Publ. Math. Debrecen 50 / 1-2 (1997), 57–68

On Riemannian manifolds endowed with a T-parallel almost contact 4-structure

By FERNANDO ETAYO (Santander) and RADU ROSCA (Paris)

Abstract. \mathcal{T} -parallel almost contact 4-structures on a Riemannian manifold are studied. It is proved that such a manifold is a local Riemannian product of two totally geodesic submanifolds, one of them being a space form. Additional results are obtained when the manifold is endowed with a framed *f*-structure.

1. Introduction

In the last two decades, contact, almost contact, paracontact and almost cosymplectic manifolds carrying r (r > 1) Reeb vector fields ξ_r have been studied by a certain number of authors, as for instance: M. KOBAYASHI [11], A. BUCKI [4], S. TACHIBANA and W. N. YU [22], K. YANO and M. KON [25], V. V. GOLDBERG and R. ROSCA [8] and some others.

In the present paper we consider a (2m + 4) dimensional Riemannian manifold carrying 4 structure vector fields ξ_r $(r, s \in \{2m + 1, \ldots, 2m + 4\})$ and with a distinguished vector field \mathcal{T} , such that the vertical connection forms define a \mathcal{T} -parallel connection and the Reeb vector fields are \mathcal{T} -parallel (this structure is called a \mathcal{T} -parallel almost contact 4-structure and it will be defined in Definition 3.1). Then we shall prove that such a manifold is a local Riemannian product of two totally geodesic submanifolds, $M = M^{\top} \times M^{\perp}$, where M^{\perp} is a space form tangent to the distribution generated by the Reeb vector fields, and that the vector field \mathcal{T} is closed torse forming (Theorem 3.3).

In section 4 we shall study conformal-type structures induced by a \mathcal{T} parallel almost contact 4-structure. Finally, in section 5 we assume that
the manifold under consideration is endowed with a framed *f*-structure,
proving that M^{\top} is a Kählerian submanifold (Theorem 5.2).

Mathematics Subject Classification: 53C15, 53B20, 53C55.

Fernando Etayo and Radu Rosca

2. Preliminaries

Let (M, g) be a Riemannian C^{∞} -manifold and let ∇ be the covariant differential operator defined by the metric tensor g. We assume that Mis oriented and ∇ is the Levi-Civita connection. Let ΓTM be the set of sections of the tangent bundle TM and $\flat : TM \to T^*M, X \to X^{\flat}$, the musical isomorphism defined by g. Next, following a standard notation, we set: $A^q(M, TM) = \operatorname{Hom}(\Lambda^q TM, TM)$ and notice that elements of $A^q(M, TM)$ are vector valued q-forms ($q \leq \dim M$). Denote by $d^{\nabla} :$ $A^q(M, TM) \to A^{q+1}(M, TM)$ the exterior covariant derivative operator with respect to ∇ (it should be noticed that generally $d^{\nabla^2} = d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $d^2 = d \circ d = 0$). The identity tensor field I of type (1,1) can be considered as a vector valued 1-form $I \in A^1(M, TM)$ (and it is also called the soldering form [7]).

We shall remember the following

Definition 2.1. (1) (see [10]) The operator $d^{\omega} = d + e(\omega)$ acting on ΛM is called the *cohomology operator*, where $e(\omega)$ means the exterior product by the closed 1-form $\omega \in \Lambda^1 M$, i.e., $d^{\omega}u = du + \omega \wedge u$ for any $u \in \Lambda M$. One has $d^{\omega} \circ d^{\omega} = 0$, and if $d^{\omega}u = 0$, u is said to be d^{ω} -closed. If ω is exact, then u is said to be d^{ω} -exact.

(2) (see [18], [16]) Any vector field $X \in \Gamma TM$ such that: $d^{\nabla}(\nabla X) = \nabla^2 X = \pi \wedge I \in A^2(M;TM)$ for some 1-form π , is called an *exterior* concurrent vector field and the 1-form π , which is called the *concurrence* form, given by $\pi = fX^{\flat}$, $f \in C^{\infty}(M)$.

(3) (see [23], [16]) A vector field \mathcal{T} whose covariant differential satisfies $\nabla \mathcal{T} = rI + \alpha \otimes \mathcal{T}$; $r \in C^{\infty}(M)$ where $\omega = \mathcal{T}^{\flat}$ is a closed form, is called a closed torse forming.

