On certain types of Kähler spaces

By M. C. CHAKI and A. K. RAY (Calcutta)

(Dedicated to Prof. Ram Behari on his 80th birthday)

Introduction. A non-flat n-dimensional Riemannian space V_n in which the curvature tensor R_{kjih} satisfies a relation of the form

$$\nabla_{m} \nabla_{l} R_{kjih} = \beta_{m} \nabla_{l} R_{kjih} + a_{lm} R_{kjih}$$

where β_m and a_{lm} are not both zero, has been called a generalised 2-recurrent space or briefly a G 2-recurrent space [1] and has been studied in some details [2, 3, 4]. A V_n in which the conformal curvature tensor C_{kjih} satisfies a relation of the type (1) has been called a generalised conformaly 2-recurrent space [1]. It may be briefly called a GC 2-recurrent space. The present paper deals with an n-dimensional $(n=2N, N\neq 1, 2)$ Kähler space. In the first part of the paper, consisting of sections 2—5, canonical representations of the relevant tensors have been obtained for a G 2-recurrent Kähler space and as a consequence it has been shown that such a space is necessarily a recurrent space. The second part (Section 6) deals with a GC 2-recurrent Kähler space. It has been shown that such a space reduces to a G 2-recurrent space and is therefore a recurrent Kähler space (β_m and α_{lm} are called the vector and tensor of recurrence. It is assumed throughout that α_{lm} is different from zero)

1. Preliminaries. Let F_i^h be the structure tensor and g_{ij} the positive definite Riemannian metric of a Kähler space in real representation. Then

$$F_j^r F_r^i = -\delta_j^i$$
 and $g_{rt} F_j^r F_i^t = g_{ji}$

It is also known that

(1.1)
$$F_{ji} = g_{ri}F_j^r = -F_{ij}, \quad F^{ji} = g^{jr}F_r^i = -F^{ij}, \quad \nabla_k F_{ji} = 0.$$

Let R_{ij} be the Ricci tensor and $R = g^{ij}R_{ij}$ the scalar curvature. Also let $H_{ij} = \frac{1}{2}R_{ijkl}F^{kl}$. Then the following relations hold [5]:

(1.2)
$$H_{ij} = -H_{ji}$$
 (1.3) $R_{ks}F_j^s = H_{kj}$

(1.4)
$$H_{ks}F_j^s = -R_{kj}$$
 (1.5) $H_{kj}F^{kj} = -R$.

Part I. — G 2-recurrent Kähler space

2. Some useful relations in G 2-recurrent Kähler space. Let the defining relation of the space be

(2.1)
$$\nabla_{m} \nabla_{l} R_{kjih} = \beta_{m} \nabla_{l} R_{kjih} + a_{lm} R_{kjih}.$$

From the Bianchi identity:

$$\nabla_{l}R_{kjih} + \nabla_{j}R_{lkih} + \nabla_{k}R_{jlih} = 0$$

we have

$$\nabla_{m}\nabla_{l}R_{kjih} + \nabla_{m}\nabla_{j}R_{lkih} + \nabla_{m}\nabla_{k}R_{jlih} = 0.$$

In virtue of (2.1) this gives

$$(2.2) a_{lm} R_{kjih} + a_{jm} R_{lkih} + a_{km} R_{jlih} = 0.$$

(The β terms cancel out.) Replacing m by s and transvecting with $a_m^s = g^{rs} a_{mr}$ we get

$$(2.3) b_{lm}R_{kjih} + b_{jm}R_{lkih} + b_{km}R_{jlih} = 0,$$

where

$$b_{lm} = a_{ls} a_{m}^{\ \ s} = a_{ls} a_{mt} g^{st}.$$

It may be noted that b_{lm} is a symmetric tensor. Let $\Theta = g^{lm}b_{lm}$. Then $\Theta = a^{mt}a_{mt} \neq 0$, for otherwise a_{ij} would vanish identically. This shows that $b_{ij} \neq 0$. We may now quickly deduce the following results:

$$(2.4) R_{jli}^{r} b_{rm} = R_{il} b_{jm} - R_{ij} b_{lm}$$

$$(2.5) R_{rj}b_m^r = \frac{1}{2}Rb_{jm}$$

(2.6)
$$\Theta R_{kjih} = R_{hk} b_{ij} + R_{ij} b_{hk} - R_{hj} b_{ik} - R_{ik} b_{nj}.$$

