On Riemannian manifolds endowed with a \mathcal{T}-parallel almost contact 4 -structure

By FERNANDO ETAYO (Santander) and RADU ROSCA (Paris)

Abstract

T}\)-parallel almost contact 4-structures on a Riemannian manifold are studied. It is proved that such a manifold is a local Riemannian product of two totally geodesic submanifolds, one of them being a space form. Additional results are obtained when the manifold is endowed with a framed f-structure.

1. Introduction

In the last two decades, contact, almost contact, paracontact and almost cosymplectic manifolds carrying $r(r>1)$ Reeb vector fields ξ_{r} have been studied by a certain number of authors, as for instance: M. Kobayashi [11], A. Bucki [4], S. Tachibana and W. N. Yu [22], K. Yano and M. Kon [25], V. V. Goldberg and R. Rosca [8] and some others.

In the present paper we consider a $(2 m+4)$ dimensional Riemannian manifold carrying 4 structure vector fields $\xi_{r}(r, s \in\{2 m+1, \ldots, 2 m+4\})$ and with a distinguished vector field \mathcal{T}, such that the vertical connection forms define a \mathcal{T}-parallel connection and the Reeb vector fields are \mathcal{T}-parallel (this structure is called a \mathcal{T}-parallel almost contact 4 -structure and it will be defined in Definition 3.1). Then we shall prove that such a manifold is a local Riemannian product of two totally geodesic submanifolds, $M=M^{\top} \times M^{\perp}$, where M^{\perp} is a space form tangent to the distribution generated by the Reeb vector fields, and that the vector field \mathcal{T} is closed torse forming (Theorem 3.3).

In section 4 we shall study conformal-type structures induced by a \mathcal{T} parallel almost contact 4 -structure. Finally, in section 5 we assume that the manifold under consideration is endowed with a framed f-structure, proving that M^{\top} is a Kählerian submanifold (Theorem 5.2).

2. Preliminaries

Let (M, g) be a Riemannian C^{∞}-manifold and let ∇ be the covariant differential operator defined by the metric tensor g. We assume that M is oriented and ∇ is the Levi-Civita connection. Let $\Gamma T M$ be the set of sections of the tangent bundle $T M$ and $b: T M \rightarrow T^{*} M, X \rightarrow X^{b}$, the musical isomorphism defined by g. Next, following a standard notation, we set: $A^{q}(M, T M)=\operatorname{Hom}\left(\Lambda^{q} T M, T M\right)$ and notice that elements of $A^{q}(M, T M)$ are vector valued q-forms $(q \leq \operatorname{dim} M)$. Denote by d^{∇} : $A^{q}(M, T M) \rightarrow A^{q+1}(M, T M)$ the exterior covariant derivative operator with respect to ∇ (it should be noticed that generally $d^{\nabla^{2}}=d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $\left.d^{2}=d \circ d=0\right)$. The identity tensor field I of type $(1,1)$ can be considered as a vector valued 1 -form $I \in A^{1}(M, T M)$ (and it is also called the soldering form [7]).

We shall remember the following
Definition 2.1. (1) (see [10]) The operator $d^{\omega}=d+e(\omega)$ acting on ΛM is called the cohomology operator, where $e(\omega)$ means the exterior product by the closed 1-form $\omega \in \Lambda^{1} M$, i.e., $d^{\omega} u=d u+\omega \wedge u$ for any $u \in \Lambda M$. One has $d^{\omega} \circ d^{\omega}=0$, and if $d^{\omega} u=0, u$ is said to be d^{ω}-closed. If ω is exact, then u is said to be d^{ω}-exact.
(2) (see [18], [16]) Any vector field $X \in \Gamma T M$ such that: $d^{\nabla}(\nabla X)=$ $\nabla^{2} X=\pi \wedge I \in A^{2}(M ; T M)$ for some 1-form π, is called an exterior concurrent vector field and the 1 -form π, which is called the concurrence form, given by $\pi=f X^{b}, f \in C^{\infty}(M)$.
(3) (see [23], [16]) A vector field \mathcal{T} whose covariant differential satisfies $\nabla \mathcal{T}=r I+\alpha \otimes \mathcal{T} ; r \in C^{\infty}(M)$ where $\omega=\mathcal{T}^{b}$ is a closed form, is called a closed torse forming.

If \Re denotes the Ricci tensor of ∇ and X an exterior concurrent vector field, one has $\Re(X, Z)=-(n-1) f g(X, Z), Z \in \Gamma T M, n=\operatorname{dim} M$.

