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Introduction. A non-flat n-dimensional Riemannian space ¥V, in which the
curvature tensor R,;, satisfies a relation of the form

(1) Vo ViRiiin = B Vi Ryjin+ @ Rijin

where f,, and a,,, are not both zero, has been called a generalised 2-recurrent space
or briefly a G 2-recurrent space [1] and has been studied in some details [2, 3, 4].
A V, in which the conformal curvature tensor C,, satisfies a relation of the type
(1) has been called a generalised conformaly 2-recurrent space [1]. It may be briefly
called a GC 2-recurrent space. The present paper deals with an s-dimensional
(n=2N, N1, 2) Kihler space. In the first part of the paper, consisting of sections
2—5, canonical representations of the relevant tensors have been obtained for
a G 2-recurrent Kihler space and as a consequence it has been shown that such
a space is necessarily a recurrent space. The second part (Section 6) deals with
a GC 2-recurrent Kihler space. It has been shown that such a space reduces to
a G 2-recurrent space and is therefore a recurrent Kihler space (f, and a,, are
called the vector and tensor of recurrence. It is assumed throughout that a,, is
different from zero)

1. Preliminaries. Let F} be the structure tensor and g;; the positive definite
Riemannian metric of a Kédhler space in real representation. Then

Fer:: = _5JI and g" F‘I‘Fif = gji

. J
It is also known that

(L.1) F;; =g, jr=_F:'j9 Fji:SJrFri=—F”, VtFji‘__O‘

J
Let R;; be the Ricci tensor and R=g'/R;; the scalar curvature. Also let H;;=

=3 Ry F*. Then the following relations hold [5):

(1.2) HU=_Hfl (1-3) RluFJs:Hju

(1.49) HFf =—R,; (1.5) H,;F* =—R.
Part I. — G 2-recurrent Kéhler space

2. Some useful relations in G 2-recurrent Kdahler space. Let the defining relation
of the space be

(2.1) va:Rxm = ﬁmv}ka'FamRum-
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From the Bianchi identity:
ViRyjint+V; Ryin+Vie Rjyip, = 0
we have
Vo ViR jin+ Vi Vi Ryein + Vo Vi Ry = 0.

In virtue of (2.1) this gives

(2.2) Ay Ry jin+ @jo Rigin+ Qg Ry, = 0.

(The f terms cancel out.) Replacing m by s and transvecting with a,*=¢"a,, we get
(2.3) bim Ryjin+ b jou Rixin+ b Ry = 0,

where

- | - 13
blm = aisam‘ = s Qpy g‘ .

It may be noted that b, is a symmetric tensor. Let @ =g'™b,,,. Then @ =a™a,, =0,
for otherwise a@;; would vanish identically. This shows that b;;>0.
We may now quickly deduce the following results:

(24) Rji by = Rybjm—R;;b,,
4 1
(2.5) R,;b, = = Rb,,
(26) GRkjl'ﬁ = RMbij+RUbM:_'thbik_Rr'kbllj'

In fact, (2.4) may be obtained from (2.3) by contracting with g", (2.5) follows from
(2.4) on contraction with g" and (2.6) may be obtained by contracting (2.3) with
g'™ and using (2.4). Now, we have

20H,; = ORy;, F" =
= R,,,,.F”‘b;j-i-R,-jF"‘b,,,‘—R,U-F"'b,-k-*R,-*F"'b,,,- =
= Hy,g"b;;— H;,g" by,— H; 8" by + Hy,g" b,; =

= 2(Hks bjs_Hjs by*).
Therefore
(2.?) GHkJ=Hksbjs—Hjsbks.

Transvecting (2.5) with F,/ we get H,pb,,’,=-:‘; Rb_,-,,,F,J':% Rb,, F,*. Hence (2.7) gives

1
(2.8) G‘ij = 5 R(bk.’ FJ{S_ bj’ st).
Transvecting this with F,/ we get
1 .
(2.9) OR,, = 3 R(by,+ by,)
where
(2.10) b:P=b,ijst".

It is to be noted that symmetry of b, implies that b}, is also symmetric.
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3. Form of Ry; in G 2-recurrent Kihler Space

From the relation (2.5) viz.,
1
{3-]} R,.jb;l =3Rb1m
we see that the columns and therefore the rows of b;; define a set of vectors which
are all eigenvectors of R;; corresponding to the root %R (Such a set depends upon

the coordinate system. Under a different coordinate system we shall get a diffe-
rent set). If R=0 then from (2.9) we get R,;=0 (because @0) whence by (2.6)
R, ;i»=0. But our space is by definition non-flat. Hence R cannot be zero. Also
the relation V,V,,R=p,V,R+a;,R, obtained from (2.1), shows that if in a G 2-
recurrent space R is nonzero, then it is non-constant. Hence we obtain

Lemma 1. /n a G 2-recurrent Kdhler space the scalar curvature is non-zero and
non-constant.