In fact, (2.4) may be obtained from (2.3) by contracting with g^{hk} , (2.5) follows from (2.4) on contraction with g^{il} and (2.6) may be obtained by contracting (2.3) with g^{lm} and using (2.4). Now, we have

$$\begin{aligned} 2\Theta H_{kj} &= \Theta R_{kjih} F^{ih} = \\ &= R_{hk} F^{ih} b_{ij} + R_{ij} F^{ih} b_{hk} - R_{hj} F^{ih} b_{ik} - R_{ik} F^{ih} b_{hj} = \\ &= H_{ks} g^{is} b_{ij} - H_{js} g^{hs} b_{hk} - H_{js} g^{is} b_{ik} + H_{ks} g^{hs} b_{hj} = \\ &= 2(H_{ks} b_j^s - H_{js} b_k^s). \end{aligned}$$

Therefore

$$\Theta H_{kj} = H_{ks} b_j^s - H_{js} b_k^s.$$

Transvecting (2.5) with F_p^j we get $H_{rp}b_m^r = \frac{1}{2} Rb_{jm}F_p^j = \frac{1}{2} Rb_{ms}F_p^s$. Hence (2.7) gives

(2.8)
$$\Theta H_{kj} = \frac{1}{2} R(b_{ks} F_j^s - b_{js} F_k^s).$$

Transvecting this with F_p^j we get

(2.9)
$$\Theta R_{kp} = \frac{1}{2} R(b_{kp} + b_{kp}^*)$$

where

$$(2.10) b_{kp}^* = b_{sj} F_k^{\ s} F_p^{\ j}.$$

It is to be noted that symmetry of b_{kp} implies that b_{kp}^* is also symmetric.

3. Form of R_{ij} in G2-recurrent Kähler Space From the relation (2.5) viz.,

(3.1)
$$R_{rj}b_{m}^{r} = \frac{1}{2}Rb_{jm}$$

we see that the columns and therefore the rows of b_{ij} define a set of vectors which are all eigenvectors of R_{ij} corresponding to the root $\frac{1}{2}R$ (Such a set depends upon the coordinate system. Under a different coordinate system we shall get a different set). If R=0 then from (2.9) we get $R_{ij}=0$ (because $\Theta\neq 0$) whence by (2.6) $R_{kjih}=0$. But our space is by definition non-flat. Hence R cannot be zero. Also the relation $\nabla_l \nabla_m R = \beta_m \nabla_l R + a_{im} R$, obtained from (2.1), shows that if in a G 2-recurrent space R is nonzero, then it is non-constant. Hence we obtain

Lemma 1. In a G 2-recurrent Kähler space the scalar curvature is non-zero and non-constant.

Let m be the dimension of the eigensubspace of R_{ij} corresponding to the root $\frac{1}{2}R$ and let u_i, \ldots, u_i be an orthonormalised set of vectors spanning this subspace. Then evidently b_{ij} will be of the form

$$b_{ij} = \lambda_i u_j + \lambda_i u_j + \dots + \lambda_i u_j = \sum_{p=1}^{m} \lambda_i u_j$$

where λ 's define another set of m vectors. Symmetry of b_{ij} requires

$$\sum_{p=1}^{m} (\lambda_i u_j - \lambda_j u_i) = \sum_{p=1}^{m} (\lambda \wedge u)_{ij} = 0,$$

where A denotes exterior product. By Cartan's lemma ([6], p. 18), we then have

$$\lambda_i = \sum_{q=1}^m d_{pq} u_i,$$

where d_{pq} is an *m*-ordered symmetric matrix. From (*) and (*') we have

(3.2)
$$b_{ij} = \sum_{p=1}^{m} \sum_{q=1}^{m} d_{pq} u_i u_j.$$

It is clear that rank d_{pq} =rank b_{ij} =l, say. (Indices like p, q, denoting primarily collection of objects, have no tensorial significance. Summation over any such index will be explicitly denoted by \sum notation). Now,

(*")
$$b_{ij}^* = b_{kl} F_i^k F_j^l = \sum_{p=1}^m \sum_{q=1}^m d_{pq} u_k u_l F_i^k F_j^l = \sum_{p=1}^m \sum_{q=1}^m d_{pq} V_i V_j$$
 where
$$V_i = u_k F_i^k \quad (p = 1, 2, ..., m).$$

Let for any vector u, the vector V given by $V_i = u_k F_i^k$ be called the associate vector of u with respect to the structure tensor F. Then

$$V_k = g_{it}u^t F_k^{\ i} = F_i^{\ l} F_t^{\ m} g_{lm}u^t F_k^{\ i} = -g_{km}u^t F_t^{\ m} u^t$$

whence

$$(*''') V^j = -F_t^j u^t.$$

We now prove a simple result in the form of

Lemma 2. If u_i is an eigenvector of R_{ij} corresponding to a characteristic **root** ϱ , then V_i , the associate vector of u_i , is also an eigenvector corresponding to the same root.

