The geometry of surfaces in parasymplectic spaces

By WALDEMAR CIESLAK (Lublin)

I. Parasymplectic space
1. Definition of the parasymplectic space

Let R™ denotes m-dimensional cartesian space and let A be an automorphism
of R™. We shall denote by this same symbol its matrix with respect to the canon-
ical basis. Denote by S,(m) the subgroup of the group GL(m) defined by:

(1) S,(m) = {GEGL(m)|GTAG = A},

Consider a Klein space for which the basic space is R™ and its fundamental
automorphisms group is the affine group reduced to the transformations x—+ Ax+a
for which A€ S,(m). This space will be denoted by (R™, A).

We shall deal with some special space, namely such one, for which A is anti-
symmetric and singular.

Definition 1. If A is antisymmetric and singular then we call the space (R™, A)
a parasymplectic one.

We have to find a fundamental differential invariant of second order and we
investigate a differential geometry of surfaces in our space.

Theorem 1. Let AT#A and AT#—A. We put ®=A—A". Then S,(m)
is a subgroup of Se(m).

PrOOF. Let G¢ S ,(m), so we have

GAG=4
and then
GTATG = AT.
Hence
GToG = &.

The main consequence of this Theorem 1 is that each space (R™, A) where
AT=#A and AT — A is either a subspace of the symplectic space or of the para-
symplectic space (R™, A —AT).
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2. Length of a curve in parasymplectic space

Let t—+z(t) be a curve in the parasymplectic space (R™, A).

Definition 2. The length of the curve r—z(f) contained between points z(t,),
z(t,) is the number

@ f "EOTAZ@)? dr.

This kind of definition of length was first proposed by R. KRASNODEBSKI [2].
It is easy to see that if we take any new parametrization 7--s(¢) then we have

(zos)' =(Zos)s
(zos)" = (z 05)§2+ (2 05)§
(zos)' (O)TA(zos) (1) = §(!)’z'(s(r))TAE(s (f))

and this implies that the quantity (2) does not depends on parametrization.

Theorem 2. The length of the curve defined by (2) is an invariant with respect
to automorphisms of the parasymplectic space.

PrROOF. Let 7—~z(t) be a curve in (R™, A). By any affine transformation it is
mapped onto the curve

t - (Az+a)(t) == Az(t) +a
where A€ S ,(m).
Simple calculations show that
(Az+a) (O)TA(Az+a)" (1) = 2(1)TAZ(1)

what ends the proof.

Now are going to construct the geometry of the surfaces in parasymplectic
space basing on the notion of introduced above length.

Contrary to the euclidean geometry this one is to be the geometry of second
order due to the second order jets appering in the definition of the length.

II. Geometry of the surface in parasymplectic space

1. Interior geometry

Let M be a k-dimensional surface in (R™, A). Suppose

x(a, ..., u¥)
u= .., )>x@)=] :
R )
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be a local parametrization of a subdomine of M. Put

xlla (u) xllaﬂ (H)
p.(u)=1: Pp(u) =] : owph=1,..,k
x5 (u) x{3p (1)

where x!, denotes the partial derivative of x’ with respect to a-coordinate. Obviously
P.(4), pog(u) are the coordinates of the jet j7x.
We introduce the invariants

(3 Py (u) = pp(u)"Ap,(u)
4 Qup, () = p, )" Apyp(u) o, py =1, ..., k.
If we change the parametrisation
W Y o ) s Y L N

the functions P,; and Q,;, transforms as follow

(3/) Pﬂ. g = A:f Ag‘ Pg_’
@) Qupy = Az A A Qupy+ AZpr A% Py
where

A:‘ o “ra’v A:‘ﬂ' — “?ﬁ'ﬂ"
Thus the functions P,; are coordinates of some tensor field P on M.
Theorem 3. The length of the curve t—x(u(t)) on the surface M induced by
(2) is given by the formula
h 1
(5) S [P, (w(@)id (1) (1) + Qs (u (1)) i (D) ()? (1)]7 dit.
I

PrOOF. We have

© (xou) (1) = p,(u(t))i*()
(xou)” (1) = pu(u (D) (1) + Py (u (0) 4 (1)1 (1)
and using (3), (4), (6) we get
(xou) (T A(x ou)" (t) = Py, (u(0))id® (1)it" (1) + Qup, (u (1)) a* (1) i (£) i (2).

