Existence and uniqueness of solutions of a functional-differential equation

S. CZERWIK (Katowice)

1. Introduction

In the present paper we are concerned with the functional-differential equation of the form

(1)
$$\varphi'(x) = h(x, \varphi(x), \varphi[f(x, \varphi(x))], u)$$

with initial condition

$$\varphi(0) = z_0$$

where φ is an unknown function and h, f are known functions and u is a real parameter.

We shall prove that the problem (1)-(2) has exactly one solution defined in the interval $(0, \infty)$ and belonging to a certain function class G, which is defined below and this solution depends continuously on u.

For the equation

$$\varphi'(x) = h(x, \varphi(x), \varphi[f_1(x)], \dots, \varphi[f_n(x)], u)$$

the corresponding problem has been investigated by author in [3]. The problem of the local existence of solutions of equation (1) has been investigated in [4].

2. Existence and uniqueness

In this section we are going to establish a theorem on the existence of a unique solution of the initial-value problem (1)—(2).

We assume the following

HYPOTHESIS 1.

- (i) Let $(Y, \|\cdot\|)$ be a Banach space. The functions $h: I \times Y^2 \times R \to Y$, $f: I \times Y \to I$ where $I = (0, \infty)$, $R = (-\infty, +\infty)$ are continuous on $I \times Y^2 \times R$ and $I \times Y$ respectively.
- (ii) There exist continuous functions L_i : $I \rightarrow I$, i=1, 2 such that for every z_i , $y_i \in Y$, i=1, 2, $x \in I$ and $u \in R$ we have

$$||h(x, z_1, z_2, u) - h(x, y_1, y_2, u)|| \le L_1(x)||z_1 - y_1|| + L_2(x)||z_2 - y_2||.$$

162 S. Czerwik

(iii) There exist constants $F \ge 0$, r > 1, $\beta \ge 0$ such that for every $y, y_1 \in Y$, $x \in I$

$$|f(x, y)-f(x, y_1)| \le F \exp(-rL(x))||y-y_1||$$

where

(3)
$$L(x) = \int_{0}^{x} [L_{1}(s) + (\beta F + 1)L_{2}(s)] ds, \quad x \ge 0.$$

(iv) There exist nonnegative constants A, B, C such that for every y_1 , $y_2 \in Y$, $x \in I$ and $u \in R$

$$||h(x, y_1, y_2, u)|| \le A \exp(rL(x)) + B||y_1|| + C||y_2||.$$

(v) There exists constant $N \ge 0$ such that for $x \in I$, $u \in R$

$$\int_{0}^{x} ||h(s, 0, 0, u)|| ds \le N \exp(rL(x)).$$

Let X be the space of all functions $\varphi: I \rightarrow Y$ which are continuous in I and

(4)
$$\sup_{x \in I} (\|\varphi(x)\| \exp(-rL(x))) < \infty.$$

X with the norm (cf. [1])

(5)
$$|||\varphi||| = \sup_{x \in I} (||\varphi(x)|| \exp(-rL(x)))$$

is the Banach space.

We define \hat{G} as the space of these functions $\varphi \in X$ which fulfil the inequalities

(6)
$$\|\varphi(x)\| \le \alpha \exp(rL(x)), \quad x \in I,$$

(7) $\|\varphi(x) - \varphi(z)\| \le \beta \exp(rL(x))|x-z|, \quad x, z \in I, \quad x \ge z, \quad \alpha, \beta - \text{constants}.$

We can verify that G with metric

(8)
$$d(\varphi, \psi) = |||\varphi - \psi|||$$

is a complete metric space.

Now we shall prove

Theorem 1. Suppose that hypothesis 1 is fulfilled and let

(9)
$$f(x, y) \leq x, \quad x \in I, \quad y \in Y.$$

If, moreover, the numbers α , β fulfil the inequalities

(10)
$$\alpha \ge (N + \|z_0\|) r(r-1)^{-1},$$

$$(11) \beta \ge A + B\alpha + C\alpha$$

then, for every $u \in R$, the initial-value problem (1)—(2) $(z_0 \in Y)$ has exactly one solution $\varphi \in G$, given as the limit of successive approximations.

PROOF. Let $u \in R$ be fixed. Equation (1) with initial condition (2) is equivalent with the equation

$$\varphi(x) = z_0 + \int_0^x h(s, \varphi(s), \varphi[f(s, \varphi(s))], u) ds.$$

Now we define the transformation $\Phi = T\varphi$ by the formula

(12)
$$\Phi(x) = z_0 + \int_0^x h(s, \varphi(s), \varphi[f(s, \varphi(s))], u) ds.$$

We shall prove that (12) transforms G into itself. Let $\varphi \in G$. In view of (i) Φ is continuous in I. From (ii), (6), (9), (3), (v) and (10) we obtain

$$\|\Phi(x)\| \leq \int_{0}^{x} \|h(s, \varphi(s), \varphi[f(s, \varphi(s))], u) - h(s, 0, 0, u)\| \, ds +$$

$$+ \int_{0}^{x} \|h(s, 0, 0, u)\| \, ds + \|z_{0}\| \leq$$

$$\leq \int_{0}^{x} \{L_{1}(s)\|\varphi(s)\| + L_{2}(s) ||\varphi[f(s, \varphi(s))]||\} \, ds + N \exp(rL(x)) + \|z_{0}\| \leq$$

$$\leq \int_{0}^{x} \{L_{1}(s)\alpha \exp(rL(s)) + L_{2}(s)\alpha \exp(rL[f(s, \varphi(s))])\} \, ds + N \exp(rL(x)) + \|z_{0}\| \leq$$

$$\leq \alpha \int_{0}^{x} \{L_{1}(s) + L_{2}(s)\} \exp(rL(s)) \, ds + N \exp(rL(x)) + \|z_{0}\| \leq$$

$$\leq \frac{\alpha}{r} \int_{0}^{x} r\{L_{1}(s) + (\beta F + 1)L_{2}(s)\} \exp(rL(s)) \, ds + N \exp(rL(x)) + \|z_{0}\| \leq$$

$$\leq \frac{\alpha}{r} \left[\exp(rL(x)) - 1\right] + N \exp(rL(x)) + \|z_{0}\| \leq \alpha \exp(rL(x)).$$