Let

$$(3.3) R_{ij}u^j = \varrho u_i.$$

From (1.3) and (1.4) we have $R_{ij} = R_{kl} F_i^k F_j^l$. Therefore (3.3) can be written as $R_{kl} F_i^k F_j^l u^j = \varrho u_i$. In virtue of (*''') this gives $R_{kl} F_i^k (-V^l) = \varrho u_i$. Transvecting with F_s^i we get $R_{kl} (-\delta_s^k) (-V^l) = \varrho V_s$ whence $R_{sl} V^l = \varrho V_s$. This proves the lemma. In virtue of this result, we see that the vectors V_i, \ldots, V_i also all belong to

the eigensubspace of R_{ij} corresponding to the root $\frac{1}{2}R$ and therefore these vectors are all linear combinations of the *u*-vectors. Hence b_{ij}^* is eventually of the form

(3.4)
$$\sum_{p=1}^{m} \sum_{q=1}^{m} d_{pq}^{*} u_{i} u_{j}$$

where d_{pq}^* is also symmetric. Since F is non-singular, it may be seen that rank $b_{ij} = \text{rank } b_{ij}^*$. Hence rank $d_{pq}^* = \text{rank } d_{pq} = l$. From (2.9), (3.2) and (3.4) we obtain

(3.5)
$$\Theta R_{ij} = \frac{1}{2} R \sum_{p=1}^{m} \sum_{q=1}^{m} D_{pq} u_i u_j$$

where

$$D_{pq} = d_{pq} + d_{pq}^*.$$

Thus D_{pq} is also symmetric in p and q.

Since every u-vector is an eigenvector of R_{ij} corresponding to the root $\frac{1}{2}R$, we have

(3.6)
$$R_{ir}u^r = \frac{1}{2}Ru_i \quad (s = 1, ..., m).$$

From (3.5) and (3.6) we get

$$\Theta R_{ir} u_s^r = \frac{1}{2} R \sum_{p=1}^m \sum_{q=1}^m D_{pq} u_i u_r u_s^r = \Theta \frac{1}{2} R u_i,$$

or

$$\langle u, u \rangle \left(\sum_{p=1}^m D_{pq} u_i \right) = \Theta u_i,$$

where

$$\langle u, u \rangle = \underset{q}{u_r} \underset{s}{u^r} = \delta_{rs}$$

in virtue of the orthonormality of the vectors u. Hence

$$\sum_{p=1}^{m} D_{ps} u_i = \Theta u_i.$$

Since the u-vectors are independent, we obtain

(3.7)
$$\begin{cases} D_{ps} = 0 & \text{for } p \neq s \\ D_{ss} = \Theta & (s = 1, ..., m). \end{cases}$$

This gives $\Theta R_{ij} = \frac{1}{2} R\Theta (u_i u_j + ... + u_i u_j)$. Since $\Theta \neq 0$, we have

(3.8)
$$R_{ij} = \frac{1}{2} R(u_i u_j + \dots + u_i u_j).$$

Raising *i* and contracting with *j*, we get $R = \frac{m}{2}R$ showing that *m* is precisely equal to 2. Writing u_i and V_i for u_i and u_i we get

(3.9)
$$R_{ij} = \frac{1}{2} R(u_i u_j + V_i V_j).$$

The eigensubspace of R_{ij} corresponding to the root $\frac{1}{2}R$ is thus of dimension 2 and coincides with the rowspace (Column space) of R_{ij} . Hence rank $R_{ij}=2$. In fact, from (3.9) we get $R_{ik}R_j^k=\frac{1}{2}RR_{ij}$. Hence the minimal equation of R_{ij} is $\varrho^2-\frac{1}{2}R\varrho=0$ implying that the characteristic roots are $\frac{1}{2}R$, $\frac{1}{2}R$, 0, 0, ..., 0 (n-2 zeros). It may further be noted that u_i may be chosen arbitrarily in the eigensubspace of R_{ij} corresponding to the root $\frac{1}{2}R$ and since V_i is in the same eigensubspace and orthogonal to u_i , we have either $V_i=u_kF_i^k$ or $V_i=-u_kF_i^k$. For convenience we choose $V_i=u_kF_i^k$.