Let m be the dimension of the eigensubspace of R;; corresponding to the root
—R and let u,, ...... u; bz an orthonormalised set of vectors spanning this sub-

space. Then cwdently b,, will be of the form

m
(*) b,-j=/..;u_,--l-f..,-ujﬁ-...‘f*/-.,-uj= 2;.,“_‘,

) R | 29 mm p=1pp

where /’s define another set of m vectors. Symmetry of b;; requires

Z(}iuj A.ju)—- Z(Af"\“)'}— A

p=1 p p

where /A denotes exterior product. By Cartan’s lemma ([6], p. 18), we then have

(¥) iy = 2 dpgtiy,
p q=1
where d,, is an m-ordered symmetric matrix. From (=) and (") we have
m m
3.2 = Nl u u
p=1 g=1

It is clear that rank d,,=rank b;;=/, say. (Indices like p, g, denoting primarily
collection of objects, have no tensorial significance. Summation over any such
index will be explicitly denoted by 3’ notation). Now,

) by =buFiF} =3 3d, uu FLE] = 3 3 duhi¥

p=1gq=1 p=1 g=1 q

I/:= ukFik (p=l9 2_....,"1)-
P

P

where
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Let for any vector u, the vector V' given by V;=u, F}¥ be called the associate vector
of u with respect to the structure tensor F. Then

Vi = gut'F! = FF" g u' F} = — gy ' F" '
whence
(=”) Vi=—Fju'

We now prove a simple result in the form of

Lemma 2. If w; is an eigenvector of R;; corresponding to a characteristic root
0, then V,, the associate vector of u, is also an eigenvector corresponding to the
same root.

Let
(3.3) Rijwi = ou,.

From (l 3) and (1.4) we have R;;= Rk,F"F‘ Therefore (3.3) can be written as
Ry F¥F'u/=ou;. In virtue of (*”) this gives Ry F*(—V")=pu;. Transvecting with
Fj we get Ry(—=0)(=V")=9oV, whence R,V'=pV,. This proves the lemma.
In virtue of this result, we see that the vectors V, ...... V; also all belong to

1

m

the eigensubspace of R;; corresponding to the root %R and therefore these vectors.

are all linear combinations of the w-vectors.
Hence bj; is eventually of the form

Zd Uil

q= P g

(3.4)

.'lMa

where d,, is also symmetric. Since F is non-singular, it may be seen that rank b;;=
=rank b;. Hence rank d,,=rank d,,=/. From (2.9), (3.2) and (3.4) we obtain

(3.5 OR ,_,=7RZ Z g Ui ll;
2" 53 My
where
D,, =d,+d,

Thus D,, is also symmetric in p and g.
Since every w-vector is an eigenvector of R;; corresponding to the root %R, we
have

(3.6) B = %Ru,- (5 =);.:05 M)
From (3.5) and (3.6) we get
OR; uy = %R Zm' ZmDm‘;i“rl:' =0

or
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where
(u, u)= u,u" =9,
g s q s
in virtue of the orthonormality of the vectors u. Hence

5
m

2 D,u; = Ou,.
p=1 P 5
Since the w-vectors are independent, we obtain

{Dm=0 for p#s

2:1) B = =Y m)
This gives @R,-_,-:%R@(uiuj+...+uiuj). Since @ =0, we have
1 R | mom
1
(318) R” = E‘R(“;U}'l’ e +!l,-uj).
11 mom

Raising 7 and contracting with j, we get R=-2TR showing that m is precisely equal

to 2. Writing u; and ¥, for u; and u; we get
1 -

The eigensubspace of R;; corresponding to the root %R is thus of dimension 2
and coincides with the rowspace (Column space) of R;;. Hence rank R;;=2. In
fact, from (3.9) we get Ri,‘Rj*=-;—RRU. Hence the minimal equation of R;; is
{_12—%-RQ=0 implying that the characteristic roots are %R, %R, 0,0,..,0(n—2
zeros). It may further be noted that #; may be chosen arbitrarily in the eigensub-
space of R;; corresponding to the root % R and since V; is in the same eigensubspace

and orthogonal to u;, we have either V;=wu,F* or V;=—u, F¥. For convenience
we choose V,=u, Fk.