If \Re denotes the Ricci tensor of ∇ and X an exterior concurrent vector field, one has $\Re(X, Z) = -(n-1)fg(X, Z), \ Z \in \Gamma TM, \ n = \dim M.$

Let C be any conformal vector field on M (i.e., the conformal version of Killing's equations). As is well known, C satisfies

(2.1)
$$\mathcal{L}_C g(C, Z) = \rho g(C, Z) \text{ or } g(\nabla_Z C, Z') + g(\nabla_Z C, Z) = \rho g(Z, Z')$$

 $(Z, Z' \in \Gamma TM)$ where the conformal scalar ρ is defined by $\rho = \frac{2}{n} (\operatorname{div} C)$. We recall the following basic formulas (see [3]) **Proposition 2.2.** With the above notation, let \mathcal{L}_C , K, Δ and \Re denote the Lie derivative with respect to C, the scalar curvature, the Laplacian and the Ricci tensor field of ∇ , respectively. Then:

- (1) $\mathcal{L}_C Z^{\flat} = \rho Z^{\flat} + [C, Z]^{\flat}$ (Orsted's lemma).
- (2) $\mathcal{L}_C K = (n-1)\Delta \rho K \rho$.
- (3) $2\mathcal{L}_C \Re(Z, Z') = \Delta \rho g(Z, Z') (n-2) (\operatorname{Hess}_{\nabla} \rho)(Z, Z')$ where $(\operatorname{Hess}_{\nabla} \rho)(Z, Z') = g(Z, \nabla_{Z'}(\operatorname{grad} \rho)).$

Definition 2.3 (see [19], [20], [15]). Any vector field C whose covariant differential satisfies $\nabla C = fI + C \wedge X$ is said to be a *skew-symmetric* conformal (ab. SKC) vector field or a *structure conformal* vector field, where \wedge means the wedge product of vector fields, i.e., $(X \wedge Y)Z =$ $g(Y,Z)X - g(X,Z)Y; X, Y, Z \in \Gamma(TM).$

Remark 2.4. Let $\mathcal{O} = \text{vect}\{e_A; A \in 1, \dots, n\}$ be an adapted local field of orthonormal frames on M and let $\mathcal{O}^* = \text{covect}\{\omega^A\}$ be the associated coframe. With respect to \mathcal{O} and \mathcal{O}^* the soldering form I and E. Cartan's structure equations can be written in indexless manner as

- (1) $I = \omega^A \otimes e_A \in A^1(M, TM)$ (2) $\nabla e = \vartheta \otimes e \in A^1(M, TM)$ (3) $d\omega = -\vartheta \wedge \omega$
- $(4) \ d\vartheta = -\vartheta \wedge \vartheta + \Theta$

In the above equations ϑ (resp. Θ) are the local connection forms in the bundle O(M) (resp. the curvature form on M).

Finally, we remember the following

Proposition 2.5. Let $\pi \in \Lambda^1 M$ be a Pffaf form on a manifold M. Then in order that π be of class 2s on M it is necessary and sufficient to have $(d\pi)^{s+1} = 0$, $\pi \wedge (d\pi)^s = 0$.

3. The main result

Let $M(\xi_r, \eta^r, g)$ be a (2m+4)-dimensional oriented Riemannian manifold carrying 4 Reeb vector fields ξ_r $(r, s \in \{2m + 1, \ldots, 2m + 4\})$ with associated structure covectors η^r , that is $\eta^r(\xi_s) = \delta_{rs}$. Following a known terminology we may decompose the tangent space $T_p(M)$ at $p \in M$ to M as $T_pM = D_p^{\top} \oplus D_p^{\perp}$. Then D_p^{\perp} is a 4-dimensional distribution defined by the set $\{\xi_r\}$, called the *vertical distribution*, and its orthogonal complement $D_p^{\top} = \{\xi_r\}^{\perp}$ which is called the *horizontal distribution*. Consequently any vector field $Z \in \Gamma(TM)$ may be written as $Z = (Z - \eta^r(Z)\xi_r) + \eta^r(Z)\xi_r = Z^{\top} + Z^{\perp}$ where Z^{\top} (resp. Z^{\perp}) is the horizontal component of Z (resp. the vertical component of Z). We recall that setting $A; B \in \{1, 2, ..., 2m\}$ the connection forms ϑ_B^A , ϑ_B^r and ϑ_s^r are called the horizontal, the transversal and the vertical connection forms respectively (see also [21]).

With the above notation, one has the following

Definition 3.1 ([17], [9]). Let $M(\xi_r, \eta^r, g)$ be a (2m + 4)-dimensional oriented Riemannian manifold carrying 4 Reeb vector fields ξ_r such that the vertical connection forms verifies $\vartheta_s^r = \langle \mathcal{T}, \xi_s \wedge \xi_r \rangle$, where \mathcal{T} is a certain vertical vector field. Then, we say that vertical connection forms ϑ_s^r define on D^{\perp} a \mathcal{T} -parallel connection and \mathcal{T} is called the generator of the considered $(\mathcal{T}.P)$ -connection. Moreover, if the Reeb vector fields are \mathcal{T} -parallel, i.e., $\nabla_{\mathcal{T}}\xi_r = 0$, then the manifold $M(\xi_r, \eta^r, g)$ is said to be endowed with a \mathcal{T} -parallel almost contact 4-structure (abr. $\mathcal{T}.P.A.C.$ 4-structure).