Let C be any conformal vector field on M (i.e., the conformal version of Killing's equations). As is well known, C satisfies

$$
\begin{equation*}
\mathcal{L}_{C} g(C, Z)=\rho g(C, Z) \text { or } g\left(\nabla_{Z} C, Z^{\prime}\right)+g\left(\nabla_{Z} C, Z\right)=\rho g\left(Z, Z^{\prime}\right) \tag{2.1}
\end{equation*}
$$

$\left(Z, Z^{\prime} \in \Gamma T M\right)$ where the conformal scalar ρ is defined by $\rho=\frac{2}{n}(\operatorname{div} C)$.
We recall the following basic formulas (see [3])

Proposition 2.2. With the above notation, let $\mathcal{L}_{C}, K, \Delta$ and \Re denote the Lie derivative with respect to C, the scalar curvature, the Laplacian and the Ricci tensor field of ∇, respectively. Then:
(1) $\mathcal{L}_{C} Z^{b}=\rho Z^{b}+[C, Z]^{b}$ (Orsted's lemma).
(2) $\mathcal{L}_{C} K=(n-1) \Delta \rho-K \rho$.
(3) $2 \mathcal{L}_{C} \Re\left(Z, Z^{\prime}\right)=\Delta \rho g\left(Z, Z^{\prime}\right)-(n-2)\left(\operatorname{Hess}_{\nabla} \rho\right)\left(Z, Z^{\prime}\right)$ where $\left(\operatorname{Hess}_{\nabla} \rho\right)\left(Z, Z^{\prime}\right)=g\left(Z, \nabla_{Z^{\prime}}(\operatorname{grad} \rho)\right)$.
Definition 2.3 (see [19], [20], [15]). Any vector field C whose covariant differential satisfies $\nabla C=f I+C \wedge X$ is said to be a skew-symmetric conformal (ab. SKC) vector field or a structure conformal vector field, where \wedge means the wedge product of vector fields, i.e., $(X \wedge Y) Z=$ $g(Y, Z) X-g(X, Z) Y ; X, Y, Z \in \Gamma(T M)$.

Remark 2.4. Let $\mathcal{O}=\operatorname{vect}\left\{e_{A} ; A \in 1, \ldots, n\right\}$ be an adapted local field of orthonormal frames on M and let $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{A}\right\}$ be the associated coframe. With respect to \mathcal{O} and \mathcal{O}^{*} the soldering form I and E. Cartan's structure equations can be written in indexless manner as
(1) $I=\omega^{A} \otimes e_{A} \in A^{1}(M, T M)$
(2) $\nabla e=\vartheta \otimes e \in A^{1}(M, T M)$
(3) $d \omega=-\vartheta \wedge \omega$
(4) $d \vartheta=-\vartheta \wedge \vartheta+\Theta$

In the above equations ϑ (resp. Θ) are the local connection forms in the bundle $O(M)$ (resp. the curvature form on M).

Finally, we remember the following
Proposition 2.5. Let $\pi \in \Lambda^{1} M$ be a Pffaf form on a manifold M. Then in order that π be of class $2 s$ on M it is necessary and sufficient to have $(d \pi)^{s+1}=0, \pi \wedge(d \pi)^{s}=0$.

3. The main result

Let $M\left(\xi_{r}, \eta^{r}, g\right)$ be a $(2 m+4)$-dimensional oriented Riemannian manifold carrying 4 Reeb vector fields $\xi_{r}(r, s \in\{2 m+1, \ldots, 2 m+4\})$ with associated structure covectors η^{r}, that is $\eta^{r}\left(\xi_{s}\right)=\delta_{r s}$. Following a known terminology we may decompose the tangent space $T_{p}(M)$ at $p \in M$ to M as $T_{p} M=D_{p}^{\top} \oplus D_{p}^{\perp}$. Then D_{p}^{\perp} is a 4-dimensional distribution defined by the set $\left\{\xi_{r}\right\}$, called the vertical distribution, and its orthogonal complement $D_{p}^{\top}=\left\{\xi_{r}\right\}^{\perp}$ which is called the horizontal distribution. Consequently any vector field $Z \in \Gamma(T M)$ may be written as $Z=\left(Z-\eta^{r}(Z) \xi_{r}\right)+\eta^{r}(Z) \xi_{r}=Z^{\top}+Z^{\perp}$ where Z^{\top} (resp. Z^{\perp}) is the
horizontal component of Z (resp. the vertical component of Z). We recall that setting $A ; B \in\{1,2, \ldots, 2 m\}$ the connection forms $\vartheta_{B}^{A}, \vartheta_{B}^{r}$ and ϑ_{s}^{r} are called the horizontal, the transversal and the vertical connection forms respectively (see also [21]).

With the above notation, one has the following
Definition 3.1 ([17], [9]). Let $M\left(\xi_{r}, \eta^{r}, g\right)$ be a $(2 m+4)$-dimensional oriented Riemannian manifold carrying 4 Reeb vector fields ξ_{r} such that the vertical connection forms verifies $\vartheta_{s}^{r}=\left\langle\mathcal{T}, \xi_{s} \wedge \xi_{r}\right\rangle$, where \mathcal{T} is a certain vertical vector field. Then, we say that vertical connection forms ϑ_{s}^{r} define on D^{\perp} a \mathcal{T}-parallel connection and \mathcal{T} is called the generator of the considered ($\mathcal{T} . P)$-connection. Moreover, if the Reeb vector fields are \mathcal{T}-parallel, i.e., $\nabla_{\mathcal{T}} \xi_{r}=0$, then the manifold $M\left(\xi_{r}, \eta^{r}, g\right)$ is said to be endowed with a \mathcal{T}-parallel almost contact 4 -structure (abr. $\mathcal{T} . P . A . C .4$-structure).

