (— <=, ==): by the [-integral of a given operator ac M,
where fg{/’.,,};,'“z, is a sequence of parameters tending to infinity, we mean the limit
of the sequence of operators {U, (a)};-;, provided it exists and in a number. In
this case we call the operator a€ M [-integrable, and if @ is /-integrable for any
parameter sequence / tending to infinity, then we say it to be integrable. Finally
we give a criterion for integrability being implied by /-integrability, and as an imme-
diate consequence we obtain the equivalence of our notion of inteerability with the
one defined in [4].

§1.

Theorem 1.1. If {) Yoy Is a sequence of positive numbers converging to a positive
number i, and la,)i-, is an operator sequence converging to the operator acM,
then the operator sequence {U,; (a,)}v- is also convergent and

(1.1) lim U; (a,) = U,(a)
holds.
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Proor. Let {/,}=., be a sequence of positive numbers converging to a positive
number A, and let {f,};, be a sequence of functions from C, converging almost
uniformly to an f€C. We are going to show that in this case

(1.2) U,.(fn) = U.(f)

if n—sco,
Let T=0 and &=0 be arbitrary fixed numbers. Let R be an upper bound
of the sequence {4,};~,, and let K=0 be so that

(1.3) Sl =K

for any 0=r=RT. Also, let 6=0 be so that for any ¢, 1,€[0, RT] satisfying
|ty —1,] =06 the inequality

(1.4) ) —f ()] < 35
holds. Let N be so that »=N implies the inequalities
(1.5) () —f ()] = ﬁ for 0=1¢=RT
7 L
3K
and
P‘n " j‘] = %

Since for any 0=¢=T and any natural number n one has 0=/,1=RT,
0=/it=RT too holds, and (1.3), (1.4) and (1.5) together imply that for »=N and
any t€[0, T'] the inequality

|An Su(2nt) — AL (AD)| = |A0 fo(2n?) — A [ (A0 O)| + |Aa f (An8) — Af (20 0)| +
5 3 !J‘f(f"f)—“;f()f)' = ’:'n!f;I(;'nr) _‘f(;'n'r”";_ I}‘I'I _;|f{;u f): 15

R SRS W S

+ A f (2, ) = f(21)] = RSR IK 37

F
holds.

Since 7 and & have been arbitrary, (1.2) does in fact hold.
Let now {a,},=; be an arbitrary convergent operator sequence, and let
a = lim a,.
oo
Then there exist a sequence {g,},~,; of functions from C, and a function g€C,
q+#0 so that
da==¢q (n— =)

2.8,€C ‘(n=1,2,...), gqa€C
and
4,4, == qa (" - o)
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Let us now apply (1.2) to the sequences {g,}i~, and {g,a,}i~,. We obtain
U;.(@) = U;(@) (n— =)
U, (4aa,) = Us(qa) (n —~ ==)
and this is equivalent with (1.1).

Theorem 1.2. If {a,};.. is a sequence of operators converging to a numerical
operator a€K and {i,}-, is a sequence of positive numbers having an upper and
a positive lower bound, then the operator sequence {U, (a,)}v-, is convergent, and

(1.6) limU, (a,) =«
Proor. Let {a,};., be an operator sequence converging to a numerival opera-

tor 2K and let {g,};=, be that sequence of functions from C for which the
following relations hold:

=9 (n—=), geC, qg#0
(1.7) PnZLaqecC (n=1,2,..)
Pn = 0q (n"'°°)

/

Without loss of generality we can suppose that there exists a function geC
so that

(1.8) g ={l}g

Let {4,};=; be a sequence of positive numbers having an upper and a positive
lower bound. Let 0=4"<=4" be those two numbers for which

(1.9) g el o

holds for all natural number »n and let

3 A A

(1.10) A==

First we show that for any numbers 7=>0 and &£=0 there exists a continuous
function f defined on [/, 1]X[0, =) and satisfying the inequality

(1.11) [ q(@) f(u, t =) dv—pg(ut)| < e

for all u€[2, 1] and r€[0, T).