In the present paper we shall deal with these manifolds.

Remark 3.2. If we set $\mathcal{T} = \sum t_r \xi_r$; $t_r \in C^{\infty}(M)$ then the vertical connection forms are expressed by $\vartheta_s^r = t_s \eta^r - t_r \eta^s$. Since the vertical connection forms satisfy $\vartheta_s^r(\mathcal{T}) = 0$, then by reference to [13] we may say that ϑ_s^r are relations of integral invariance for the vector field \mathcal{T} .

Similarly one may decompose in an unique fashion the soldering form I of M as $I = I^{\top} + I^{\perp}$ where $I^{\top} = \omega^A \otimes e_A$ and $I^{\perp} = \eta^r \otimes \xi_r$ mean the line element of D^{\top} and the line element of D^{\perp} respectively.

We can state

Theorem 3.3. Let $M(\xi_r, \eta^r, g)$ be a (2m+4)-dimensional Riemannian manifold endowed with a \mathcal{T} -parallel almost contact 4-structure and let \mathcal{T} be the generator vector field of this structure.

For such a manifold the structure covectors $\eta^r (r \in \{2m+1, \ldots, 2m+4\})$ are of class 2 and cohomologically exact, i.e., $d^{-\omega}\eta^r = 0$, where ω is the dual form of the generator \mathcal{T} which enjoys the property to be a closed torse forming and to define a relative infinitesimal conformal transformation of the almost contact structure of M.

Any manifold M which carries a (\mathcal{T} .P.A.C.) 4-structure may be viewed as the local Riemannian product $M = M^{\top} \times M^{\perp}$ such that:

(i) M^{\perp} is a totally geodesic submanifold of M, tangent to the vertical distribution $D^{\perp} = \{\xi_r\}$ which enjoys the property to be a space form of curvature -2a (a = const.)

(ii) M^{\top} is a totally geodesic submanifold of M, tangent to the horizontal distribution $D^{\top} = \{\xi_r\}^{\perp}$ of M.

PROOF. Making use of the structure equations of Remark 2.4(2) and taking account of Remark 3.2 one derives:

(3.1)
$$\nabla \xi_r = t_r I^{\perp} - \eta^r \otimes \mathcal{T}.$$

Hence if $Z_1^{\perp}, Z_2^{\perp} \in D_p^{\perp}$ are any vertical vector fields, it quickly follows from (3.1) $\nabla_{Z_2^{\perp}} Z_1^{\perp} \in D_p^{\perp}$. This, as is known, proves that D_p^{\perp} is an *autoparallel* foliation and that the leaves M^{\perp} of D_p^{\perp} are totally geodesic submanifolds of M (in our case, dim $M^{\perp} = 4$). Next making use of the structure equations of Remark 2.4(3) one finds

(3.2)
$$d\eta^r = \omega \wedge \eta^r$$

where $\omega = \mathcal{T}^{\flat}$ denotes the dual form of the generator vector field \mathcal{T} .

By reference to [7], equations (3.2) show that all the Reeb covectors η^r are *exterior recurrent* and by a simple argument it follows that the recurrence form ω is necessarily closed, i.e., $d\omega = 0$. With the help of (3.1) and (3.2) one also derives from $I^{\perp} = \eta^r \otimes \xi_r$ that I^{\perp} is exterior covariant closed, i.e., $d^{\nabla}(I^{\perp}) = 0$ and this is matching the fact that I^{\perp} is the soldering form of the leaf M^{\perp} . By reference to Proposition 2.5 it is seen by (3.2) that the structure covectors η^r are of class 2.

Let now denote by $\varphi = \eta^{2m+1} \wedge \ldots \wedge \eta^{2m+4}$ the simple form which coresponds to D_p^{\perp} (or equivalently the volume element of M^{\perp}). By (3.2) one has at once $d\varphi = 0$ and therefore since one may write $D_p^{\top} \subset \ker(\varphi) \cap$ $\ker(d\varphi)$ we conclude that the horizontal distribution D_p^{\top} is also involutive. Then setting M^{\top} for the 2m leaf of D_p^{\top} , it is seen that ξ_r are geodesic normal section for the immersion $\kappa : M^{\top} \to M$, which is totally geodesic. It follows from the above discussion that the manifold M under consideration is the local product $M = M^{\top} \times M^{\perp}$, where M^{\top} and M^{\perp} are totally geodesic submanifolds of M, tangent to the horizontal distribution D^{\top} and the vertical distribution D^{\perp} of M respectively.