Comparing the last equality with (2) we obtain (5).

Definition 3. The tensor field P is said to be nonsingular iff
7 det [P,z (u)] # 0.

Suppose now that M is a surface for which the tensor field P is nonsingular.
The condition (7) in view of obvious

(8) Pop(u) = — Pog(u)
implies that k must be an even integer.
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Put
&) Gip(u) = P (1) Q,p, (u)
where [P**] is uniquely determined from the equation
P, (u) PP (u) = 3%.

The condition (4”) implies that the functions G, behave under transformations
analogously as Christoffel’s coefficients in the Riemann space. Moreover in view
of (4)

) Gip(u) = Gy (w).

Definition 4. The pair (P,5. Q,p,) Will be called the metrical object of the sur-
face M.
Denote V the operator of covariant differentiation with respect GJ,.

Theorem 4.
(10) V,Py=0.
ProoF. Starting from (3), (4) we get
(11) Prppy () = Qqyp () — 0, (u)

and then using (8), (9), (11)
V,P, = Py,—P,,G§,— P, G, =
= Quyp—pyatQpya—Quyp = 0.
This is a counterport of the Ricci Lemma in riemannian geometry.
Theorem 5.
(12) Py + Poyjat Prajp = 0,
(13) Pl =2 2 05,

The PROOF is a consequence of (11).

Definition 5. The curve in (R™, A) is said to be isotropic iff the length of any
arc contained in it is equal zero.

Definition 6. The geodesic curve 7—x(u(r)) on M is any curve satisfying.
(14) i’ (1) + Gl (u () () i (1) = A(t)a? (2).
Theorem 6. Each geodesic curve is isotropic.
Proor. Looking on (8), (9), (14) we get
Py il i? +Q,p 0t ifu? = P, (il + GGutul)u = 0

what together with (5) ends the proof.
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2. Exterior geometry of hypersurfaces

Consider the parasymplectic space (R™, A) of odd dimension m with
rank A=m—1.

In view of singularity of the matrix A there exists a non-zero vector n€ R™
such that

(15) An =0,

Consider the constant vector field x--N(x) on M obtained from the vector
n by translation to the point x€ M.

Theorem 7. If rank A=m—1 then the conditions

1° the tensor field P is nonsingular,

2° the vectors p,(u), ..., pm—1(1), N(u) are linearly independent,
are equivalent.

ProOOF. Consider the matrix [p,(u), ..., p—1(1), N(u)] consisting of the column
vectors py (), ..., pm—1(u), N(u). Notice that

[Py (W), ..., Pm-1(u), N[ Apy(u), ..., —App-1(u), N(w)] =

The nonsingularity of P implies 2°.

If the vectors p,(u), ..., p,,—1(1), N(u) are linearly independent then the con-
dition rank A=m—1 implies the linear independence of vectors —Ap,(u), ...,
— Ap,—1(u), N(u). Thus 2°=1°,

Restrict the vector field p, to the field of f’s parametric line. We can differen-
tiate along this line in R™ obtaining the vector field p,;.

Hence by using Theorem 7 we get the following “Gauss decomposition™.

(16) Pap () = T () p, () + B,y () N ()
so for the vector field N “the Weingarten’s formulas™ are trivial
(17) N, (u) = 0.

Theorem 8.

Iip(u) = Gip(u).
Proor. Composing (16) and (4) we get
Qup, (1) = p, ()T A(L gy (u) po(u) + B,y (u) N(w)) = I'gp(u) Py, (w),
what implies (15) completing the proof.

Theorem 9.

(19) B,y (u) = St [P0 . Py (W) P2y (]

det [py (1) ... Pu—1 ()N )]
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Proor. From the decomposition (16) we have
det [p; (4) ... Pm—1 (1) pap(u)] = det [py (1) ... Py (1) By (u) N] =
= Byy(u) det [py (1) ... pp—1 (1) N(u)].

Hence we obtain (19).
It is easy to see that the functions B,; are coordinates of some tensor field

B on M and
(20) Bﬂﬂ (U) — ‘Baﬂ(u)-

Definition 7. The tensor field B we will called the imbedding tensor of the

surface M.
Let us look now for some counterports of Codazzi’s formulas and count down

the coordinates of the curvature tensor.