Let T7=0 and &=0 be arbitrary fixed numbers. Let moreover g=A(g) (see
[2]). Now the function e®*g={g(t+p)} does not identically vanish in any right
neighborhood of zero, and so by the theorem of Foias, (see [1]) for every u¢[4, 1]
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there exists a k,€C such that

T—p s

[ | f 8@ +0)ky(s—0) do — g (u(s+0))| ds < 5

0 0

hence by the substitutions s+¢0=¢ and o+p=1 we get

T

/

fg(l') k,(t—1)dv—p’g (m)| dt = %

and from this, taking into account the fact that if ¢=0 then g(r)=0 forall 0=t=¢
and thus p*g(ut)=0 since pu=1, it follows that

&

? Gy -
[ S e@ku—vde—peguo|ar < :
0 0

By interchanging here integration and the taking of absolute value, and by making
use of (1.8) we obtain that the inequality

(1.12) | [ 4@kt~ vyt~ pquo| < 5

is valid for all 0=¢=T.

On the other hand {ug(ut)} considered as a function of two variables is con-
tinuous and therefore uniformly continuous on the closed rectangle [4, 1]X[0, <)
and this implies the existence of a positive integer m such that 1€[0, T), u’, p"€[4, 1]
and |p’' —u"|<(1—2)/m together imply the inequality

(1.13) WaW - gt < 5
Let
(1.14) piﬂ_ii('"n:_'“ (i=0,1,2,..m)

and let us define the function f on the rectangle [A. 1]X[0, ==) as follows: let

o Nl B=Mioy
(L15) fen E-HoE g, ()+£=20 k()

- L =

if 0=t<eco,py_,=p=y; and k,€C (i=0,1,2,...m) is a function satisfying
(1.12). As an immediate consequence of (1.14), f is continuous on [A, 1]1X][0, =),
moreover w_,=pu=y, implies |g—u|l<=(1—=2)/m and |p—p_,|<(1—=27)/m.
From this however we infer by (1.12), (1.13) and on the basis of (1.15) that the follo-
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wing inequality is valid for any /=pu=1 and 0=/=T:

If‘ Q(l’)f(ﬂ, t—1) dt — ‘uq(,u)l —

=I [ [ a@k,,  (—vdi— M(#f)]
— Hi-1

i o ‘: ‘l[f q(2) k,, (t—7) dr — #q(uf)]

(1A

" l(f —-T)dt— 1 q (1 - 1’)'

Aui H; 1
+ Iu.--lq(u,--lr)—nq(w)ll -

t
H—Hiq
e[| e od—mamol

+ g (uit) — pg(u)l] < &
where 1, _=u=y.
Let now {fi}i=: be a sequence of continuous functions defined on [4, 1]X
%[0, ==), each member of which satisfies the inequality

‘ 1
(1.16) | J 4@ A= d— pg (ut)| < 57

for any pé€[z, 1] and 7€[0, kA"].
Let

(1.17) 5, = £ max {iw)|Ai=p=1 0=t=ki"} (k=12..)

Then, by (1.7), for any natural number & there exists an integer N, so, that
n=N, implies the validity of the inequalities

2 — |o

(1.18) [Pa(1) — g ()] < TEI)o,

PRG e —

W04 2(kA" )0,
for any 0=t=k.". Without restricting generality we can suppose that N, <N, .,
k=12 )

Let
df

g.=f for n<N,

and

g,,d—Eﬁ( for Ny=n-=<= Ny

From this and from (1.9), (1.16), (1.17) and (1.18) we are now able to infer that if &
is any natural number, then for n=N, and 0=t¢=k the following inequalities
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hold, where r(r=k) denotes the natural number satisfying N,=n<N, ,:

Ant ’
An f P,(T)g..[j'—, /'.,,t—r] dr—).’rxq(l’t)l =
0 “n

= +

Ant P
[ (@ —2g@); [1— i) e

}.,:I' i ;‘.’ s j..’ ;‘r
+).,,[a|6[ q(r)ﬁ[z, /.,r—t)dr—z:q[z).,,r] =<
2, 2= BT T e e P ]
<htgaarys, Orthlel gz = Q-le) 5o = 3
and :
o [ 4,08, (5 At —t)de—rqeen| =
0 n
At ’
= 4| [ @@ —a0f; [i ] !—T]d‘r|+
—— n X n r An’ ‘n
ﬂ.,:I' ;; ;"r ;‘r
+ 4, 6’ q(t)j}(z, }.,,r—r]dr—-}:q[zﬁ.,,t] -

I 1 1

= Art Opt dgo—s = —

2Py, " 2ri k
This means that
l"!
Ui" [pﬂg" [_;__]] = at}l‘.' {q) (” — r.;:;)
and
;-?
br‘l,. [qﬂgu [‘;“]] = Uk(q) (ﬂ = r.-:»)
bl.lt n

)‘.’
Url,,. [pngn [)_n]]

U;.(a,) =U;\,.[§£]= 7 n=12..)
P Ul.,'[‘?ngu [}-_]]

so that the operator sequence {U; (a,)};=, is convergent and

Iim (-"i"(a,,) = .

235
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§2.
Let a€ M be arbitrary, and let us define the set H(a) as follows:
@1 H(a) = {4|2€ R, , U,(a) = a}

Let us denote by (x) the cyclic subgroup generated by the element « of the
multiplicative group R,, and let (1) be the one-element trivial subgroup of R..

Theorem 2.1. For any operator a<M, H(a) is a trivial or a cyclic subgroup of
the multiplicative group R., and conversely, for any trivial or cyclic subgroup H
of R. there exists an operator acM, such that H= H(a).

PRrROOF. Let ac M be an arbitrary operator. First we show that H(a) is a sub-
group of R., closed in R, with respect to the usual topology of reals.

Clearly 1€H(a). Let now be u, vé H(a) arbitrary. Then by (0.1) the following
equality holds:

U@ =U,[Uu@] =U,(a) =U,[U,(a)] =U.(a) = a

ie. u/vEH(a), hence H(a) is a subgroup of R, .
Let now be {4,};>, a sequence of elements of H(a), tending to A€R,, ie.
a sequence satisfying

U,@=a (n=12,..)
lim A, = A€R,

From this we infer by theorem 1.1 that

a = lim U, (a) = U,(a)

i.e. that A€ H(a). Thus we have shown that H(a) contains all its accumulation
point belonging to R, , i.e. that H(a) is closedin R,.

Now we show that a subgroup of R, closed in R. is either trivial or else
a cyclic subgroup.

Of course, (1) is a closed subgroup of R.. Let now H:=(l) be an arbitrary
subgroup of R,, closed in R,. Since H has an element different from 1, it
also contains some element which is larger than 1. Let

2.2) aLinf (1| A€H, 1 > 1}

H being closed in R, one has o€ H. Suppose a=1. We show that H=(x).
Indeed, let pcH arbitrary. Then there exists an integer n so that

an - - ﬁ - an+1
From this

1

[IA

i
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follows, but f/a"c H and so by (2.2) f/a"=1, i.e. f=a". Thus H=(x). Let now
be x=1, and let f€R, be arbitrary. We show that f is an accumulation point of
H. Let £>0 be arbitrary. Since x=1, by (2.2) there exists vEH, v>1 for which
v—1=¢g/f, on the other hand there exists an integer n with

‘lll ‘:'_"—.: ﬂ - vﬂ+1
Hence

O=p—-v<v(v—-1) -c:v"%éc

But v"€ H and consequently f is an accumulation point of H. Since S has been
an arbitrary element of R,, H=R, follows.

Thus we have shown that H(a) is either a trivial or a cyclic subgroup of R, .

Let us now show that for any subgroup H of R., closed in R, , there exists
an operator a¢c M, satisfying H=H(a).