Further since the dual form ω of \mathcal{T} is expressed by $\omega = t_r \eta^r$ then by virtue of (3.2) one may set

(3.3)
$$dt_r = \lambda \eta^r \implies d\lambda - \lambda \omega = 0$$

which shows that ω is an exact form. In consequence of this fact, equations (3.2) may be expressed, using the notation introduced in Definition 2.1(1),

as $d^{-\omega}\eta^r = 0$, thus proving that the structure covectors of $M(\xi_r, \eta^r, g)$ are cohomologically exact.

Taking now the covariant differential of the generator vector field \mathcal{T} , one derives on behalf of (3.1) and (3.3)

(3.4)
$$\nabla \mathcal{T} = (\lambda + 2t)I^{\perp} - \nu \otimes \mathcal{T}; \ 2t = \|\mathcal{T}\|^2$$

which shows the significative fact that \mathcal{T} is a closed torse forming (def. 2.1(3)). Since this quality implies that \mathcal{T} is a gradient vector field, this fact is in accordance with equation (3.3). We also derive from (3.4)

(3.5)
$$dt = \lambda \omega \implies t + \lambda = a = \text{const.}$$

Next operating on (3.1) by the exterior covariant derivative operator d^{∇} one quickly derives by (3.2) and (3.4) that one has $d^{\nabla}(\nabla\xi_r) = \nabla^2\xi_r = 2a\eta^r \wedge I^{\perp}$. The above equations reveal the important fact that all the vectors $\{\xi_r\}$ on M^{\perp} are exterior concurrent vector fields (see [20]). Then since the conformal scalar 2a is constant, we conclude by reference to [16] that the vertical submanifold M^{\perp} is a space form of curvature -2a.

Next by (3.2), (3.3) and (3.5) one derives succesively $\mathcal{L}_{\mathcal{T}}\eta^r = (a+t)\eta^r - t_r\omega$ and $d(\mathcal{L}_{\mathcal{T}}\eta^r) = (2a+\lambda)\omega \wedge \eta^r$. In consequence of the last equation and by reference to [14] we agree to say that the generator vector \mathcal{T} defines a relative infinitesimal conformal transformation of the considered almost contact 4-structure, thus finishing the proof.

4. Conformal-type structures induced by a (T.P.A.C.) 4-structure

In the present section we consider on M^{\perp} the 2-form ψ of rank 2 (if $\Omega \in \Lambda^2 M$, rank r is the smallest integer such that $\Omega^{r+1} = 0$), defined by $\psi = \eta^{2m+1} \wedge \eta^{2m+2} + \eta^{2m+3} \wedge \eta^{2m+4}$. On behalf of (3.2) one quickly derives by exterior differentiation of ψ that $d\psi = 2\omega \wedge \psi \Leftrightarrow d^{-2\omega}\psi = 0$ (the last equality obtained on behalf of Definition 2.1(1)). Therefore following a known definition it is seen that ψ is a conformal symplectic form on M^{\perp} having ω (resp. \mathcal{T}) as covector of Lee (resp. vector field of Lee). In addition in the case under discussion one may say that ψ is a $d^{-2\omega}$ -exact form.

It should be noticed that this property is in accordance with the general properties of \mathcal{T} -parallel connections (see also [14]). If $Y \in \Gamma TM^{\perp}$ is any vertical vector field, then by reference to [12] we set ${}^{b}Y = -i_{Y}\psi$. Do not confuse with the the musical isomorphism $\flat : \Gamma TM \to \Gamma TM^{*}$, which is denoted by $X \to X^{\flat}$. For instance, $\omega = \mathcal{T}^{\flat}$. In the case under discussion and in order to simplify we write

$$\beta = -{}^{b}\mathcal{T} = t_{2m+1}\eta^{2m+2} + t_{2m+3}\eta^{2m+4} - t_{2m+2}\eta^{2m+1} - t_{2m+4}\eta^{2m+3}$$

and by (3.3) and (3.2) one gets $d\beta = 2\lambda\psi + \omega \wedge \beta$ by which after a standard calculation one derives $\mathcal{L}_{\mathcal{T}}\psi = 2(a+t)\psi - \omega \wedge \beta$. Since ω is an exact form, then following [1] the above equation shows that \mathcal{T} defines a *weak* infinitesimal conformal transformation of ψ . Then we obtain $d(\mathcal{L}_{\mathcal{T}}\psi) = 8a\omega \wedge \psi$. Therefore we may also say that \mathcal{T} defines a relative infinitesimal conformal transformation of ψ .