Theorem 10. The following formulas hold
(21) V,B,, = V,;B,,
(22) Rig, = 0.

ProoF. From Gauss formula (16) we derive

Paply = (G:ﬂi'r + G:J Gg]r) Ps +(B:p]y = G:g B"T) N.
Hence
0 = Paply—Payip = Rap Ps+(V; By —Vy B, ) N

and the proof easily follows.

Theorem 11. Let DC R*™ be an open and connected domain of three matrices
ﬁe’ds [Pa,ﬂ]’ [Qm,ﬁ]‘: [Bmﬂ]: o, ﬁa = l) "rvy 2m such that

Qupy = Qpays  Bup = By,

(P) Poply+Qpya—Qayp = 0
(B) Bupyy = Buy)p+ G2y Bop—Gip By, = 0
(R) Gapiy— Gayp+Gip Goy =G5, Gop = 0

where Glg=P" Q4.
Then for any point uc D there exists a neighbourhood U of u and a diffeomorphism
x of U into a some parasymplectic space (R*™**, A) with the following properties:
The pair (P,z, Q.4,) is the metrical object of the surface M parametrized by x;
moreover the function B,y are the coordinates of the imbedding tensor of M.

Proor. Consider the Pfaff’s system
dx' = xf, du*
(a) dxi, = Glyxi,du® + B,, N duf
dN'= 0.
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The conditions B,;=By,, Giz=G},, (B) i (R) implies the integrability of our system.
Let u,€ D and let the vectors a, ..., ds, in R*"*! be linearly independent. We
define the vectors a,; by the formula

(19 A, = AXY,

where
A =[ay...a,, (rectangle matrix)

X = [P,y(ug)] (nonsingular matrix)
Y, = [Q.p,(ug)lp,, (a sequence of square matrices)

A, =[a,...04, (a sequence of rectangle matrices).

We find some antisymmetric matrix A of degree 2m+1 such that rank A=2m,
P,ﬂ(uo)=a;.Aaa, Q“.‘,(uo)=a;-ﬁa¢3, i.c.

(2°) rank A = 2m
3°) X=ATAA
@) Y, = ATAA,.

We note that (1°) and (3°) implies (4°). Since rank A=rank X=2m so from
(3°) we obtain (2°). Thus (3°) defined some matrix 4. Let N be defined by the
condition AN=0.

Let x be a solution of the system (a) with the initial condition

x(“o) = a, x]a(”o) = Ay, N(“o) - N'
Put
Poy(u) = x5 ()" Ax ), (1)

Quﬂy(") = x]y(“)TAxluﬂ(u)'
Of course, we have

(b)

Now we put

{ Psﬁ(uﬂ) - Paﬂ(uo)
ch(“ﬂ) — Qa.h (“o)
G:ﬂ (U) - P W("‘) Qaﬂa(u):

the functions G‘L, are defined in some neighbourhood of the point u,.
We find the differential equations for the functions P,; and Q,,,.

Pﬁﬁlv - xl‘;,/lx],+x['} AX)yy = GE,P“+G:?P” = Q«?ﬂ"'QﬂN
Oupyis = Xha AX g+ X[y AX)0ps = G736 Poo+(Gps+ G GH) P,
Thus we obtain the following system of differential equations

Pxﬁlr = Quyp— Cpya

© Quaﬂa = G?a Gﬁg P et (Gipps+ éﬁ, G:.s) P o
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We show that
(Q) Q:Bﬂl o Poy(G:ﬂli+G:rG¢ﬁ)+G$AQ¢ﬂa'
The condition
P,,Pﬂ*’ =3

and (P) implies that

Pﬂlv = #P“P““Pﬂﬂ = #Pu(Qaw_Qera)PM = _PuGgr'_P”G:?'
Hence

Gipiy = P%;Qupe+ P Q,po11 = (— G4 P — G, P*) Q5o+ P2 Qg =

=-G3; :p—G?:;Pa’Qaag'f‘PaeQuMla-

Multiplying by P;, we obtain (Q). The functions P,; and Q,;, with respect to (P)
and (Q) statisfying the system (c). The initial conditions (b) implies

ﬁuﬂ = Puﬂ and Q’BT = Qlﬂ},.