In the present paper we shall deal with these manifolds.
Remark 3.2. If we set $\mathcal{T}=\sum t_{r} \xi_{r} ; t_{r} \in C^{\infty}(M)$ then the vertical connection forms are expressed by $\vartheta_{s}^{r}=t_{s} \eta^{r}-t_{r} \eta^{s}$. Since the vertical connection forms satisfy $\vartheta_{s}^{r}(\mathcal{T})=0$, then by reference to [13] we may say that ϑ_{s}^{r} are relations of integral invariance for the vector field \mathcal{T}.

Similarly one may decompose in an unique fashion the soldering form I of M as $I=I^{\top}+I^{\perp}$ where $I^{\top}=\omega^{A} \otimes e_{A}$ and $I^{\perp}=\eta^{r} \otimes \xi_{r}$ mean the line element of D^{\top} and the line element of D^{\perp} respectively.

We can state
Theorem 3.3. Let $M\left(\xi_{r}, \eta^{r}, g\right)$ be a $(2 m+4)$-dimensional Riemannian manifold endowed with a \mathcal{T}-parallel almost contact 4 -structure and let \mathcal{T} be the generator vector field of this structure.

For such a manifold the structure covectors $\eta^{r}(r \in\{2 m+1, \ldots, 2 m+4\})$ are of class 2 and cohomologically exact, i.e., $d^{-\omega} \eta^{r}=0$, where ω is the dual form of the generator \mathcal{T} which enjoys the property to be a closed torse forming and to define a relative infinitesimal conformal transformation of the almost contact structure of M.

Any manifold M which carries a (T .P.A.C.) 4-structure may be viewed as the local Riemannian product $M=M^{\top} \times M^{\perp}$ such that:
(i) M^{\perp} is a totally geodesic submanifold of M, tangent to the vertical distribution $D^{\perp}=\left\{\xi_{r}\right\}$ which enjoys the property to be a space form of curvature $-2 a$ ($a=$ const.)
(ii) M^{\top} is a totally geodesic submanifold of M, tangent to the horizontal distribution $D^{\top}=\left\{\xi_{r}\right\}^{\perp}$ of M.

Proof. Making use of the structure equations of Remark 2.4(2) and taking account of Remark 3.2 one derives:

$$
\begin{equation*}
\nabla \xi_{r}=t_{r} I^{\perp}-\eta^{r} \otimes \mathcal{T} \tag{3.1}
\end{equation*}
$$

Hence if $Z_{1}^{\perp}, Z_{2}^{\perp} \in D_{p}^{\perp}$ are any vertical vector fields, it quickly follows from (3.1) $\nabla_{Z_{2}^{\perp}} Z_{1}^{\perp} \in D_{p}^{\perp}$. This, as is known, proves that D_{p}^{\perp} is an autoparallel foliation and that the leaves M^{\perp} of D_{p}^{\perp} are totally geodesic submanifolds of M (in our case, $\operatorname{dim} M^{\perp}=4$). Next making use of the structure equations of Remark 2.4(3) one finds

$$
\begin{equation*}
d \eta^{r}=\omega \wedge \eta^{r} \tag{3.2}
\end{equation*}
$$

where $\omega=\mathcal{T}^{b}$ denotes the dual form of the generator vector field \mathcal{T}.
By reference to [7], equations (3.2) show that all the Reeb covectors η^{r} are exterior recurrent and by a simple argument it follows that the recurrence form ω is necessarly closed, i.e., $d \omega=0$. With the help of (3.1) and (3.2) one also derives from $I^{\perp}=\eta^{r} \otimes \xi_{r}$ that I^{\perp} is exterior covariant closed, i.e., $d^{\nabla}\left(I^{\perp}\right)=0$ and this is matching the fact that I^{\perp} is the soldering form of the leaf M^{\perp}. By reference to Proposition 2.5 it is seen by (3.2) that the structure covectors η^{r} are of class 2 .

Let now denote by $\varphi=\eta^{2 m+1} \wedge \ldots \wedge \eta^{2 m+4}$ the simple form which coresponds to D_{p}^{\perp} (or equivalently the volume element of M^{\perp}). By (3.2) one has at once $d \varphi=0$ and therefore since one may write $D_{p}^{\top} \subset \operatorname{ker}(\varphi) \cap$ $\operatorname{ker}(d \varphi)$ we conclude that the horizontal distribution D_{p}^{\top} is also involutive. Then setting M^{\top} for the $2 m$ leaf of D_{p}^{\top}, it is seen that ξ_{r} are geodesic normal section for the immersion $\kappa: M^{\top} \rightarrow M$, which is totally geodesic. It follows from the above discussion that the manifold M under consideration is the local product $M=M^{\top} \times M^{\perp}$, where M^{\top} and M^{\perp} are totally geodesic submanifolds of M, tangent to the horizontal distribution D^{\top} and the vertical distribution D^{\perp} of M respectively.