Consider now the vertical vector field $C = C^r \xi_r$ and set $\rho = {}^{b}C$. Then in order that C be an infinitesimal conformal transformation of ψ , one finds making use of (3.2)

(4.1)
$$dC^r = C^r \omega.$$

This implies $d\varrho = 2\omega \wedge \varrho \Leftrightarrow d^{-2\omega}\varrho = 0$ and setting $s = g(C, \mathcal{T})$ one may write $\mathcal{L}_{\mathcal{T}}\psi = 2s\psi$. In the light of this problem, and making use of (3.1) and (4.1) one derives

(4.2)
$$\nabla C = sI^{\perp} + C \wedge \mathcal{T}$$

which reveals the important fact that C is a structure conformal vector field having $2s = \rho$ as conformal scalar (see Definition 2.3). Setting $\alpha = C^{\flat}$ one finds by (3.4) and (4.2)

$$(4.3) ds = \lambda \alpha + s\omega$$

and on the other hand by (3.2) one has

(4.4)
$$d\alpha = 2\omega \wedge \alpha \iff d^{-2\omega}\alpha = 0.$$

Hence one may say that as ψ the dual form α of C is $d^{-2\omega}$ -exact. It should be noticed that equation (4.4) is in accordance with the general properties of structure conformal vector fields [19] (see also [14], [15]).

By (3.3), (4.3) and (4.4) it is seen that the existence of the structure conformal vector field C is determined by the exterior differential system Σ_e whose *characterisitic numbers* are r = 3, $s_0 = 2$, $s_1 = 1$. Since $r = s_0 + s_1$ it follows by E. Cartan's test [5] that Σ_e is *involutive* and C is determined by 1 arbitrary function of 2 arguments.

Next since $\rho = 2s$, it follows at once from (4.3), by duality: grad $\rho = 2\lambda C + \rho T$. But as it is known div $Z = tr[\nabla Z], Z \in \Gamma TM$, and so one gets from (3.4) div T = 4a + 2t and C being a conformal vector field one has

div $C = 4\rho$. Therefore by the general formulas $\Delta f = -\operatorname{div}(\operatorname{grad} f), f \in C^{\infty}M$, a short calculation gives

(4.5)
$$\Delta \rho = -8a\rho$$

which shows that ρ is an *eigenfunction* of Δ and has -8a associated *eigen* value. Following a known theorem, it follows that if M^{\perp} is compact, then necessarily $a = -\mu^2$ ($\mu = \text{ const.}$), that is, M^{\perp} is an elliptic submanifold of M.

On the other hand taking the covariant differential of grad ρ , then by a standard calculation one infers

(4.6)
$$\nabla \operatorname{grad} \rho = 4a\rho I^{\perp}$$

which reveals that grad ρ is *concurrent* vector field on M^{\perp} [6] (we recall that concurrency is of conformal nature). Accordingly on behalf of the definition given in [14], we may say in the case under consideration C has the *divergence conformal property*. It is worth to point out that if M^{\perp} is an elliptic submanifold of M (i.e., $a = -\mu^2$), then following Obata's theorem [24], M^{\perp} is *isometric* to a sphere of radius $\frac{1}{2}\mu$.

Further since M^{\perp} is a space form, then we recall [16] that any vector field on M^{\perp} is E.C., with the same conformal scalar 2*a*. Consequently, if \Re denotes the Ricci tensor of ∇ , one has

(4.7)
$$\Re(C,Z) = -6ag(C,Z), \ Z \in \Gamma T M^{\perp}.$$

Then by (4.5), (4.6), (4.7) and making use of Proposition 2.2(3) and carrying out the calculations one derives $\mathcal{L}_C g(C, Z) = \frac{4}{3}\rho g(C, Z)$. Therefore one may state that the (S.C)-vector field C defines an infinitesimal conformal transformation of all the functions g(C, Z) where $Z \in \Gamma T M^{\perp}$. It should be noticed that this situation is similar to that of [14]. In addition by (3.1) and (4.2) one finds

$$(4.8) [C,\xi_r] = -\frac{\rho}{2}\xi_r$$

which shows that the structure vector fields ξ_r admit *infinitesimal trans*formations of generator C. Next making use of Orsted's lemma (Proposition 2.2(1)) it follows

(4.9)
$$\mathcal{L}_C \eta^r = \rho \eta^r$$

Hence making use of a known terminology, it follows that C defines an almost contact transformation of the structure covectors η^r .