Since U,;(1)=1 and U,(s)=s/. forany Ai€R,, where s denotes the opera-
tor of differentiation, we have H(1)=R, and H(s)=(l). Let now a€R,, a>1]
be arbitrary, and let H=(x). Let moreover ¢ be an arbitrary continuous function
defined on the interval [l, «] and satistying the following conditions:

(2.3) (1) = @) =0 and
o) #0 l<t<a
Let
ar ) O for t=0, and
f(’)_{a"qo(ra") for *=f~<a""\n

an integer.
The function f so defined is of course continuous, and by (2.3) the equality

(2.4) f(A) = Af(t) (A€R))

is satisfied for any O=t<-< if and only if Z=«", where n is an integer.

Let
a f
a= -~
: {r}
Then by (2.4) the equality

1
oron _ T/ oy o

U;(a) = = =
% {#1 {r} {n}
holds if and only if Z=a", where » is an integer. From this however
H(a) = (a)

follows.
In [2] E. Gesztelyi has proved the following theorem:
If the operator ac M is so that

U,a)=a

holds for any natural number n, then « is a numerical operator.
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As an immediate consequence of this and of our theorem 2.1. we get the fol-
lowing.

Theorem 2.2. Let ac M be arbitrary. Then the equality

H(@) =R,
holds if and only if ac K.

§ 3.
Let L denote the set of sequences of 1eal numbers tending to infinity, i.e. let

Lg{fllg{}m}:;l’ }méR_;. n= 1,2, wees 1M An_—_-}-m

n-—=ca

Definition 3.1. Let {x,};=, be an arbitrary sequence. The sequence {y,}i>;
will be called a generalized subsequence of the sequence {x,};.,, if there exists
a sequence {k,};=,; of natural numbers tending to infinity, such that

Yu = xl‘c,,
holds for each natural number n.

Clearly, if y is a subsequence in the usual sense of the sequence x, then y
is also a generalized subsequence of x. Also, a generalized subsequence of a gener-
alized subsequence of a sequence is again a generalized subsequence of that sequence.
This notion of generalized subsequence has also the following property: if a real
sequence or an operator sequence is convergent, then any of its generalized subsequen-
ces is also convergent, and to the same limit. In what follows, by a subsequence
of a sequence we shall always mean a generalized subsequence.

Definition 3.2. Let /£ {4:)n=1 and m {i.)n=1 be two arbitrary sequences
of positive real numbers. By the product and by the quotient of / and of m we
mean the sequences

Lom & Gy, and 32l
respectively.

Definition 3.3. Let /¢L be an arbitrary sequence.

By Q(/) we mean the smallest multiplicative subgroup of R, closed in the
sense of the usual topology of the reals, which contains all the positive numbers
which are representable as the limit of the quotient of two subsequences of /.

Theorem 3.1. For any sequence 1= {4 i1 €L, and for any operator acM,
such that the operator-sequence {U, (a)}i-, is convergent, the relation

@3.1) H[lim U;, (@] 2 Q()
holds.
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PROOF. Let /2 {Z.}i=1€L be an arbitrary sequence, and a€M an operator,
such that the sequence {U; (a)};=, converges. Let us denote the limit of this operator
sequence by b, i.e. let
(3.2) b2 1im U, (a).

n—~os

Let véR, be an arbitrary positive number, which can be obtained as the
limit of the quotient of two subsequences of /. Let {4, }i~, and {4, )i, be the
two subsequences of /, for which
A

vy = lim =
koo Amk

k

holds. Then theorem 1.1, (0.1) and (3.2) together imply

0. = Jim U,,, [0, @] = Jim Us, @ = b
TSy

"y

i.e. vé€H(b). From this however by the definition of Q(/) and by Theorem 2.1.
there follows (3.1).

f y
Theorem 3.2. For any sequence 1< {Zudiar €L there exists an operator a<M,
such that the operator sequence {U, (a)}y-, converges and

(3.9) H|[limU; (@] = ()

In proving this theorem it is necessary to distinguish three cases, according to
the type of Q(/). If Q(/)=R,, then putting a=1 (3.4) results trivially valid.