Further since the dual form ω of \mathcal{T} is expressed by $\omega=t_{r} \eta^{r}$ then by virtue of (3.2) one may set

$$
\begin{equation*}
d t_{r}=\lambda \eta^{r} \Longrightarrow d \lambda-\lambda \omega=0 \tag{3.3}
\end{equation*}
$$

which shows that ω is an exact form. In consequence of this fact, equations (3.2) may be expressed, using the notation introduced in Definition 2.1(1),
as $d^{-\omega} \eta^{r}=0$, thus proving that the structure covectors of $M\left(\xi_{r}, \eta^{r}, g\right)$ are cohomologically exact.

Taking now the covariant differential of the generator vector field \mathcal{T}, one derives on behalf of (3.1) and (3.3)

$$
\begin{equation*}
\nabla \mathcal{T}=(\lambda+2 t) I^{\perp}-\nu \otimes \mathcal{T} ; 2 t=\|\mathcal{T}\|^{2} \tag{3.4}
\end{equation*}
$$

which shows the significative fact that \mathcal{T} is a closed torse forming (def. 2.1(3)). Since this quality implies that \mathcal{T} is a gradient vector field, this fact is in accordance with equation (3.3). We also derive from (3.4)

$$
\begin{equation*}
d t=\lambda \omega \Longrightarrow t+\lambda=a=\text { const. } \tag{3.5}
\end{equation*}
$$

Next operating on (3.1) by the exterior covariant derivative operator d^{∇} one quickly derives by (3.2) and (3.4) that one has $d^{\nabla}\left(\nabla \xi_{r}\right)=\nabla^{2} \xi_{r}=2 a \eta^{r} \wedge$ I^{\perp}. The above equations reveal the important fact that all the vectors $\left\{\xi_{r}\right\}$ on M^{\perp} are exterior concurrent vector fields (see [20]). Then since the conformal scalar $2 a$ is constant, we conclude by reference to [16] that the vertical submanifold M^{\perp} is a space form of curvature $-2 a$.

Next by (3.2), (3.3) and (3.5) one derives succesively $\mathcal{L}_{\mathcal{T}} \eta^{r}=$ $(a+t) \eta^{r}-t_{r} \omega$ and $d\left(\mathcal{L}_{\mathcal{T}} \eta^{r}\right)=(2 a+\lambda) \omega \wedge \eta^{r}$. In consequence of the last equation and by reference to [14] we agree to say that the generator vector \mathcal{T} defines a relative infinitesimal conformal transformation of the considered almost contact 4 -structure, thus finishing the proof.

4. Conformal-type structures induced by a (T.P.A.C.) 4 -structure

In the present section we consider on M^{\perp} the 2 -form ψ of rank 2 (if $\Omega \in \Lambda^{2} M, \operatorname{rank} r$ is the smallest integer such that $\Omega^{r+1}=0$), defined by $\psi=\eta^{2 m+1} \wedge \eta^{2 m+2}+\eta^{2 m+3} \wedge \eta^{2 m+4}$. On behalf of (3.2) one quickly derives by exterior differentiation of ψ that $d \psi=2 \omega \wedge \psi \Leftrightarrow d^{-2 \omega} \psi=0$ (the last equality obtained on behalf of Definition 2.1(1)). Therefore following a known definition it is seen that ψ is a conformal symplectic form on M^{\perp} having ω (resp. \mathcal{T}) as covector of Lee (resp. vector field of Lee). In addition in the case under discussion one may say that ψ is a $d^{-2 \omega}$-exact form.

It should be noticed that this property is in accordance with the general properties of \mathcal{T}-parallel connections (see also [14]). If $Y \in \Gamma T M^{\perp}$ is any vertical vector field, then by reference to [12] we set ${ }^{b} Y=-i_{Y} \psi$. Do not confuse with the the musical isomorphism $b: \Gamma T M \rightarrow \Gamma T M^{*}$, which is denoted by $X \rightarrow X^{b}$. For instance, $\omega=\mathcal{T}^{b}$.

In the case under discussion and in order to simplify we write

$$
\beta=-{ }^{b} \mathcal{T}=t_{2 m+1} \eta^{2 m+2}+t_{2 m+3} \eta^{2 m+4}-t_{2 m+2} \eta^{2 m+1}-t_{2 m+4} \eta^{2 m+3}
$$

and by (3.3) and (3.2) one gets $d \beta=2 \lambda \psi+\omega \wedge \beta$ by which after a standard calculation one derives $\mathcal{L}_{\mathcal{T}} \psi=2(a+t) \psi-\omega \wedge \beta$. Since ω is an exact form, then following [1] the above equation shows that \mathcal{T} defines a weak infinitesimal conformal transformation of ψ. Then we obtain $d\left(\mathcal{L}_{\mathcal{T}} \psi\right)=$ $8 a \omega \wedge \psi$. Therefore we may also say that \mathcal{T} defines a relative infinitesimal conformal transformation of ψ.

