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Mean-square derivative of a linear non-anticipative
transformation of a continuous martingale

By ZORAN IVKOVIĆ (Beograd),

PREDRAG PERUNIČIĆ (Beograd)

and DRAŽEN PANTIĆ (Beograd)

Abstract. We give necessary and sufficient conditions so that linear non-antici-
pating process over the continuous martingale is differentiable with respect to structural
function of underlying martingale. This result is applied to the linear theory of non-
anticipating processes and a series of consequences is derived.

1. Let Z = {Z(t), t ≥ 0} be a real mean-square continuous random
process, EZ(t) = 0, Z(0+) = 0. Denote by H(Z; t) the mean-square linear
closure of {Z(s), s ≤ t}, H(Z) =

∨
tH(Z; t), and by PZ

t an orthogonal
projection operator onto H(Z, t). In the sequel we shall suppose that Z is
wide-sence martingale, i.e. PZ

s Z(t) = Z(s), 0 ≤ s < t with the structural
function F (t) = EZ2(t) = ‖Z(t)‖2, t ≥ 0. It is well-known that any
ξ ∈ H(Z; t) has the representation

(1) ξ =
∫ t

0

g(u)Z(du), ‖ξ‖2 =
∫ t

0

g2(u)F (du)

for some g ∈ L2([0, t];F (du)).
A process X = {X(t), t ≥ 0} is the linear non-anticipative transfor-

mation of Z if X(t) ∈ H(Z; t) for any t ≥ 0. It follows immediately from
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(1) that X has the representation

(2) X(t) =
∫ t

0

g(t, u)Z(du), ‖X(t)‖2 =
∫ t

0

g2(t, u)F (du).

We also use notation X = [g, Z].

Definition 1. Mean-square derivative of X is the process
Ẋ = {Ẋ(t), t > 0} defined by

(3) X(t) =
∫ t

0

Ẋ(s)F (ds),
∫ t

0

E(Ẋ(s))2F (ds) < ∞.

We assume that Ẋ(t0) = 0 if t = t0 is not the increasing point for F .

It is easy to see that the existence of Ẋ(t) 6= 0 implies the existence
of

(4) X ′(t) = l. i. m.h→0
X(t + h)−X(t)
F (t + h)− F (t)

, and X ′(t) = Ẋ(t),

but it is possible that X ′ exists and Ẋ does not exists.
The following example motivated us to regard the derivative of X as

the process Ẋ.

Example 1. Consider the case Z = W , where W = {W (t), t ≥ 0} is
a wide sense Wiener process (F (dt) = dt). It follows from (4) that X ′ is
non-anticipative transformation of W , say X ′ = [f,W ]. For h > 0 we have

∥∥∥X(t + h)−X(t)
h

−X ′(t)
∥∥∥

2

=
∥∥∥
∫ t

0

(g(t + h, u)− g(t, u)
h

− f(t, u)
)
W (du)

∥∥∥
2

+
∥∥∥
∫ t+h

t

(g(t + h, u)
h

)
W (du)

∥∥∥
2

=
∫ t

0

(g(t + h, u)− g(t, u)
h

− f(t, u)
)2

du +
∫ t+h

t

(g(t + h, u)
h

)2

du,

so X ′(t) exists if and only if the two last summands tend to 0 when h → 0.
Put

X(t) =
∫ t

0

(K(t)−K(u))W (du), 0 ≤ t ≤ 1,
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where K(x), 0 ≤ x ≤ 1, is Cantor distribution function. As K ′(x) a.e.= 0,
we have

∥∥∥X(t + h)−X(t)
h

∥∥∥
2

=
1
h2

{∫ t

0

(K(t + h)−K(t))2du +
∫ t+h

t

(K(t + h)−K(u))2du
}

≤ t

h2
(K(t + h)−K(t))2 +

1
h2

∫ t+h

t

(K(t + h)−K(t))2du

= (t + h)
{ 1

h
(K(t + h)−K(t))

}2

→ 0, h → 0,

so X ′(t) = 0 and the process X is not reproducible by the process X ′. ¤
Let us return to the general case (3). it follows from (4) that Ẋ is

non-anticipative transformation, Ẋ = [f, Z].

Proposition 1. The process X = [g, Z] has the derivative Ẋ = [f, Z]
if and only if

(5) g(t, u) =
∫ t

u

f(x, u)F (dx).