If Q()=(1) or Q(Il) is a cyclic subgroup, the statement of Theorem 3.2
follows from Theorems 3.3 and 3.5, interesting by themselves.

Theorem 3.3. For any operator ac M and for any sequence [ o {A i €L
satisfying Q(I)=(1) there exists a continuous function @¢C such that the sequence
{U,, @)}y converges, and

(3.5 limU; (¢) = a

PrROOF. Let acM be an arbitrary operator and 1< {n}iz1€L an arbitrary
sequence satisfying

(3.6) o = 1)
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First we show that / has a subsequence r& {0,}=-, and there exists a sequence
of the positive numbers s = [o',, ~1, satisfying the following relations:

(3°7) 01 <02 <o =< 0p < Ont1 = ey
(3.8) lim ot _ 4o,
n~o 0,
(3-9) ,Ei.n,], 0'“ —— 1,
(3.10) I =281
where r’ is a subsequence of r.
Let

af @l e

3B.11) =4, eui=min{ilk=12,.., 4 >2,) (r=12..)

Of course, the sequence r so defined is a subsequence of /. Let us define the sequence
s as follows:

ﬁ if A,<pgy, and
(3.12) o, % f‘ (e 1,200
3":— if o =24, < 0ksr

Clearly, s is the quotient of / and of a subsequence of r, and so (3.10) holds. On the
other hand (3.11) implies that 2 is a lower bound of the sequence {g,.i/0,}iz1-
From this (3.7) immediately follows, moreover, by (3.12) all but a finite number of
elements of the sequence s fall into the interval [1, 2]. But on the basis of Definition
3.3 we infer from (3.6) that an accumulation point of the quotient of two subsequen-
ces fo / can only be 1 or 0. Since both s and {g,.,/¢.};=: are quotients of two
subsequences of /, our above considerations directhy yield (3.8) and (3.9).
Let now

(3.13) §=a€M, S, g8€C g#0

be an arbitrary representation of the operator a.
Let us define the sequence m= {,u,, ~; as follows:

(3.14) ba =V 0ntnsr (1=1,2,..)

By (3.7) the sequence m so defined is a strictly monotonically increasing sequence
of positive numbers, tending to infinity.

Let us now define the functions p,q and ¢ on the half-line 0=r<=< by
induction with respect to the intervals determined by the members of the sequence
m: let

(3.15) pOE1, q)E1 if 0=i=p
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3
Since the function {fq(r) a‘r}: {t} (0=tr=py,) does not vanish identically in any
0

right neighborhood of 0. by the theorem of Foias, [1] there exists a continuous func-
tion Y, defined on 0=r=pu, and satisfying the inequality

(3.16) [ wit=2 [ a@dode—p@)dr <1
Let 0 0 ]
(3.17) V() Zy, (1), if 0=t=p,.

Suppose that p, ¢ and ¥ have already been defined for some natural number
n on the interval 0=r=p,. Let

(.18) PO s (=) and 4% g
On+1 On+1
for p,<1=ppy,y

where

(3.19) Cusr = max {[p(0)], lg(1)]|0 = ¢ = p,}

By the theorem just mentioned of Foias, there again exists a continuous function
Y, 4+, defined on the interval 0=t=pu,,,—pu, and satisfying the inequality

My 1= Hy !
(3.20) J ¥nat=9) f 9(0) do dr —
t+p,
—[p(r+u,)—f V41, =) fq(a)dadr]ldr <o
Let
(3.21) VIO Yat—p) i <1 = pyig
Also, let
(3.22) o= {1}y

¥ is locally integrable, so @€ C. Now we are going to show that the sequence
{U,,(@)}iy is convergent and has limit a.