Consider now the vertical vector field $C=C^{r} \xi_{r}$ and set $\varrho={ }^{b} C$. Then in order that C be an infinitesimal conformal transformation of ψ, one finds making use of (3.2)

$$
\begin{equation*}
d C^{r}=C^{r} \omega \tag{4.1}
\end{equation*}
$$

This implies $d \varrho=2 \omega \wedge \varrho \Leftrightarrow d^{-2 \omega} \varrho=0$ and setting $s=g(C, \mathcal{T})$ one may write $\mathcal{L}_{\mathcal{T}} \psi=2 s \psi$. In the light of this problem, and making use of (3.1) and (4.1) one derives

$$
\begin{equation*}
\nabla C=s I^{\perp}+C \wedge \mathcal{T} \tag{4.2}
\end{equation*}
$$

which reveals the important fact that C is a structure conformal vector field having $2 s=\rho$ as conformal scalar (see Definition 2.3). Setting $\alpha=C^{b}$ one finds by (3.4) and (4.2)

$$
\begin{equation*}
d s=\lambda \alpha+s \omega \tag{4.3}
\end{equation*}
$$

and on the other hand by (3.2) one has

$$
\begin{equation*}
d \alpha=2 \omega \wedge \alpha \Longleftrightarrow d^{-2 \omega} \alpha=0 \tag{4.4}
\end{equation*}
$$

Hence one may say that as ψ the dual form α of C is $d^{-2 \omega}$-exact. It should be noticed that equation (4.4) is in accordance with the general properties of structure conformal vector fields [19] (see also [14], [15]).

By (3.3), (4.3) and (4.4) it is seen that the existence of the structure conformal vector field C is determined by the exterior differential system Σ_{e} whose characterisitic numbers are $r=3, s_{0}=2, s_{1}=1$. Since $r=$ $s_{0}+s_{1}$ it follows by E. Cartan's test [5] that Σ_{e} is involutive and C is determined by 1 arbitrary function of 2 arguments.

Next since $\rho=2 s$, it follows at once from (4.3), by duality: $\operatorname{grad} \rho=$ $2 \lambda C+\rho \mathcal{T}$. But as it is known $\operatorname{div} Z=\operatorname{tr}[\nabla Z], Z \in \Gamma T M$, and so one gets from (3.4) $\operatorname{div} \mathcal{T}=4 a+2 t$ and C being a conformal vector field one has
$\operatorname{div} C=4 \rho$. Therefore by the general formulas $\Delta f=-\operatorname{div}(\operatorname{grad} f), f \in$ $C^{\infty} M$, a short calculation gives

$$
\begin{equation*}
\Delta \rho=-8 a \rho \tag{4.5}
\end{equation*}
$$

which shows that ρ is an eigenfunction of Δ and has $-8 a$ associated eigen value. Following a known theorem, it follows that if M^{\perp} is compact, then necessarily $a=-\mu^{2}$ ($\mu=$ const.), that is, M^{\perp} is an elliptic submanifold of M.

On the other hand taking the covariant differential of $\operatorname{grad} \rho$, then by a standard calculation one infers

$$
\begin{equation*}
\nabla \operatorname{grad} \rho=4 a \rho I^{\perp} \tag{4.6}
\end{equation*}
$$

which reveals that $\operatorname{grad} \rho$ is concurrent vector field on $M^{\perp}[6]$ (we recall that concurrency is of conformal nature). Accordingly on behalf of the definition given in [14], we may say in the case under consideration C has the divergence conformal property. It is worth to point out that if M^{\perp} is an elliptic submanifold of M (i.e., $a=-\mu^{2}$), then following Obata's theorem [24], M^{\perp} is isometric to a sphere of radius $\frac{1}{2} \mu$.

Further since M^{\perp} is a space form, then we recall [16] that any vector field on M^{\perp} is E.C., with the same conformal scalar $2 a$. Consequently, if \Re denotes the Ricci tensor of ∇, one has

$$
\begin{equation*}
\Re(C, Z)=-6 a g(C, Z), Z \in \Gamma T M^{\perp} \tag{4.7}
\end{equation*}
$$

Then by (4.5), (4.6), (4.7) and making use of Proposition 2.2(3) and carrying out the calculations one derives $\mathcal{L}_{C} g(C, Z)=\frac{4}{3} \rho g(C, Z)$. Therefore one may state that the (S.C)-vector field C defines an infinitesimal conformal transformation of all the functions $g(C, Z)$ where $Z \in \Gamma T M^{\perp}$. It should be noticed that this situation is similar to that of [14]. In addition by (3.1) and (4.2) one finds

$$
\begin{equation*}
\left[C, \xi_{r}\right]=-\frac{\rho}{2} \xi_{r} \tag{4.8}
\end{equation*}
$$

which shows that the structure vector fields ξ_{r} admit infinitesimal transformations of generator C. Next making use of Orsted's lemma (Proposition 2.2(1)) it follows

$$
\begin{equation*}
\mathcal{L}_{C} \eta^{r}=\rho \eta^{r} . \tag{4.9}
\end{equation*}
$$

Hence making use of a known terminology, it follows that C defines an almost contact transformation of the structure covectors η^{r}.