Hence Φ fulfils (6). Next, from (iv), (6), (9), (11) for $x \ge z$ we have

$$\|\Phi(x) - \Phi(z)\| \le \left\| \int_0^x h(s, \varphi(s), \varphi[f(s, \varphi(s))], u) \, ds \right\| \le$$

$$\le \int_z^x (A + B\alpha + C\alpha) \exp(rL(s)) \, ds \le \exp(rL(x)) \int_z^x (A + B\alpha + C\alpha) \, ds \le$$

$$\le (A + B\alpha + C\alpha) \exp(rL(x)) |x - z| \le \beta \exp(rL(x)) |x - z|$$

and condition (7) is fulfilled.

164 S. Czerwik

Now we shall prove that the transformation (12) is a contraction map. Actually, from (ii), (8), (7), (iii), (9), (3) for $\Phi = T\varphi$, $\Psi = T\psi$, where $\varphi, \psi \in G$, we get

$$\|\Phi(x) - \Psi(x)\| \le$$

$$\le \int_0^x \|h(s, \varphi(s), \varphi[f(s, \varphi(s))], u) - h(s, \psi(s), \psi[f(s, \psi(s))], u)\| ds \le$$

$$\le \int_0^x \{L_1(s) \|\varphi(s) - \psi(s)\| + L_2(s) \|\varphi[f(s, \varphi(s))] - \psi[f(s, \psi(s))]\| \} ds \le$$

$$\le \int_0^x \{L_1(s) \|\varphi(s) - \psi(s)\| + L_2(s) (\|\varphi[f(s, \varphi(s))] - \varphi[f(s, \psi(s))]\| +$$

$$+ \|\varphi[f(s, \psi(s))] - \psi[f(s, \psi(s))]\|) \} ds \le$$

$$\le \int_0^x \{L_1(s) d(\varphi, \psi) \exp(rL(s)) + L_2(s) (\beta F + 1) d(\varphi, \psi) \exp(rL(s)) \} ds =$$

$$= \frac{1}{r} d(\varphi, \psi) \int_0^x r\{L_1(s) + (\beta F + 1) L_2(s)\} \exp(rL(s)) ds =$$

$$= \frac{1}{r} d(\varphi, \psi) \left[\exp(rL(x)) - 1 \right].$$

$$d(\varphi, \Psi) \le \frac{1}{r} d(\varphi, \psi).$$

On account of Banach's fixed-point theorem there exist exactly one solution $\varphi \in G$ of the problem (1)—(2), which completes the proof.

3. Continuous dependence on parameter

Now we consider the problem of the continuous dependence of solutions of the problem (1)—(2) on parameter u.

We assume the following

HYPOTHESIS 2.

Hence

There exist constant M and functions P: $I \rightarrow I$, ω : $I \rightarrow I$ such that $\omega(u) \rightarrow 0$ as $u \rightarrow 0+$ and

$$\exp\left(-rL(x)\right)\int_{0}^{x}P(s)\,ds\leq M,\quad x\in I.$$

Moreover, for $z_1, z_2 \in Y$, $x \in I$, $u_1, u_2 \in R$ we have

$$||h(x, z_1, z_2, u_1) - h(x, z_1, z_2, u_2)|| \le P(x)\omega(|u_1 - u_2|).$$

We have the following

Theorem 2. Suppose that hypotheses of theorem 1 and hypothesis 2 are fulfilled. Then solutions of the problem (1)—(2) depends continuously on u.

PROOF. For $\varphi \in G$ we define

$$F(x, \varphi, u) = z_0 + \int_0^x h(s, \varphi(s), \varphi[f(s, \varphi(s))], u) ds.$$

Similarly as in the proof of theorem 1, for $\varphi, \psi \in G$ we obtain

(13)
$$d[F(x, \varphi, u), F(x, \psi, u)] \leq \frac{1}{r} d(\varphi, \psi).$$

In view of hypothesis 2 we also have

(14)
$$d[F(x, \varphi, u_1), F(x, \varphi, u_2)] \leq M\omega(|u_1 - u_2|).$$

From (13), (14) and applying the Banach's fixed-point principle ([2], theorem 3.1, p. 18) we obtain our assertion.

References

- [1] A. BIELECKI, Une remarque sur la mèthode de Banach—Cacciopoli—Tikhonov dans la thèorie des èquations diffèrentielles ordinaires, Bull. Acad. Polon. Sci., Ser. Sci. Math. Ast tronom. Phys. IV (1956), 261—264.
- [2] Ordinary differential equations and their generalizations (in polish), Warszawa (1961).
 [3] S. CZERWIK, On a differential equation with deviating argument, Commentationes Math. 19 (1977), 183—187.
- [4] R. J. OBERG, On the local existence of solutions of certain functional-differential equations, Proc. Amer. Math. Soc. 20 (1969), 295—302.

Institute of Mathematics, Silesian University, 40-007 Katowice, Poland.

(Received February 18, 1976.)