Since g too was locally mlegrable the sequences {U, ({l1}q)/¢sc,}n=1 and
{U,, (@ U, ({1}9)/0rca}nzr (cl—l) are, of course, sequences of contmuous func-
tions. We show that these sequences satisfy the following relations:

(3.23) M ={1}g (n—+ <)
Qllfﬂ

ib
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Let 7=0 and &=0 be arbitrary fixed numbers. (3.8) and (3.14) imply

(3.25) im& =t and lim-E2- =0

n—~= 0, n== Op4q

and consequently there exists N=2 so that for n=N the following inequalities
hold:
el < pa,

ﬂn-&l

wd G-

!g(o)ldo < 7,
and
pn—l ey &

On 2

From this however it follows by (3.18) and (3.19) that if n=N then for 0=/=T
the inequality

@n

o roy f q(r)dr—fg(o)da ( o
Hn_1 1 Bn -1 1 Hy .
=—— f @lde+o- [ le@ldr+ o f a()—cug (2 de < &

holds. Since T and & have been arbitrary, (3.23) holds.
Let T=0 and £=0 again be arbitrary fixed numbers. If we write 71—y, from
(3.20) instead of ¢ and employ (3.21), then

. 1
r—t)of q(o)dodr—p(1) dt < o7

Hn

results for any », and by the associativity of convolution and by (3.22), (3.16)
and (3.17) we infer that the following inequality is valid for any natural number n:

1

f @o(t—1)q(t)dt—p(1)| dt < 2.
0

L]

(3.26) 3

On the other hand, by (3.15) and (3.19) each element of the sequence {c,}i~
is =1, and so, in view of lim g,= + ==, we get

n-» oo

lim Cp0y = + .
n-—-oo
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Owing to this and to (3.25) there exists an integer N=2 so that for n=N the
following inequalities hold:

T = p,,
Hn—1
1 Hn-a [t] 2n £
— — | dt = o) do = —,
=) i) i<
Mn—l _:_s_
0 3
and
2 e
iy 3

From this we infer by (3.26), (3.18) and (3.19) that the following inequality is
satisfied for any n=N

1 CpT

Ifem(e..(r-—r)) Ao o [ a(o)dodr— ff(r)dr| =
0 ntn 0 0

Hy

= o [ | ec—ra@do—pfans - |

0 0

:—"p(r)—f [gin]‘dr =

2 L5

=t o o" |p(r)[dt+9iu:]_l'f[‘-’i"]

1 o
% CnQy u f

n-1

dt +

p(r)—c,,f[gi] dr<3 Jor Ost=T
Since 7" and ¢ have been arbitrary, (3.24) holds. (3.23) and (3.24) together say
that the sequence {U, (¢)};=, is convergent, and by (3.13) it converges to the
operator a. Now (3.9) and (3.10) imply by Theorem 1.1 and by (0.1) that the sequence
{U,, (¢)}r=1 too is convergent, its limit being the same operator a. This completes
the proof of Theorem 3.3.

As an interesting consequence of this theorem we obtain the following.

Theorem 3.4. There exists a subring C of C, and an equivalence relation
defined on C and compatible with addition and convolution, so that the factor ring of
with respect to n is isomorphic with M.

PROOF. Let /£ {n!};_,. Clearly, /€L and Q(/)=(1). Let C denote the set
of all those functions ¢ from C, for which the sequence {U,,(¢)};=, converges.
C is, of course, nonvoid, and by the additivity and the multiplicativity of the trans-
formation U,, as well as by the fact that the sum and the product of convergent
operator sequences is again convergent, the limit being the sum and the product
of the original limits respectively, we irfer that € is a subring of C.

Let us define the mapping @:C—~M as follows:

@)= im Uy (f) feC

3.
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By the properties just mentioned of the transformation U, and of convergent
sequences, ¢ is operation-preserving with respect to both operations. Now by
Theorem 3.3 @ maps C onto M. Thus the relation » defined by

meSo(f) =g (f,8¢C)

is a congruence on C, and the factor-ring of C with respect to 5 results isomorphic
with M.