Finally we denote by $\mathcal{P}=\xi_{2 m+1} \wedge \xi_{2 m+2}+\xi_{2 m+3} \wedge \xi_{2 m+4}$ the Poisson bivector [12] associated with the conformal symplectic form ψ. Since \mathcal{P} may be expressed as

$$
\begin{aligned}
\mathcal{P}= & \eta^{2 m+2} \otimes \xi_{2 m+1}-\eta^{2 m+1} \otimes \xi_{2 m+2} \\
& +\eta^{2 m+4} \otimes \xi_{2 m+3}-\eta^{2 m+3} \otimes \xi_{2 m+4}
\end{aligned}
$$

then since the Lie derivative is additive, one gets by (4.8) and (4.9) that $\mathcal{L}_{C} \mathcal{P}=0$ which shows that C defines an infinitesimal automorphism of \mathcal{P}.

Next operating on the vector valued 1 -form \mathcal{P} by the operator d^{∇} one derives after two sucesive computations $d^{\nabla} \mathcal{P}=\omega \wedge \mathcal{P}-2 \psi \otimes \mathcal{T}-$ $\beta \wedge I^{\perp} \in A^{2}(M, T M)\left(\beta=-{ }^{b} \mathcal{T}\right)$ and $d^{\nabla^{2}} \mathcal{P}=4 a \psi \wedge I^{\perp}$. Therfore (see Proposition 2.5) the last equality shows that \mathcal{P} is a 2 -exterior vector valued 1-form. Moreover, taking into account $\mathcal{L}_{\mathcal{T}} \psi=2 s \psi$ a short calculation gives $\mathcal{L}_{C}\left(d^{\nabla^{2}} \mathcal{P}\right)=\frac{\rho}{2} d^{\nabla^{2}} \mathcal{P}$ that is C defines an infinitesimal conformal transformation of $d^{\nabla^{2}} \mathcal{P}$.

Then one has the
Theorem 4.1. Let $M\left(\xi_{r}, \eta^{r}, g\right)$ be a $(2 m+4)$-dimensional Riemannian manifold endowed with a (\mathcal{T}.P.A.C.) 4-structure discussed in Section 2 and having \mathcal{T} as generator vector field. Let M^{\perp} be the space form submanifold of M, tangent to the vertical distribution $D^{\perp}=\left\{\xi_{r}\right\}$ of M. One has the following properties:
(i) M^{\perp} is equipped with a conformal symplectic structure $\operatorname{CSp}(4, \mathbf{R})$ defined by the form $\psi \in \Lambda^{2} M^{\perp}$ (of rank 2) and such that the covector of Lee corresponding to $\operatorname{CSp}(4, \mathbf{R})$ is the dual form ω of \mathcal{T}, that is, $d \psi=2 \omega \wedge \psi$ and \mathcal{T} defines a relative infinitesimal conformal transformation of ψ, that is, $d\left(\mathcal{L}_{\mathcal{T}} \psi\right)=8 a \omega \wedge \psi,(a=$ const. $)$
(ii) Any vector field C which defines an infinitesimal conformal transformation of ψ is a structure conformal vector field, i.e., $\nabla C=g(\mathcal{T}, C) I^{\perp}+$ $C \wedge \mathcal{T}$ and one has $\mathcal{L}_{C} \psi=\rho \psi ; \rho=2 g(\mathcal{T}, C)$ and $\mathcal{L}_{C} g(C, Z)=\frac{4}{3} \rho g(C, Z)$, $Z \in \Gamma T M^{\perp}$.
(iii) The conformal scalar $\rho\left(\mathcal{L}_{C} g=\rho g\right)$ is an eigenfunction of Δ and if M^{\perp} is compact, then $a=-\mu^{2}$ and M^{\perp} is isometric to a sphere of radius $\frac{1}{2} \mu$.
(iv) The Poisson bivector \mathcal{P} associated with ψ is a 2-exterior vector valued 1-form, i.e., $d^{\nabla^{2}} \mathcal{P}=4 a \psi \wedge I^{\perp}$ and C defines an infinitesimal automorphism of \mathcal{P}.

