
Publ. Math. Debrecen

50 / 1-2 (1997), 29–36

On the form of some solutions of a linear iterative
functional inequality of n-th order

By BOGDAN CHOCZEWSKI (Kraków) and MARIA STOPA (Kraków)

Abstract. Three representation theorems are proved for continuous solutions of
a linear iterative functional inequality (1) of n-th order, with constant coefficients.

1. Introduction

We consider the following functional inequality with constant coeffi-
cients:

(1) ψ1(fn(x)) + an−1ψ1(fn−1(x)) + . . . + a0ψ1(x) ≤ 0

where ψ1 is an unknown function and f i denotes the i-th iterate of a given
function f . The paper contains three theorems of the representation type
for the inequality (1) concerning its continuous solutions. They are based
on results from paper [3] obtained for the inequality of second order of
type (1) (with some special functional coefficients).

We assume the following hypotheses:
(H) f : I → I, I = [0, a), a > 0, f is continuous and strictly increasing

on I and 0 < f(x) < x, x ∈ I \ {0}; ai ∈ R, i = 0, . . . , n− 1.

The polynomial:

(2) wn(λ) = λn + an−1λ
n−1 + . . . + a1λ + a0

is called the characteristic polynomial of the inequality (1). Denote by
λ1, . . . , λn the roots of this polynomial.

If ψ1 :→ R is a solution of inequality (1), then the function ψ2 : I → R,
given by the formula

(3) ψ2(x) := ψ1(f(x))− λ1ψ1(x)
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satisfies the inequality of (n− 1)st order:

(4) ψ2(fn−1(x)) + bn−2ψ2(fn−2(x)) + . . . + b0ψ2(x) ≤ 0, x ∈ I

where b0, . . . , bn−2 are the coefficients of the polynomial obtained on di-
viding polynomial (2) by (λ− λ1):

(λ− λ1)(λn−1 + bn−2λ
n−2 + . . . + b0) = wn(λ).

In turn, introducing the functions ψi : I → R:

ψi(x) = ψi−1(f(x))− λi−1ψi−1(x), (i = 3, . . . , n)

we get the following system

(5)





ψ1(f(x))− λ1ψ1(x) = ψ2(x)
...

ψn−1(f(x))− λn−1ψn−1(x) = ψn(x)
ψn(f(x))− λnψn(x) ≤ 0

which is equivalent to inequality (1), in the following sense: if ψ1 is a
solution of (1) then the system of functions (ψ1, . . . , ψn) satisfies (5); and
conversely, given a solution (ψ1, . . . , ψn) of system (5), the function ψ1

satisfies inequality (1).

2. Preliminaries

In this paper we shall consider the following two cases concerning the
roots of the characteristic polynomial (2)

1 > |λi| > λn > 0, i = 1, . . . , n− 1; λ1 ∈ R(I)

|λ1| ≥ |λ2| ≥ . . . ≥ |λk| > 1, |λk+1| = . . . = |λk+l| = 1(II)

1 > |λi| > λn > 0, i = k + l + 1, . . . , n− 1; λk+l+1 ∈ R
1 ≤ k + l < n, k, l ∈ {1, . . . , n− 1}.

Note that in both cases complex roots of (2) are allowed and that in the
case (II), we practically classify only the roots according to whether they
are either outside, or on, or inside the unit circle.
In the sequel we shall use the following notions and notations.
1. A function η : I → R is said to be f -decreasing iff

η(f(x)) ≤ η(x), x ∈ I
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2. For a given solution ψ1 : I → R of (1) let ψn : I → R be the function
corresponding to (defined by) this ψ1 via system (5). By Ψn we denote
the family of solutions to (1), which are asymptotically comparable (at the
origin) with a solution φ̃ : I → R of the Schröder equation

(6) φ(f(x)) = λnφ(x), x ∈ I.

The definition of Ψn follows:

Ψn =
{

ψ1 : I→R; ψn ≥ 0 in I and there exists a φ̃ : I→R satisfying (6)

φ̃(x) > 0 in I \ {0} such that lim
x→0

ψ1(x)

φ̃(x)
6= 0

}
.

3. Case n = 2

The case of n = 2 in (1) is a special case of the inequality that has
been considered in [3]

(7) ψ1(f2(x))− (λ(f(x)) + µ(x)) ψ1(f(x)) + λ(x)µ(x)ψ1(x) ≤ 0

where ψ1 is an unknown function, µ, λ and f are given functions, f2

denotes the second iterate of the function f . Indeed, putting in (7) λ(x) ≡
λ1, µ(x) ≡ λ2 where λ1, and λ2 are the roots of the polynomial (w2(λ) =
λ2 + a1λ + a0), we obtain (1) with n = 2. In what follows we shall make
use of the following results adapted from [3] to the case of n = 2 in (1).

Lemma 1. Assume (H) to hold and let φ2 : I → R+ be a continuous
solution of equation (6) (with n = 2) and let

(i) 0 < λ2 < |λ1| < 1.