Moreover B are coordinates of the imbedding tensor of M.

3. Exterior geometry of surfaces in parasymplectic space (R®, A)

S. WATANABE [4, 5] investigated the geometry of surfaces in the affine space K3.
Our aim in this chapter is to prove the following

Theorem 12.
0 1 -1
Fe=IR 1 & 3
1 -1 0

ProOOF. Before starting the proof let us recall the definition of K* To do so
it is enough to show the centroaffine group which for K3 is

(24) {AeGL(B}[Zs’a{=detA for j=1,2,3).
=]

It is easy to see that if

1
(25) a= [ll
1

then this group can be defined also as
(24") {A€GL (3) Aa = det 4 -a}

as it was done in [1].
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Suppose
D A gk x
(26) A=|-4 0 %| n=|—-u i
-p —x 0 Y.
Theorem 13. For any GEGL(3) the conditions
(a) GTAG=4A
(b) Gn=detG-n
are equivalent.
PROOEF. Suppose
a b'¢
G=|u v wleS,03).
¥y g 7

then the conditions G'AG=A leads to the equations
(—Au—up)b+(Aa—xp)v+(ua+x»u)qg = A
(—Av—pq)e+(Aa—xp)w+(pa+xu)r = u
(—iv—puq)c+(Ab—xq)w+(ub+xv)r = x
or in an equivalent way to
#(ug—pv) = 2+ Aub+ubp—Jiav—paq
x(ur—pw) = u+Auc+ pube—iaw—par
#(vr — qw) = x + Ave + pgc — Abw — pbr

and counting down x det G, —udet G and 4 det G we get

xdet G = ax(vr—wgq)—bx(ur—wp)+cx(ug—vp) = ax—bu+ca,

—udet G = ux—vu+wi,
Adet G = px—qu+ri.

g § & b4 ax—bu+ ci
Gn=|u v w||—pu|=|ux—vu+wi
o N R A

PX—qu-+TA

On the other hand

so Gn=det G-n implying (a)=>(b).
New the condition (b) may be written as

n=detG-G 'n,

73
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hence
% = (vr—gqw)x+(br—cq)u+(bw—uvc)4,
1= (ur—wp)x+(ar—cp)u+(@aw—cu),
4 = (ug—vp)x+(aqg—bp)u+(av—ub)i

which is exactly what we need to show that (b)=(a).
Let pass now to the proof of Theorem 12.

PrOOF. Putting in Theorem 13 n=a and using the definition (24") we get the
conclusion of Theorem 12 immediately.

4. Exterior geometry of k-dimensional surfaces in (R™, )

Our aim now is to investigate k-dimensional surfaces M which are subject to

(*) det [P,y (u)] # 0
[:] k = rank A.

These two conditions imply that dim Ker A=m—k where k is an even
integer.

Let the vectors ny, ..., n, _; constitute the bases in Ker A. Let us define a con-
stant vector field N; on M translating vectors n; to the point x(u)€ M.

Theorem 14. If rank A=k then the conditions:

(a) the tensor field P is nonsingular,

(b) the vectors py(u), ..., p(u), Ni(u), ..., N_i(u) are linearly independent
are equivalent.

Proor. We have
[p1 () ... pe(u) Ny(u) ... Npy—y ()] [~ Apy () ... — Apy (W) Ny () ... Ny (0)] =
N RO AL LS N
0 : ré nEn;]l,j:l...,,m—k

In view of the independence of N, ..., N,,_, and the generalized Lagrange’s theorem
on determinants, the matrix

3w
r=1 i, j=1,.., m=k
1s nonsingular so (a)=(b).
If the vectors p,(w), ..., pi(w), Ny(u), ..., N, _(u) are linearly independent then
the condition rank A=k imply that the vectors —Ap,(u), ..., — Ap, (1), N,(u),
ooy Npy—x(u) are also linearly independent. Thus (b)=(a).
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The consequence of this is the following formula
Pap(u) = rgg(“)!’a(“)'FBis(“) N (u).

Analogously as in chapter 2 we can show

Theorem 15.
(27) [ =Gl
(28) R}, =0
(29) V, Bz =V By,
det[py, ..., Pus Ny ... Ni_1, Pogs Nisy oo Nyl
(30) By = z - .
' et [Py oo Pae Ny oo Naoa)
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