5. Framed f-structures

In the present section we assume that the manifold $M\left(\xi_{r}, \eta^{r}, g\right)$ under consideration is endowed with a framed f-structure $\phi[27]$, that is ϕ is a tensor field of type $(1,1)$ and rank $2 m$ which satisfies:
(1) $\phi^{3}+\phi=0$
(2) $\phi^{2}=-I+\sum \eta^{r} \otimes \xi_{r} ; \phi \xi_{r}=0 ; \eta^{r} \circ \phi=0$
(3) $g\left(Z, Z^{\prime}\right)=g\left(\phi Z, \phi Z^{\prime}\right)+\sum \eta^{r}(Z) \eta^{r}\left(Z^{\prime}\right) ; Z, Z^{\prime} \in \Gamma T M$ and the fundamental 2 -form Ω associated with the f-structure satisfies:
(4) $\Omega\left(Z, Z^{\prime}\right)=g\left(\phi Z, Z^{\prime}\right) ; \Omega^{m} \wedge \varphi \neq 0, \varphi$ being the volume element of M^{\perp}, i.e., $\varphi=\eta^{2 m+1} \wedge \eta^{2 m+2} \wedge \eta^{2 m+3} \wedge \eta^{2 m+4}$.
Such a manifold $M\left(\phi, \Omega, \xi_{r}, \eta^{r}, g\right)$ is, as known, defined as framed f manifold.

With respect to the cobasis $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{A}, \eta^{r}\right\}$ the form Ω is expressed by $\Omega=\sum \omega^{a} \wedge \omega^{a^{*}} ; a \in\{1, \ldots, m\} ; a^{*}=a+m$ and the horizontal connection forms ϑ_{B}^{A} satisfies the known Kählerian conditions

$$
\begin{equation*}
\vartheta_{b}^{a}=\vartheta_{b^{*}}^{a^{*}} ; \vartheta_{b}^{a^{*}}=\vartheta_{a}^{b^{*}} \tag{5.1}
\end{equation*}
$$

Since on the other hand by (3.1) it is seen that the transversal connection forms ϑ_{A}^{r} vanish, one gets by exterior differentiation $d \Omega=0$. Since Ω is of constant rank and closed it follows that it is a presymplectic form on M and a symplectic form on M^{\top}. We notice that in this case $\operatorname{ker}(\Omega)$ coincides with the vertical distribution D_{p}^{\perp} of M which may be also called characteristic distribution of Ω. In addition by condition (3) of a framed f-structure and $\vartheta_{A}^{r}=0$ one has $(\nabla \phi) Z=0, Z \in \Gamma T M$, that is ∇ and ϕ commute.

Recall now that the torsion tensor field S of an f-structure is the vector valued 2 -form defined by $S=N_{\phi}+S^{\perp}$ where $N_{\phi}\left(Z, Z^{\prime}\right)=\left[\phi Z, \phi Z^{\prime}\right]+$ $\phi^{2}\left[Z, Z^{\prime}\right]-\phi\left[Z, \phi Z^{\prime}\right]-\phi\left[\phi Z, Z^{\prime}\right]$ is the Nijenhuis tensor field, and $S^{\perp}=$ $2 \sum d \eta^{r} \otimes \xi_{r}$ is the vertical component of S. By (3.10), (5.6) and $(\nabla \phi) Z=0$ it is easily seen that S vanishes on D^{\top}. In this case, the f-structure $\left(\phi, \xi_{r}, \eta^{r}\right)$ is said to be horizontal-normal (or D^{\top}-normal) [2].

Consequently, following a definition of A. BEJANCU [2] the framed f manifold $M\left(\phi, \Omega, \xi_{r}, \eta^{r}, g\right)$ under consideration is a framed- $C R$ manifold. On the other hand, taking into account that Ω is closed, the horizontal submanifold M^{\top} of M moves to a symplectic submanifold.

It also should be noticed that by (3.2) one may write S^{\perp} as $S^{\perp}=$ $2 \omega \wedge I^{\perp} \Rightarrow d^{\nabla} S^{\perp}=0$ that is, S^{\perp} is a closed vector valued 2 -form. We agree with the following

Definition 5.1. Let M be a framed f-manifold and let S^{\perp} be the vertical component of its associated torsion tensor. If the covariant differential of S^{\perp} is closed, i.e., $d^{\nabla} S^{\perp}=0$, we say that M is a vertical closed framed f-manifold.

Now since one finds $\mathcal{L}_{\mathcal{T}} \xi_{r}=\left[\mathcal{T}, \xi_{r}\right]=t_{r} \mathcal{T}-(t+a) \xi_{r}$ then one get at once $\mathcal{L}_{\mathcal{T}} S^{\perp}=2 \lambda S^{\perp}$. Accordingly the Lee vector field \mathcal{T} defines an infinitesimal conformal transformation of S^{\perp}.

Then we can state the following
Theorem 5.2. Let $M\left(\phi, \Omega, \xi_{r}, \eta^{r}, g\right)$ be a framed f-manifold endowed with a \mathcal{T}-parallel almost contact 4-structure, and let S^{\perp} be the vertical component of the torsion tensor field S associated with the f-structure defined by ϕ.