Proof. Let t be a point of increase of F . We have
∥∥∥X(t)−

∫ t

0

Ẋ(s)F (ds)
∥∥∥

2

=
∥∥∥
∫ t

0

g(t, u)Z(du)−
∫ t

0

(∫ s

0

f(s, u)Z(du)
)

F (ds)
∥∥∥

2

=
∥∥∥
∫ t

0

g(t, u)Z(du)−
∫ t

0

(∫ t

u

f(s, u)F (ds)
)

Z(du)
∥∥∥

2

=
∫ t

0

(
g(t, u)−

∫ t

u

f(s, u)F (ds)
)2

F (du),

and the conclusion follows immediately. ¤
As an example connected to the previous discussion, consider X =

[g, Z] where the structural function of Z is K(t) and g(t, u) = K(t) −
K(u) =

∫ t

u
1 K(dx). Then Ẋ =

∫ t

0
1 Z(du) = Z(t), i.e. Ẋ = [1, Z] .

The derivative process Ẋ does not depend on the representation X =
[g, Z] in the following sense:
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Proposition 2. Let H(Z1; t) = H(Z2; t) for each t, and let X have

corresponding representations [g1, Z1] and [g2, Z2]. Then the processes Ẋ1

and Ẋ2 coincide.

Proof. As for each t we have H(Z1; t) = H(Z2; t) it follows that the
measures F1 and F2 are equivalent. Let

F1(du)
F2(du)

= φ(u) > 0 a.e. F2(du)

be the Radon-Nikodym derivative. Then

X(t) =
∫ t

0

g1(t, u)Z1(du) =
∫ t

0

g1(t, u)
√

φ(u)Z2(du)

so g2(t, u) = g1(t, u)
√

φ(u) and f2(t, u) = f1(t, u)
√

φ(u), and

Ẋ1(t) =
∫ t

0

f1(t, u)Z1(du) =
∫ t

0

f2(t, u)√
φ(u)

√
φ(u)Z2(du)

=
∫ t

0

f2(t, u)Z2(du) = Ẋ2(t). ¤

For example, if in (2) the measure F is equivalent to the Lebesgue
measure (F (dt) v dt) the Proposition 2 allows us to consider W instead
of Z, where W is a wide-sense Wiener process. In that case X have
representation

(6) X(t) =
∫ t

0

g(t, u)W (du), ‖X(t)‖2 =
∫ t

0

g2(t, u)du.

For the sake of simplicity in the rest of the paper we shall deal with the
representations in the form (6).

Now it is easy to prove the following

Proposition 3. If a non-zero process {Y (t), t ≥ 0} is mean-square an-
alytic then it is not a non-anticipative transformation of a Wiener process.

Proof. Let

Y (t) =
∫ t

0

g0(t, u)W (du).

Then

Ẏ (n)(t) =
∫ t

0

gn(t, u)W (du) (n ≥ 0)
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where

gn(t, u) =
∫ t

u

gn+1(z, u)dx (n ≥ 0).

It is evident that gn(u, u) = 0. Expanding g0(t, u) in Taylor series with
respect to t in the neighborhood of t = u we get

g0(t, u) = g0(u, u) +
(t− u)

1!
g1(u, u) +

(t− u)2

2!
g2(u, u) + · · · = 0

for each (t, u), u ≤ t. ¤

Example 2. Consider Loève-Karhunen representation of {W (t), 0 ≤
t ≤ 1}:

W (t) =
∞∑

n=0

Zn

∫ t

0

φn(s)ds

where {Zn, n ≥ 0} is orthonormal basis in H(W ) and

Zn =
∫ 1

0

φn(s)W (ds).

Let Ẏ (n)(t0) = Zn, and define mean-square analytic process
{Y (t), 0 ≤ t ≤ 1} as

Y (t) =
∞∑

n=0

(t− t0)n

n!
Zn

It is evident that Y (t) ∈ H(W ) for each t ∈ [0, 1], but Y (t) /∈ H(W ; t)
for any t ∈ [0, 1). So {Y (t)} is not a non-anticipative transformation of
{W (t)}.

Remark 1. Now we shall consider, more generally, the nonanticipative
non-linear transformation of Wiener process {W (t), t ≥ 0}. (Not a wide
sense Wiener process.) Let H(W ; t) be the mean-square linear closure
of all random variables (of finite variance) measurable with respect to
σ-field generated by {W (u), u ≤ t},H(W ) =

∨
tH(W ; t). It was shown

in [3] that there exist mutually orthogonal wide sense Wiener processes
{Hp(t), t ≥ 0}, p = 1, 2, . . . , (H1(t) = W (t)) such that Hp(t) ∈ H(W ; t)
for each t and p, and

H(W ; t) = ⊕
∞∑

p=1

H(Hp; t)
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for each t. The process {X(t), t ≥ 0} is a non-linear non-anticipative
transformation of a Wiener process {W (t)} if X(t) ∈ H(W ; t) for each t.
The representation

X(t) =
∞∑

p=1

∫ t

0

gp(t, u)Hp(du), ‖X(t)‖2 =
∞∑

p=1

∫ t

0

g2
p(t, u)du

follows immediately. So we have

Proposition 4. Suppose that gp(t, u) =
∫ t

u
fp(x, u)dx for each p =

1, 2, . . . and
∞∑

p=1

∫ t

0

fp(t, u)Hp(du),

converges locally uniformly in mean-square sense over t > 0. Then Ẋ(t)
exists and

Ẋ(t) =
∞∑

p=1

∫ t

0

fp(t, u)Hp(du). ¤

In the remaining part of the paper we shall consider only non-anticipa-
tive linear transformations, so the adjective ‘linear’ will be omitted.