Theorem 3.5. Let uc R, a=1 be arbitrary. Then for any sequence 1= {Aa)iz1€L
satisfying Q(l)={(a), and for any operator acM having a representation a=f|g
(f. g€C g#0) satisfving

f(at) = of (1), g(at) = ag(t)

Jor all 0=t<=-cs, there exists an operator bcM such that the operator sequence
{U,, (b)), is convergent, and

lim U, (b) = a.
PROOF. Let 2R, ,2=1 be an arbitrary number. Let 1= {Auiz1€L be an
arbitrary sequence satisfying
(3.27) o) = (&)

Moreover, let a€ M be an operator having arepresentation a=flg (f.gcC g=0)
satisfying

(3.28) f(at) =af(t) and g(ar) = ag(r)

for 0=t<oo.
dr af ar
We now define the sequences r={g,}i>,,s={0,}iz1 and m={u, ), as
follows:

Qliil! Qn+1gmin{)'k[k= 1’2,---1)‘l}%gﬂ} (H=I,2,.--)

— if 4, <g,, and
o E]& =125

— if o=y < i1

L O
M=V 0nCn+1 (" =1, 2! )

r is a subsequence of /, strictly monotonically increasing, and so m has the follo-
wing properties:

(3.29) O<py <pe<..<pty<lysr<...

lim p, = 4=

n—+ca
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Again, for the sequence s we have

(3.30) s==

with r” a subsequence of r. On the other hand the definition of r implies that all
but a finite number of elements of s fall into the interval [1, «/2], and since s is the
quotient of two subsequences of /, (3.27) implies that

(3.31) lim g, = 1.

n--co

From the definition of the sequence r we infer that the sequence {¢,../0.}i=1
has 2/2 as a lower bound, and since this sequence too is a quotient of two subsequen-
ces of /, (3.27) implies that « is an accumulation point of the sequence {g,../2,}r=1,
and that only powers of o with a positive integer exponent can be accumulation

points of {0,1/@u)az1-
Define now the functions p and ¢ on the interval 0=t< < as follows:

(332) r0*es(L) a0 L) it 0=i<u,

P20 (L) a0 % ag(L) it moa=r<m =23
This definition is correct by (3.29), and p, ¢ are locally integrable functions.
Let us now show that

(3.33) U (D) = {}f (1 =)
(3.34) %U@n({llq) = {l}g (1~ =)

Let 7=0 and &=0 be arbitrary fixed numbers. Let 4,=0 be so that

1 1
(3.35) L ron—fo] <2 and [rgon-20)] < 2

for any a~%i<v<oh and 0=r=T7. Such a J, exists by the unirofm continuity
; " 1 |

of the functions of two variables {7 f(vr)} and {? g(w‘)} on the closed rectangle

[1/e, @] X[0, T]. Now (3.35) directly implies the validity for a~%<v<a of the

inequalities

r

(3.36) f

%g(vr)—g(r)] dr = %

1 g ;
?f(w)—f(r)ldt <~ and “f
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On the other hand, from the continuity of f and of g there follows the existence of
a number d,=0, such that for 1/x=v=« the inequalities

%1 I € 1 I €
(3.37) nf SO ~f@|dt <= and u —~g()—g(n)|dt <
hold.
Let K be a positive number satisfying
(3.38) T<a* and a% <

Since only powers of z with a positive integer exponent can be points of accumula-
tion of the sequence {0,+1/0.}n=1, there exists an integer N so that for n=N

d1

&
K+1-=%

On+1 a k= K k+% K
(3.39) —E[U[a , ]]U[a s ©)
Qn k=1
Let n=N+K be an arbitrary fixed natural number. Without restricting gen-
1
erality, we can suppose 8, <—-.