Finally we denote by $\mathcal{P} = \xi_{2m+1} \wedge \xi_{2m+2} + \xi_{2m+3} \wedge \xi_{2m+4}$ the Poisson bivector [12] associated with the conformal symplectic form ψ . Since \mathcal{P} may be expressed as

$$\mathcal{P} = \eta^{2m+2} \otimes \xi_{2m+1} - \eta^{2m+1} \otimes \xi_{2m+2} + \eta^{2m+4} \otimes \xi_{2m+3} - \eta^{2m+3} \otimes \xi_{2m+4}$$

then since the Lie derivative is additive, one gets by (4.8) and (4.9) that $\mathcal{L}_C \mathcal{P} = 0$ which shows that C defines an infinitesimal automorphism of \mathcal{P} .

Next operating on the vector valued 1-form \mathcal{P} by the operator d^{∇} one derives after two succesive computations $d^{\nabla}\mathcal{P} = \omega \wedge \mathcal{P} - 2\psi \otimes \mathcal{T} - \beta \wedge I^{\perp} \in A^2(M, TM)$ ($\beta = -^b\mathcal{T}$) and $d^{\nabla^2}\mathcal{P} = 4a\psi \wedge I^{\perp}$. Therfore (see Proposition 2.5) the last equality shows that \mathcal{P} is a 2-exterior vector valued 1-form. Moreover, taking into account $\mathcal{L}_{\mathcal{T}}\psi = 2s\psi$ a short calculation gives $\mathcal{L}_C(d^{\nabla^2}\mathcal{P}) = \frac{\rho}{2}d^{\nabla^2}\mathcal{P}$ that is C defines an infinitesimal conformal transformation of $d^{\nabla^2}\mathcal{P}$.

Then one has the

Theorem 4.1. Let $M(\xi_r, \eta^r, g)$ be a (2m+4)-dimensional Riemannian manifold endowed with a $(\mathcal{T}.P.A.C.)$ 4-structure discussed in Section 2 and having \mathcal{T} as generator vector field. Let M^{\perp} be the space form submanifold of M, tangent to the vertical distribution $D^{\perp} = \{\xi_r\}$ of M. One has the following properties:

(i) M^{\perp} is equipped with a conformal symplectic structure $\mathrm{CSp}(4,\mathbf{R})$ defined by the form $\psi \in \Lambda^2 M^{\perp}$ (of rank 2) and such that the covector of Lee corresponding to $\mathrm{CSp}(4,\mathbf{R})$ is the dual form ω of \mathcal{T} , that is, $d\psi = 2\omega \wedge \psi$ and \mathcal{T} defines a relative infinitesimal conformal transformation of ψ , that is, $d(\mathcal{L}_{\mathcal{T}}\psi) = 8a\omega \wedge \psi$, (a = const.)

(ii) Any vector field C which defines an infinitesimal conformal transformation of ψ is a structure conformal vector field, i.e., $\nabla C = g(\mathcal{T}, C)I^{\perp} + C \wedge \mathcal{T}$ and one has $\mathcal{L}_C \psi = \rho \psi$; $\rho = 2g(\mathcal{T}, C)$ and $\mathcal{L}_C g(C, Z) = \frac{4}{3}\rho g(C, Z)$, $Z \in \Gamma T M^{\perp}$.

(iii) The conformal scalar ρ ($\mathcal{L}_C g = \rho g$) is an eigenfunction of Δ and if M^{\perp} is compact, then $a = -\mu^2$ and M^{\perp} is isometric to a sphere of radius $\frac{1}{2}\mu$.

(iv) The Poisson bivector \mathcal{P} associated with ψ is a 2-exterior vector valued 1-form, i.e., $d^{\nabla^2}\mathcal{P} = 4a\psi \wedge I^{\perp}$ and C defines an infinitesimal automorphism of \mathcal{P} .

Fernando Etayo and Radu Rosca

5. Framed *f*-structures

In the present section we assume that the manifold $M(\xi_r, \eta^r, g)$ under consideration is endowed with a framed *f*-structure ϕ [27], that is ϕ is a tensor field of type (1,1) and rank 2m which satisfies:

(1) $\phi^3 + \phi = 0$

- (2) $\phi^2 = -I + \sum \eta^r \otimes \xi_r; \ \phi \xi_r = 0; \ \eta^r \circ \phi = 0$
- (3) $g(Z,Z') = \overline{g(\phi Z,\phi Z')} + \sum \eta^r(Z)\eta^r(Z'); Z,Z' \in \Gamma TM$ and the fundamental 2-form Ω associated with the *f*-structure satisfies:
- (4) $\Omega(Z, Z') = g(\phi Z, Z'); \ \Omega^m \land \varphi \neq 0, \varphi$ being the volume element of M^{\perp} , i.e., $\varphi = \eta^{2m+1} \land \eta^{2m+2} \land \eta^{2m+3} \land \eta^{2m+4}$.