4. Forms of Hii and Rkith.

In virtue of (3.9) we have

(4.1)
$$H_{ij} = R_{ik} F_j^{\ k} = \frac{1}{2} R(u_i u_k + V_i V_k) F_j^{\ k} = \frac{1}{2} R(u_i V_j - V_i u_j) = \frac{1}{2} R A_{ij}$$

where

$$A_{ij} = u_i V_j - V_i u_j.$$

We next observe that d_{pq} is a 2-ordered symmetric matrix. Therefore b_{ij} is of the form

$$(4.2) b_{ij} = \lambda u_i u_j + \varrho (u_i V_j + V_i u_j) + \mu V_i V_j$$

where $\lambda + \mu = \Theta$ and the rank of the matrix $\begin{bmatrix} \lambda & \varrho \\ \varrho & \mu \end{bmatrix}$ is 2 or 1. Of course, in the latter case by choosing u_i appropriately we may have

$$(4.3) b_{ij} = \Theta u_i u_j.$$

In either case by straightforward calculation we obtain from (2.6)

$$(4.4) R_{kjih} = -\frac{1}{2} R A_{kj} A_{ih}$$

where

$$A_{ij} = u_i V_j - V_i u_j.$$

5. A G 2-recurrent Kähler space is a recurrent space

Since $A_{ih}A^{ih}=2$ we see that

(5.1)
$$R^{kjih}R_{kjih} = \left(-\frac{1}{2}RA^{kj}A^{ih}\right)\left(-\frac{1}{2}RA_{kj}A_{ih}\right) = R^2.$$

As an immediate consequence of (5.1) and the defining relation (2.1) of the space we have

$$\nabla_{l} R^{kjih} \nabla_{m} R_{kjih} = \nabla_{l} R \nabla_{m} R.$$

Let

$$S_{kjihl} = \nabla_l R_{kjih} - \lambda_l R_{kjih}$$

where

$$\lambda_l = \frac{1}{R} \nabla_l R.$$

Then

(5.5)
$$S^{kjihl} S_{kjihl} = \lambda^{l} \lambda_{l} R^{kjih} R_{kjih} - \lambda^{p} R_{kjih} \nabla_{p} R^{kjih} - \lambda^{l} R^{kjih} \nabla_{p} R^{kjih} \nabla_$$

In virtue of (5.1) and (5.2) the righthand side of (5.5) can be expressed as

$$\lambda^{l} \lambda_{l} R^{2} - 2R \lambda^{p} \nabla_{p} R + g^{lp} \nabla_{l} R \nabla_{p} R.$$

But this becomes zero because of (5.4). Hence $S^{kjihl}S_{kjihl}=0$. Since the metric of the space is positive definite we get $S_{kjihl}=0$. Hence $\nabla_l R_{kjih}=\lambda_l R_{kjih}$. That is, the space is recurrent. We summarise the main results in the form of

Theorem 1. A G 2-recurrent Kähler space is a recurrent Kähler space and is necessarily of non-vanishing (therefore non-constant) scalar curvature. The tensors R_{ij} , H_{ij} and R_{kjih} may be simultaneously rendered the canonical forms given by (3.9), (4.1) and (4.4) where u_i and V_i are mutually orthogonal unit vectors spanning the eigen subspace of R_{ij} corresponding to the root $\frac{1}{2}R$.

Putting $\beta = 0$ throughout, we obtain the following corollary: A 2-recurrent Kähler space is a recurrent Kähler space (Other statements of Theorem 1 are also equally valid for this space)

Part II — A GC 2-recurrent Kähler space

6. A GC 2-recurrent Kähler space is a G 2-recurrent Kähler space

We now consider a non-flat *n*-dimensional $(n=2N, N \neq 1, 2)$ Kähler space in which Weyl's conformal curvature tensor C_{kjih} satisfies the relation

$$(6.1) \qquad \nabla_m \nabla_l C_{kjih} = \beta_m \nabla_l C_{kjih} + a_{lm} C_{kjih}$$

where a_{lm} is not zero. Now,

$$C_{kjih} \stackrel{\text{def}}{=} R_{kjih} - \frac{1}{n-2} \left[g_{kh} R_{ji} + g_{ji} R_{kh} - g_{ki} R_{jh} - g_{jh} R_{ki} \right] + \frac{R}{(n-1)(n-2)} \left[g_{kh} g_{ji} - g_{ki} g_{jh} \right].$$