2
Then (3.39) implies the existence of a natural number j=N, such that

(3.40) L

On

Let k be the natural number for which
(3.41) 0 = Ok-1< 0T =0

Then by (3.38) and (3.39) there exists for any positive integer j<i=k a real number
a~% <vy;<a’r and an integer »;, so that

(3.42) (RS 17

for j<=i=k. Let moreover nm; and |l=v;<x be an integer and a real number
respectively, so that

(3.43) % =anuy; i=12..,j

Now (3.38). (3.40) and (3.41) imply that

. /
B _ Vejejw b Q41 -

Qn On Qn

_K":ég

and

=& _ Vol _ B

Qn 2, Qn

A

W
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Then by (3.28), (3.32), (3.36), (3.37), (3.42) and (3.43) we have

1 Ot 4 1 Cnt 1 T
|E'§Qn{f P(r)dt—dff(a)dal = aﬂf E;p(t)*f[a] dr =
o
k=1 o T e
= ‘g; ﬂ(__/' vif [;:] —f(o) / vif [E] —f(0) do <= &.
[ Cn

In a similar manner, we obtain analogous inequalities for ¢ and for g re-
spectively. Since n=N+ K has been arbitrary, (3.33) and (3.34) follow, and this is
equivalent to the statement that for 53£p/q the operator sequence {U, (b)}i,

converges, and
limU, (b) = a
N ea

From this however, by (0.1) and Theorem 1.1, and in view of (3.31), we immediately
get the statement of the theorem.

Definition 4.1. Let /= {4} 1€L be an arbitrary sequence, and a€M an
arbitrary operator. We say that a is /-integrable on the interval (— e, =), if the
operator sequence {U; (a)};.,; converges and has a number as its limit.

Definition 4.2. Let a€ M be an arbitrary operator. We say that a is integ-
rable on the interval (—e=, ==), if it is /-integrable for any /€ L.

Theorem 4.1. Let <= {Znynz1 €L be an arbitrary sequence. I-integrability implies
integrability, if and only if there exists a number K=0 such that for all n

(41) KJ;:-” == Ak” = ).R
holds for some k, depending on n.

PrOOF. Let /£ {A.}iz1€L be a sequence satisfying (4.1). Let r {o. i1 €L
be an arbitrary sequence. On the basis of (4.1), for any natural number » there
exists a natural number k,, so that

(4.2) K, = 0u = X,

for any positive integer n, and /” g{).,,‘"};“=l is a subsequence of /. But by (4.2)
the sequence r//” has upper and lower bounds, and so Theorem 1.2 implies by
(0.1) and on the basis of Definition 4.1 the sufficiency of the condition.

Let us now show that the condition is necessary. Let 12 {/a)iz1€L be a sequence
which does not satisfy condition (4.1). Then for any natural number » there exists
a natural number &, (k,<k,.,,n=1,2,...), so that

(4.3) Ak‘;{ (/I:.kn, H.‘ ;‘k,.) k - l., 2, -
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Let p be the following function defined on [0, ==):

G a [0 I niy <t <n*i, and
{49 L otherwise.

Let adzrp/{l], and rZ {n*2, Jie1€L. We now show that the operator a is
both [-integrable and r-integrable, but the two limits fail to coincide, and so a is
not integrable.

Let 7=0 and &=0 be arbitrary numbers. Let » be a natural number, satis-
fying n=T and 1/n<e. Let moreover K be a number, so that A=K implies
/x=4;,. Then (4.3) and (4.4) together imply that for k=K and 0=¢=T the fol-
lowing inequalities hold, where m (=n) denotes the positive integer for which
)'*m-:)'k{:)"‘m-;l:

1 At ’ md iy

l m I ")'k l
ah [ r@d—t| =4 [ "’“)"["”’Zm,{ 1-1jde = — <,

nhi

1 " 1
=;2-"_t:[if |p(t)|d'r=?f:£

ni, t

1 o n
|mn j'k,, df P(T) dr

Thus
1
=0 {}p) ={} (=),
1
45 (n*4,)? U‘"'*n")({]}!’) =0 (n— <)

RE
imU; (@ =1 and limUsg;, (a) =0.

n—-e=
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