Such a manifold $M(\phi, \Omega, \xi_r, \eta^r, g)$ is, as known, defined as *framed f-manifold*.

With respect to the cobasis $\mathcal{O}^* = \operatorname{covect}\{\omega^A, \eta^r\}$ the form Ω is expressed by $\Omega = \sum \omega^a \wedge \omega^{a^*}$; $a \in \{1, \ldots, m\}$; $a^* = a + m$ and the horizontal connection forms ϑ^A_B satisfies the known Kählerian conditions

(5.1)
$$\vartheta_b^a = \vartheta_{b^*}^{a^*}; \ \vartheta_b^{a^*} = \vartheta_a^{b^*}.$$

Since on the other hand by (3.1) it is seen that the transversal connection forms ϑ_A^r vanish, one gets by exterior differentiation $d\Omega = 0$. Since Ω is of constant rank and closed it follows that it is a *presymplectic* form on M and a symplectic form on M^{\top} . We notice that in this case ker(Ω) coincides with the vertical distribution D_p^{\perp} of M which may be also called *characteristic* distribution of Ω . In addition by condition (3) of a framed f-structure and $\vartheta_A^r = 0$ one has $(\nabla \phi)Z = 0$, $Z \in \Gamma TM$, that is ∇ and ϕ commute.

Recall now that the torsion tensor field S of an f-structure is the vector valued 2-form defined by $S = N_{\phi} + S^{\perp}$ where $N_{\phi}(Z, Z') = [\phi Z, \phi Z'] + \phi^2[Z, Z'] - \phi[Z, \phi Z'] - \phi[\phi Z, Z']$ is the Nijenhuis tensor field, and $S^{\perp} = 2\sum d\eta^r \otimes \xi_r$ is the vertical component of S. By (3.10), (5.6) and $(\nabla \phi)Z = 0$ it is easily seen that S vanishes on D^{\top} . In this case, the f-structure (ϕ, ξ_r, η^r) is said to be horizontal-normal (or D^{\top} -normal) [2].

Consequently, following a definition of A. BEJANCU [2] the framed fmanifold $M(\phi, \Omega, \xi_r, \eta^r, g)$ under consideration is a *framed-CR manifold*. On the other hand, taking into account that Ω is closed, the horizontal submanifold M^{\top} of M moves to a symplectic submanifold.

It also should be noticed that by (3.2) one may write S^{\perp} as $S^{\perp} = 2\omega \wedge I^{\perp} \Rightarrow d^{\nabla}S^{\perp} = 0$ that is, S^{\perp} is a closed vector valued 2-form. We agree with the following

Definition 5.1. Let M be a framed f-manifold and let S^{\perp} be the vertical component of its associated torsion tensor. If the covariant differential of S^{\perp} is closed, i.e., $d^{\nabla}S^{\perp} = 0$, we say that M is a vertical closed framed f-manifold.

Now since one finds $\mathcal{L}_{\mathcal{T}}\xi_r = [\mathcal{T},\xi_r] = t_r\mathcal{T} - (t+a)\xi_r$ then one get at once $\mathcal{L}_{\mathcal{T}}S^{\perp} = 2\lambda S^{\perp}$. Accordingly the Lee vector field \mathcal{T} defines an infinitesimal conformal transformation of S^{\perp} .

Then we can state the following

Theorem 5.2. Let $M(\phi, \Omega, \xi_r, \eta^r, g)$ be a framed *f*-manifold endowed with a \mathcal{T} -parallel almost contact 4-structure, and let S^{\perp} be the vertical component of the torsion tensor field S associated with the *f*-structure defined by ϕ .

Any such M is a framed f-CR manifold which is vertical torsion closed, i.e., $d^{\nabla}S^{\perp} = 0$, and may be viewed as the local Riemannian product $M = M^{\top} \times M^{\perp}$ such that:

- (i) M^{\top} is a totally geodesic Kählerian submanifold of M, tangent to $\{\xi_r\}^{\perp}$;
- (ii) M^{\perp} is a totally geodesic space form submanifold of M, tangent to $\{\xi_r\}$;
- (iii) the Lee vector field \mathcal{T} of the (\mathcal{T} .P.A.C.) 4-structure defines an infinitesimal conformal transformation of S^{\perp} .