This gives

$$C_{kjih}F^{ih} = 2H_{kj} + \frac{1}{n-2} \left[R_{ji}F_k^i - R_{kh}F_j^h + R_{jh}F_k^h - R_{ki}F_j^i \right] - \frac{R}{(n-1)(n-2)} \left[g_{ji}F_k^i + g_{jh}F_k^h \right] =$$

$$= 2H_{kj} + \frac{1}{n-2} \left[-4H_{kj} \right] - \frac{R}{(n-1)(n-2)} \left[2F_{kj} \right] =$$

$$= \frac{2(n-4)}{n-2} H_{kj} - \frac{2R}{(n-1)(n-2)} F_{kj}.$$

Since covariant derivative of F_{kj} vanishes identically, from (6.1) and (6.2) we have

(6.3)
$$\frac{2(n-4)}{n-2} \left[\nabla_m \nabla_l H_{kj} - \beta_m \nabla_l H_{kj} - a_{lm} H_{kj} \right] +$$
$$- \frac{2R}{(n-1)(n-2)} \left[\nabla_m \nabla_l R - \beta_m \nabla_l R - a_{lm} R \right] F_{kj} = 0.$$

Transvecting this with F^{kj} we have

$$-\frac{2(n-4)}{n-2}\left[\nabla_{m}\nabla_{l}R - \beta_{m}\nabla_{l}R - a_{lm}R\right] - \frac{2(n-2)}{n-1}\left[\nabla_{m}\nabla_{l}R - \beta_{m}\nabla_{l}R - a_{lm}R\right] = 0$$
or

or,

$$-\frac{2(n-2)}{n-1}\left[\nabla_{m}\nabla_{l}R-\beta_{m}\nabla_{l}-a_{lm}R\right]=0.$$

Hence (6.4)

$$\nabla_{m}\nabla_{l}R - \beta_{m}\nabla_{l}R - a_{lm}R = 0$$

whence from (6.3) we get

(6.5)
$$\nabla_m \nabla_l H_{kj} - \beta_m \nabla_l H_{kj} - a_{lm} H_{kj} = 0.$$

Transvecting this with F_{p}^{j} and then writing j in place of p we get

$$\nabla_{m} \nabla_{l} R_{kj} - \beta_{m} \nabla_{l} R_{kj} - a_{lm} R_{kj} = 0.$$

9 D

In virtue of (6.1), (6.4) and (6.6) we now obtain

(6.7)
$$\nabla_{m}\nabla_{l}R_{kjih} - \beta_{m}\nabla_{l}R_{kjih} - a_{lm}R_{kjih} = 0,$$

i.e. the space is a G 2-recurrent space. Thus we arrive at the following theorem:

Theorem 2. A GC 2-recurrent Kähler space is a G 2-recurrent Kähler space and is therefore a recurrent Kähler space.

Corollary: A C 2-recurrent (conformally 2-recurrent) Kähler space is a 2-recurrent Kähler space and is therefore a recurrent Kähler space.

References

- [1] A. K. RAY, On generalised 2-recurrent tensors in Riemannian spaces, Acad. Roy. Belg. Bull. Cl. Sci. 5° Serie, (1972), 220—228.
- [2] ———, On generalised recurrent spaces of second order, Bull. Acad. Polon. Sc. Ser. Math. Astro. Phys. 23, 3, (1975), 259—265.
- [3] ———, Some theorems on generalised recurrent spaces of second order, Acad. Roy. Belg. Bull. Cl. Sci. (1974), 1156—1163.
- [4] M. C. CHAKI and A. K. RAY, On conformally flat generalised 2-recurrent spaces, Publ. Math. (Debrecen), 22 (1975), 95—99.
- [5] K. YANO, Differential geometry of complex and almost complex spaces, London, 1965.
- [6] Shlomo Sternberg, Lectures on Differential Geometry, Prentice Hall, Inc. N. Y. (1964), 18.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF CALCUTTA AND DÉPARTMENT OF MATHEMATICS UNIVERSITY OF KALYANI

(Received 2 August 1976.)