4. Forms of H;; and Ry .

In virtue of (3.9) we have

(4.1) HU' = Rl‘ijk = '% R(ui“k"}‘KK)FJk = ‘%R(“I‘I/}_KNJ‘) =

where

3}‘3‘4:‘}
AU - u;lﬁ—i’;-u

We next observe that d,, is a 2-ordered symmetric matrix. Therefore b;; is of the
form

(4.2) bij = 2wu;+ oV +Viu) +uviv;

_j.



260 M. C. Chaki—A. K. Ray

where A+ =@ and the rank of the matrix [; ﬁ] is 2 or 1. Of course, in the latter
case by choosing u; appropriately we may have

(4.3) b;; = Ou;u;.

In cither case by straightforward calculation we obtain from (2.6)

1
(44) Rkjl'h — —‘3 RA‘U‘ Aih

where
A = wV;=Vu;.

5. A G 2-recurrent Kdhler space is a recurrent space

Since A, A"=2 we see that
: = 1 e 1
(_5. ]) Rk"ulejfh — (—"j" RA‘JAM) ("E’ RAI:J' Aiﬁ) — RE.

As an immediate consequence of (5.1) and the defining relation (2.1) of the space
we have

(5.2) VJR"ijmRkﬂh =ViRV,R.
Let
(5.3 Skjmt = Vi Ryjin— 2 Ryjin
where

2 1
(5.4) b=z ViR
Then

Skjr’k! Skjih! s ;.l ;." RU”'RUHI e ;'kajih Vp Rk;’lh
— ' RY™V, Ry jin+ 87 Vi Ry iy V, R,
In virtue of (5.1) and (5.2) the righthand side of (5.5) can be expressed as
7 R*=2R/*V,R+g'"V,RV,R.

But this becomes zero because of (5.4). Hence S*#S, .. =0. Since the metric of
the space is positive definite we get Sy ;;,,=0. Hence V,Ry;;, =4 R,;;;,. That is, the
space is recurrent. We summarise the main results in the form of

(5.5)

Theorem 1. A G 2-recurrent Kdahler space is a recurrent Kdhler space and is
necessarily of non-vanishing (therefore non-constant) scalar curvature. The tensors
R;;, H;; and Ry, may be simultaneously rendered the canonical forms given by (3.9),
(4.1) and (4.4) where u; and V; are mutually orthogonal unit vectors spanning the

eigen subspace of R;; corresponding to the root =R,

Putting f=0 throughout, we obtain the following corollary: A 2-recurrent
Kihler space is a recurrent Kihler space (Other statements of Theorem 1 are also
equally valid for this space)

Part Il — A GC 2-recurrent Kihler space
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6. A GC 2-recurrent Kahler space is a G 2-recurrent Kdhler space

We now consider a non-flat n-dimensional (n=2N, N1, 2) Kihler space
in which Weyl’s conformal curvature tensor C,j, satisfies the relation

(6.1) Y Vi Cijin = Bu Vi Cujin+ @im Cijin
where a,,, is not zero. Now,

def

1 R
Ryjin—— 3 [un Rji+ 8ji Run—&xi Ry — 8 jn Riil + m (2 8ji — 8i &jnl-
This gives

C&jih

CuuF* = 2”«;"‘ [R,n Fil—Ry,F*+ Ry F'— R, F/]-

R .
— g Fi' + g;s F"] =
“THn—2) 7k T
62) (n—1)(n—2)
R
—2HU+ [ 4”;”] mlzf’-‘”] -

_ 2(n—4) = 2R
= f—p Hy (n—l)(n—z)F"

Since covariant derivative of F; vanishes identically, from (6.1) and (6.2) we have

2(n—4
(6.3) i’_fl[v,.v;m, — BV, Byt B+
2R
_mlvmk—ﬁmv,k_a,mm F = 0.

Transvecting this with F* we have

- 2029 (v, VR,V R~a1, R~ 222 v, ¥, R~ B, VR~ 0 R] =
or,
~20-3) 3, % R—p.V— a1 R =
Hence (6.4)

va.i'R—ﬂmVa‘R—ahnR =0
whence from (6.3) we get

(6.5) Vau Vil j— BV Hyj— a1, Hy; = 0.
Transvecting this with F,7 and then writing j in place of p we get
(6.6) Va ViR ;—BuViRij—am Ry = 0.

9 D
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In virtue of (6.1), (6.4) and (6.6) we now obtain
(6.7) Vo ViR jin— B Vi Ry jin— i Rijin = 0,
i.e. the space is a G 2-recurrent space. Thus we arrive at the following theorem:

Theorem 2. A GC 2-recurrent Kdhler space is a G 2-recurrent Kdhler space
and is therefore a recurrent Kdhler space.

Corollary: A C 2-recurrent (conformally 2-recurrent) Kdihler space is a 2-re-
current Kdhler space and is therefore a recurrent Kdhler space.
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