References

- C. ALBERT, Le théorèm de réduction de Marsden-Weinstein en la géométrie cosymplectique et de contact, J.G.P. 6 (1989), 627–642.
- [2] A. BEJANCU, Geometry of CR-Submanifolds, D. Reidel Publ. Comp., Dordrecht, 1986.
- [3] T. BRANSON, Conformally covariant equations in differential forms, Comm. Partial Differential Equations 7(11) (1982), 393–431.
- [4] R. L. BRYANT, S. S. CHERN, R. B. GARDNER, H. L. GOLDSCHMIDT and P. A. GRIFFITH, Exterior Differential Systems, Springer-Verlag, New York, 1991.
- [5] A. BUCKI, Submanifolds of almost r-paracontact manifolds, Tensor N. S. 40 (1984), 69–89.
- [6] E. CARTAN, Systèmes Différentiels Extérieurs et leurs applications géométriques, Hermann, Paris, 1945.
- [7] B. Y. CHEN, Geometry of Submanifolds, M. Dekker, New York, 1973.
- [8] J. DIEUDONNÉ, Treatise on Analysis, vol. 4, Ac. Press, New York, London, 1974.
- [9] V. V. GOLDBERG and R. ROSCA, Almost conformal 2-cosymplectic pseudo-Sasakian manifolds, Note di Matematica VIII,1 (1988), 123–140.
- [10] V. V. GOLDBERG and R. ROSCA, Foliate conformal Kählerian manifolds, Rend. Sem. Mat. Messina Serie II I (1991), 105–122.

- 68 Fernando Etayo and Radu Rosca : On Riemannian manifolds endowed ...
- [11] F. GUEDIRA and A. LICHNEROWICZ, Géométrie des algèbres de Lie locales de Kirilov, J. Math. Pures Appl. 63 (1984), 407–484.
- [12] M. KOBAYASHI, Differential geometry of symmetric twofold CR-submanifolds with cosymplectic 3-structure, *Tensor N. S.* 41 (1984), 69–89.
- [13] P. LIBERMANN and C. M. MARLE, Géométrie Symplectique, Bases Théoriques de la Mécanique, t. 1 UER Math., Paris VII, 1986.
- [14] A. LICHNEROWICZ, Les relations intégrales d'invariance et leurs applications à la dynamique, Bull. Sci. Math. 70 (1946), 82–95.
- [15] I. MIHAI, R. ROSCA and L. VERSTRAELEN, On a class of exact locally conformal cosymplectic manifolds, *Intern. J. Math. Sci. (USA)* **19** n.2 (267–278).
- [16] D. NAITZA and I. MIHAI, Almost conformal 2-cosymplectic manifolds, Revue Roumaine de Math. Pures et Appl. 39 (1994), 156–169.
- [17] M. PETROVIC, R. ROSCA and L. VERSTRALEN, Exterior concurrent vector fields on Riemannian manifolds. I. Some general results, *Soochow J. Math.* **15** (1989), 179–187.
- [18] R. ROSCA, On parallel conformal connections, Kodai Math. J. (2),1 (1979), 1–10.
- [19] R. ROSCA, Exterior concurrent vector fields on a conformal cosymplectis manifold endowed with a Sasakian structure, *Libertas Math. (Univ. Arlington, Texas)* 6 (1986), 167–174.
- [20] R. ROSCA, On conformal cosymplectic quasi Sasakian manifolds, Giornate di Geometria, Univ. Messina, 1988.
- [21] R. ROSCA, On Lorentzian Kenmotsu manifolds, Atti Accad. Peloritana dei Pericolanti, Cl. Sci. 59 (1991), 15–29.
- [22] R. ROSCA, On K-left invariant almost contact 3-structure, Geometry and Topology of Submanifolds VII. Differential geometry in honour of Prof. K. Nomizu, World Scientific Publ., Singapore, 1994.
- [23] S. TACHIBANA and W. N. YU, On Riemannian space admitting more than one Sasakian structure, *Tohoku Math. J.* 22 (1970), 536–540.
- [24] K. YANO, On torse-forming directions in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944), 340–345.
- [25] K. YANO, Integral Formulas in Riemannian Geometry, M. Dekker, New York, 1970.
- [26] K. YANO and M. KON, Totally real submanifolds of complex space- forms, *Tohoku Math. J* 28 (1976), 215–225.
- [27] K. YANO and M. KON, Structures on Manifolds, World Scientific Publ., Singapore, 1984.

FERNANDO ETAYO DEPARTAMENTO DE MATEMÁTICAS ESTADÍSTICA Y COMPUTACIÓN FACULTAD DE CIENCIAS UNIVERSIDAD DE CANTABRIA AVDA. DE LOS CASTROS S/N 39071 SANTANDER SPAIN

RADU ROSCA 59. AV. EMILE ZOLA 75015 PARIS FRANCE

(Received July 10, 1995; revised May 13, 1996)