2. According to Hida [3], the representation (6) is canonical if the
projection X(t, s) = PX

t X(t) of X(t) onto H(X; s), s < t, is of the form

(7) X(t, s) =
∫ s

0

g(t, u)W (du).

The representation (6) is proper canonical if H(X, t) = H(W, t) for each t.
We have the following situation in terms of spectral theory of self-adjoint
transformations in the separable Hilbert space: [5], a resolution of identity
{Pt, t ≥ 0} in Hilbert space H(X) is defined by PtH(X) = H(X, t). The
relation (7) means that the space H(X) is subspace of H(W ) reducing
{Pt, t ≥ 0}. One can pass from canonical representation X = [g, W ]
to proper canonical one by the suitable choice of wide-sense martingale
{Z(t), t ≥ 0}, H(Z, t) = H(X, t), with the structural function FZ(du) =
φ(u)du, φ(u) ≥ 0 (a.e. du):

(8) X(t) =
∫ t

0

g(t, u)Z(du) =
∫ t

0

g(t, u)
√

φ(u)W (du).

Then the representation (8) is proper canonical: X = [g, Z] = [g
√

φ,W ].
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Proposition 5. If (6) is the proper canonical representation of X =
{X(t), t > 0} and the derivative Ẋ = {Ẋ(t), t > 0} exists, then

(9) Ẋ(t) =
∫ t

0

f(t, u)W (du), ‖Ẋ(t)‖2 =
∫ t

0

f2(t, u)du

is the proper canonical representation of Ẋ.

Proof. We will use the following characterization [4]: the represen-
tation (6) is proper canonical if and only if from

(∗)
∫ t

0

g(t, u)h(u)du = 0, ∀t ≥ 0

it follows that h(u) = 0 (a.e. du). Therefore, we only need to show that
from

(∗∗)
∫ t

0

f(t, u)h(u)du = 0, ∀t ≥ 0

the relation (∗) follows, for any h ∈ L2(du). But, if (∗∗) holds we have
∫ t

0

g(t, u)h(u)du =
∫ t

0

{∫ t

u

f(s, u)ds

}
h(u)du

=
∫ t

0

{∫ s

0

f(s, u)
}

h(u)duds = 0

so h(u) = 0 (a.e. du) and the representation (9) is proper canonical. ¤

Remark 2. The concept of proper canonical representation was gen-
eralized in Cramèr’s paper [1] as the theory of spectral multiplicity of
second order processes. From this theory it follows that for any fixed in-
teger M , finite or infinite, there exists mean-square continuous process
{X∗(t), t ≥ 0} with the proper canonical representation

(10) X∗(t) =
M∑

n=1

∫ t

0

gn(t, u)Wn(du), ‖X∗(t)‖2 =
M∑

n=1

∫ t

0

g2
n(t, u)du

where:
10 {Wn(t), t ≥ 0}, n = 1, . . . ,M are mutually orthogonal wide-sense

Wiener processes;
20 Wn(t) ∈ H(X∗; t), t ≥ 0, n = 1, 2, . . . ,M ;
30 H(X∗; t) =

∑M
n=1H(Wn; t), t ≥ 0.
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We use asterix ∗ in the notation X∗ to refer to the process X∗ =
{X∗(t), t ≥ 0} of the spectral multiplicity M ≥ 2. It was proved in [2] that
(10) is the proper canonical representation if and only if from

M∑
n=1

∫ t

0

hn(u)gn(t, u)du = 0, ∀t ≥ 0

it follows hn(t) = 0 (a.e. dt), n = 1, . . . ,M .

Proposition 6. The process X∗ has a mean-square derivative Ẋ∗ if

and only if gn(t, u) =
∫ t

u
fn(x, u)dx for n = 1, . . . ,M , and

(11) Ẋ∗(t) =
M∑

n=1

∫ t

0

fn(t, u)Wn(du)

provided that the series (11) is uniformly convergent. The representation

(11) is proper canonical representation of Ẋ∗.

We omit the easy proof.

Example 3. We give the example of mean-square derivative Ẋ∗ of the
process X∗ with the spectral multiplicity M ≥ 2. Suppose t ∈ [0, 1], and
let A1, . . . , AM be mutually disjoint subsets of [0, 1], such that

⋃M
n=1 An =

[0, 1] and for any nonempty (a, b) ⊂ [0, 1] the Lebesgue measure of An ∩
(a, b) is positive for each n = 1, . . . ,M , (see [1]). Denote by χn(t) the
indicator function of An. Let

gn(t, u) =
∫ t

u

χn(v)dv.