Then each function:

(8) ψ1(x) := −φ2(x)
∞∑

i=0

η(f i(x))
λi+1

1

λi
2, x ∈ I

(where η : I → R is a continuous, {f}-decreasing function) is a continuous
solution of the inequality (1) (with n = 2).

Lemma 2. If (H) and (i) hold and ψ1 ∈ Ψn is a solution of (1), then

(a) There exists the function φ0 : I → R given by:

(9) φ0(x) = lim
j→∞

[
ψ2(f j(x))λ−j

2

]
, x ∈ I
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where ψ2 is the function defined by (3), and this function is continuous
in I, satisfies equation (6) (n = 2) and φ0(x) > 0 in I \ {0}.

(b) There exists the limit:

(10) lim
x→0

[ψ1(x)/φ0(x)] = (λ2 − λ1)−1

where φ0 is given by (9).
(c) If ψ1 ∈ Ψ2 is a solution of (1) (with n = 2), then there is exactly

one {f}-decreasing and continuous function η : I → R+, η(0) = 1, such
that ψ1 is given by (8) (with φ2 replaced by φ0(x), defined by (9)).

4. Case (I)

We start with the case (I) of all the characteristic roots of (2) in abso-
lute value less than unity. The following theorem corresponds to Lemma 1.

Theorem 1. Assume (H) and (I). If φn : I → R is a nonnegative
solution of (6) then every function ψ1 : I → R given by:

ψ1(x) = (−1)n+1φn(x)
∞∑

i1=0

· · ·
∞∑

in−1=0

η(f i1+...+in−1(x))

λi1+1
1 · . . . · λin−1+1

n−1

λi1+...+in−1
n ,

x ∈ I(11)

(where η : I → R is a continuous, {f}-decreasing function) is a continuous
solution of inequality (1).

Proof. To start the inductive proof let n = 2. Then the Theorem
reduces to Lemma 1, cf. (8).

Assume the assertion is valid for inequalities (1) of order n − 1. To
prove that it is also for inequalities of n-th order, it is enough to check
(cf. Section 2) that the function ψ2(x) : I → R given by (3) satisfies
inequality (4). We calculate

ψ2(x) = ψ1(f(x))− λ1ψ1(x)

= (−1)n+1

[
φn(f(x))

∞∑

i1=0

· · ·
∞∑

in−1=0

η(f i1+...+in−1+1(x))

λi1+1
1 · . . . · λin−1+1

n−1

λi1+...+in−1
n

− λ1φn(x)
∞∑

i1=0

· · ·
∞∑

in−1=0

η(f i1+...+in−1(x))

λi1+1
1 · . . . · λin−1+1

n−1

λi1+...+in−1
n

]
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=(−1)n+1

[
φn(x)

∞∑

i1=1

∞∑

i2=0

. . .

∞∑

in−1=0

λ1
η(f i1+...+in−1(x))

λi1+1
1 · . . . · λin−1+1

n−1

λi1+...+in−1
n

− φn(x)
∞∑

i2=0

. . .

∞∑

in−1=0

η(f i2+...+in−1(x))

λi2+1
2 · . . . · λin−1+1

n−1

λi2+...+in−1
n

− φn(x)
∞∑

i1=1

∞∑

i2=0

. . .

∞∑

in−1=0

λ1
η(f i1+...+in−1(x))

λi1+1
1 · . . . · λin−1+1

n−1

λi1+...+in−1
n

]

= (−1)nφn(x)
∞∑

i2=0

. . .

∞∑

in−1=0

η(f i2+...+in−1(x))

λi2+1
2 · . . . · λin−1+1

n−1

λi2+...+in−1
n

since the first and the last expression in brackets cancel each other. Thus
the function ψ2 is given by (11) (with n replaced by n− 1), therefore, by
the induction hypothesis, it satisfies inequality (4). According to (3), the
function ψ1 satisfies inequality (1).

To proceed further, we need the Lemma corresponding to Lemma 2
(a) and (b). This is our

Lemma 3. Assume (H) and (I). If ψ1 ∈ Ψn, then there exist:
– the function (with ψn generated in (5) by ψ1)

(12) φ0(x) = lim
i→∞

[ψn(f i(x))λ−i
n ], x ∈ I

which satisfies equation (6), is continuous in I and positive in I \ {0}.
– the limit

(13) lim
x→0

[ψ1(x)/φ0(x)] =
n−1∏

i=1

(λn − λi)
−1

Proof. For n = 2 our Lemma is just Lemma 2 (a) and (b).
Assume the Lemma to be true for inequalities (1) of order n−1, n > 2.

Since ψ1 satisfies (1), it satisfies also the equation

(14) ψ1(f(x))− λ1ψ1(x) = ψ2(x)

where ψ2 is a solution to (4). From the definition of the family Ψn (cf. Sec-
tion 2 — the limit condition) we conclude, by (14), that there exists
limx→0 ψ2(x)/φ̃(x) and it does not vanish. Thus ψ2 ∈ Ψn−1. By the
induction hypothesis we get the existence of the following limits:

lim
i→∞

[λ−i
n ψn(f i(x))] = φ0(x), x ∈ I
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(this is so since ψn is generated by ψ2 as well) and

(15) lim
x→0

[ψ2(x)/φ0(x)] =
n−1∏

i=2

(λn − λi)−1.