Any such M is a framed f-CR manifold which is vertical torsion closed, i.e., $d^{\nabla} S^{\perp}=0$, and may be viewed as the local Riemannian product $M=M^{\top} \times M^{\perp}$ such that:
(i) M^{\top} is a totally geodesic Kählerian submanifold of M, tangent to $\left\{\xi_{r}\right\}^{\perp}$;
(ii) M^{\perp} is a totally geodesic space form submanifold of M, tangent to $\left\{\xi_{r}\right\}$;
(iii) the Lee vector field \mathcal{T} of the ($\mathcal{T} . P . A . C)$.4 -structure defines an infinitesimal conformal transformation of S^{\perp}.

References

[1] C. Albert, Le théorèm de réduction de Marsden-Weinstein en la géométrie cosymplectique et de contact, J.G.P. 6 (1989), 627-642.
[2] A. Bejancu, Geometry of CR-Submanifolds, D. Reidel Publ. Comp., Dordrecht, 1986.
[3] T. Branson, Conformally covariant equations in differential forms, Comm. Partial Differential Equations 7(11) (1982), 393-431.
[4] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt and P. A. Griffith, Exterior Differential Systems, Springer-Verlag, New York, 1991.
[5] A. Bucki, Submanifolds of almost r-paracontact manifolds, Tensor N. S. 40 (1984), 69-89.
[6] E. Cartan, Systèmes Différentiels Extérieurs et leurs applications géométriques, Hermann, Paris, 1945.
[7] B. Y. Chen, Geometry of Submanifolds, M. Dekker, New York, 1973.
[8] J. Dieudonné, Treatise on Analysis, vol. 4, Ac. Press, New York, London, 1974.
[9] V. V. Goldberg and R. Rosca, Almost conformal 2-cosymplectic pseudoSasakian manifolds, Note di Matematica VIII,1 (1988), 123-140.
[10] V. V. Goldberg and R. Rosca, Foliate conformal Kählerian manifolds, Rend. Sem. Mat. Messina Serie II I (1991), 105-122.
[11] F. Guedira and A. Lichnerowicz, Géométrie des algèbres de Lie locales de Kirilov, J. Math. Pures Appl. 63 (1984), 407-484.
[12] M. Kobayashi, Differential geometry of symmetric twofold CR-submanifolds with cosymplectic 3-structure, Tensor N. S. 41 (1984), 69-89.
[13] P. Libermann and C. M. Marle, Géométrie Symplectique, Bases Théoriques de la Mécanique, t. 1 UER Math., Paris VII, 1986.
[14] A. Lichnerowicz, Les relations intégrales d'invariance et leurs applications á la dynamique, Bull. Sci. Math. 70 (1946), 82-95.
[15] I. Mihai, R. Rosca and L. Verstraelen, On a class of exact locally conformal cosymplectic manifolds, Intern. J. Math. Sci. (USA) 19 n. 2 (267-278).
[16] D. Naitza and I. Mihai, Almost conformal 2-cosymplectic manifolds, Revue Roumaine de Math. Pures et Appl. 39 (1994), 156-169.
[17] M. Petrovic, R. Rosca and L. Verstralen, Exterior concurrent vector fields on Riemannian manifolds. I. Some general results, Soochow J. Math. 15 (1989), 179-187.
[18] R. Rosca, On parallel conformal connections, Kodai Math. J. (2),1 (1979), 1-10.
[19] R. Rosca, Exterior concurrent vector fields on a conformal cosymplectis manifold endowed with a Sasakian structure, Libertas Math. (Univ. Arlington, Texas) 6 (1986), 167-174.
[20] R. Rosca, On conformal cosymplectic quasi Sasakian manifolds, Giornate di Geometria, Univ. Messina, 1988.
[21] R. Rosca, On Lorentzian Kenmotsu manifolds, Atti Accad. Peloritana dei Pericolanti, Cl. Sci. 59 (1991), 15-29.
[22] R. Rosca, On K-left invariant almost contact 3-structure, Geometry and Topology of Submanifolds VII. Differential geometry in honour of Prof. K. Nomizu, World Scientific Publ., Singapore, 1994.
[23] S. Tachibana and W. N. Yu, On Riemannian space admitting more than one Sasakian structure, Tohoku Math. J. 22 (1970), 536-540.
[24] K. Yano, On torse-forming directions in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944), 340-345.
[25] K. Yano, Integral Formulas in Riemannian Geometry, M. Dekker, New York, 1970.
[26] K. Yano and M. Kon, Totally real submanifolds of complex space- forms, Tohoku Math. J 28 (1976), 215-225.
[27] K. Yano and M. Kon, Structures on Manifolds, World Scientific Publ., Singapore, 1984.

```
FERNANDO ETAYO
DEPARTAMENTO DE MATEMÁTICAS
ESTADÍSTICA Y COMPUTACIÓN
FACULTAD DE CIENCIAS
UNIVERSIDAD DE CANTABRIA
AVDA. DE LOS CASTROS S/N
39071 SANTANDER
SPAIN
RADU ROSCA
59. AV. EMILE ZOLA
75015 PARIS
FRANCE
```