Then fn(t, u) = χn(t) and

Ẋ∗(t) =
M∑

n=1

∫ t

0

χn(t)Wn(du) =
M∑

n=1

χn(t)Wn(t).

3. Hida in [4] develops the concept of N-ple Gaussian Markov pro-
cesses as the processes having proper canonical Goursat kernel

g(t, u) =
N∑

k=0

fk(t)gk(u).

We consider a particular case of Goursat kernel and show that it is
proper canonical kernel.
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Proposition 7. Let

g(t, u) =
N∑

k=0

tkαk(u), (αN (u) = 1)

be the kernel of a non-anticipative transformation (6) and let Ẋ(N)(t) be

different from zero. Then

g(t, u) = (t− u)N

and the representation is proper canonical.

(The assumption αN (u) = 1 is not essential.)

Proof. Rewriting the kernel g(t, u) as Taylor polynomial in t at the
point s we get

(9)
g(t, u) = g(s, u) +

(t− s)
1!

∂

∂t
g(t, u)|t=s

+ · · ·+ (t− s)N−1

(N − 1)!
∂N−1

∂tN−1
g(t, u)|t=s + (t− s)N

(
∂N

∂tN g(t, u) = N !
)
. Putting u = s and using existence of derivatives

Ẋ(k)(t), 1 ≤ k ≤ N , we obtain g(t, u) = (t− s)N .
The correlation function of {X(t)} is

r(t, s) =
〈
X(t), X(s)

〉
=

∫ s

0

(t− u)N (s− u)Ndu, t ≥ s

We have, for t > s ≥ v

r(t, v) = r(s, v) +
(t− s)

1!
∂

∂t
r(t, v)|t=s + · · ·+ (t− s)N

N !
∂N

∂tN
r(t, v)|t=s

and
〈
X(t), X(v)

〉
=

〈
X(s), X(v)

〉
+

(t− s)
1!

〈
Ẋ(s), X(v)

〉

+ · · ·+ (t− s)N

N !
〈
Ẋ(N)(s), X(v)

〉
,

so
〈
X(t)−

N∑

k=0

(t− s)k

k!
Ẋ(k)(s), X(v)

〉
= 0
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for all v ≤ s. The last equality shows that the linear prediction X(t, s) =
PsX(t) is

X(t, s) =
N∑

k=0

(t− s)k

k!
Ẋ(k)(s)

(Ps is the projection operator on H(X; s). Taking
∫ s

0
( . )W (du) on the

both sides in (9), we obtain
∫ s

0

g(t, u)W (du) =
N∑

k=0

(t− s)k

k!
Ẋ(k)(s)

or ∫ s

0

(t− u)NW (du) = X(t, s),

so we conclude that the representation

X(t) =
∫ t

0

(t− u)NW (du)

is canonical. It is in fact proper canonical, as it follows from the remark
above. ¤

Using previous results, we can estimate the linear prediction Y (t; s)
and a Taylor polynomial Ỹ (t; s) and find the error of this estimation.

Proposition 8. Let {Y (t)} have mean-square continuous (N + 1)-th
derivative on [s, t] for some N = 0, 1, 2, . . . and let

c = max
s≤v≤t

‖Y (N+1)(v)‖2.

Then the linear prediction Y (t; s) can be approximated by

Ỹ (t; s) =
N∑

k=0

(t− s)k

k!
Ẏ (k)(s)

with mean-square error of this approximation

‖Y − Ỹ ‖2 ≤ c
[ (t− s)N+1

(N + 1)!

]2

.

Proof. For u ≤ s < ξ < t the expansion

r(t, u) = r(s, u) +
(t− s)

1!
∂

∂t
r(t, u)|t=s + · · ·+ (t− s)N

N !
∂N

∂tN
r(t, u)|t=s

+
(t− s)N+1

(N + 1)!
∂N+1

∂tN+1
r(t, u)|t=ξ,
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yields, for all u ≤ s
〈

Y (t)− Ỹ − (t− s)N+1

(N + 1)!
Ẏ (N+1)(ξ), Y (u)

〉
= 0

or

Ps

(
Y (t)− (t− s)N+1

(N + 1)!
Ẏ (N+1)(ξ)

)
= Ỹ

so it follows that

Y − Ỹ = Ps

(
(t− s)N+1

(N + 1)!
Ẏ (N+1)(ξ)

)
.

Finally,

‖Y − Ỹ ‖2 ≤
∥∥∥∥

(t− s)N+1

(N + 1)!
Ẏ (N+1)(ξ)

∥∥∥∥
2

≤ c

[
(t− s)N+1

(N + 1)!

]2

. ¤

The authors thank referee for useful suggestions and remarks.
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