Moreover, the function φ0 actually has all the required properties. Hence,
as ψ1 ∈ Ψn, there exists the limit limx→0[ψ1(x)/φ0(x)]. To calculate it,
divide first both sides of (14) by φ0(f(x)), (x ∈ I \ {0}):

ψ1(f(x))
φ0(f(x))

− λ1

λn

ψ1(x)
φ0(x)

=
ψ2(x)

λnφ0(x)
.

Passing to the limit, as x → 0, here, we obtain

lim
x→0

ψ1(x)
φ0(x)

[
1− λ1

λn

]
=

1
λn

lim
x→0

ψ2(x)
φ0(x)

.

On account of (15) we have (13).

For the functions belonging to the family Ψn, we have the following
representation theorem.

Theorem 2. Assume (H) and (I). Let ψ1 ∈ Ψn. There is exactly one
function η : I → R, continuous, {f}-decreasing, η(0) = 1, such that

ψ1(x) = (−1)n+1φ0(x)
∞∑

i1=0

· · ·
∞∑

in−1=0

η(f i1+...+in−1(x))

λi1+1
1 · . . . · λin−1+1

n−1

λi1+...+in−1
n ,

x ∈ I(16)

where φ0 is defined by (12).

Proof. For n = 2 this is Lemma 2 (c).
Assume our Theorem to be true for inequalities (1) of order n − 1.

Since ψ1 satisfies (1) (cf. Section 2 — the definition of Ψn), it also satisfies
equation (14), where ψ2 fulfils (4). This means that ψ2 ∈ Ψn−1 and, by
the induction hypothesis, there is exactly one function η : I → R, which is
continuous, {f}-decreasing, η(0) = 1, such that

ψ2(x) = (−1)nφ0(x)
∞∑

i2=0

. . .

∞∑

in−1=0

η(f i2+...+in−1(x))

λi2+1
2 · . . . · λin−1+1

n−1

λi2+...+in−1
n ,

x ∈ I.(17)
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From Lemma 3 we know that (13) holds. Thus the function

(18) ψ̂1(x) =





ψ1(x)
φ0(x)

, x ∈ I \ {0}

n−1∏
i=1

(λn − λi)−1, x = 0

is continuous in I. The function φ = ψ̂1 satisfies the equation

φ(f(x))− λ1

λn
φ(x) =

ψ2(x)
λnφ0(x)

.

By (I) we have
∣∣∣ λ1
λn

∣∣∣ > 1, so that this linear iterative functional equation
possesses the unique continuous solution which is given by the formula

ψ̂1(x) = − 1
λn

∞∑

i=0

ψ2(f i(x))(λn

λ1
)i+1

φ0(f i(x))

(cf. [1] Th. 2.7 or [2] Ch. 3.1C). According to (17) and (16) formula (16)
follows.

5. Case (II)

We conclude the paper with a theorem concerning the case (II). Let

m = n− (k + l)

be the number of those characteristic roots of the polynomial (2) which
are inside the unit circle.

Theorem 3. Assume (H) and (II). If ψ1 : I → R is a continuous
solution of the inequality (1) such that the function ψk+l+1, generated by
ψ1 via the system (5), belongs to the family Ψm and if at least one root of
the characteristic polynomial (2) is equal one, then there exist a constant
c ∈ R and a continuous, {f}-decreasing function η : I → R, η(0) = 1, such
that

ψ1(x) =
c∏k+r

i=1 (1− λi)
(19)

+(−1)n+1φ0(x)
∞∑

i1=0

· · ·
∞∑

in−1=0

η(f i1+...+in−1(x))

λi1+1
1 · . . . · λin−1+1

n−1

λi1+...+in−1
n , x ∈ I
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where φ0 is given by (12) and r denotes the number of those characteristic
roots of (2) which are from the unit circle and differ from 1 and −1.

Proof. If ψ1 : I → R is a continuous solution of inequality (1) such
that ψk+l+1 ∈ Ψm, then by Theorem 2 the function ψk+l+1 is given by
the formula

ψk+l+1(x) = (−1)m+1φ0(x)
∞∑

i1=0

. . .

∞∑

im−1=0

η(f i1+...+im−1(x))

λi1+1
k+l+1 · . . . · λim−1+1

n−1

λi1+...+im−1
n ,

x ∈ I

Using this formula in the (k + l)-th equation of the system (5), i.e.

ψk+l(f(x))− λk+lψk+l(x) = ψk+l+1(x)

we may go back to the first equation of (5) by the same way as it has been
done in the proof of Theorem 2 from [4]. This procedure, whose details
are not reproduced here, then yields formula (19).
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