Radicals of the semiring of abelian groups

By SHALOM FEIGELSTOCK (Ramat-Gam)

i. The isomorhism classes of abelain groups under the operations direct sum, and tensor pro-
duct, from a semiring which is a class. In section #i, several radicals of this semiring will be
Facts. concerning computed. semirings in general, which are employed in i, will be introduced in
section fi.

A group will always be meant to be an abelian group.
ii. Let § be a semiring with 0€S satisfying a+0=a, and @-0=0-a=0
for all a€S.

Definition 2.1. A subset /< § is said to be an ideal in S if:
1) a,bel= a+bel,
2) a€l, xeS=axcl, and xa€l, and
3) 0€el

If in addition for all a€l, and x€S, a+x€1l implies that x€/, then 7 is said to
be a k-ideal.
Undefined terms used here are meant to have the same meaning as their

counterparts in ring theory.

Definition 2.2. An ideal I in S is said to be modular if there is an ¢€ S such
that for each x€S, there exists an i/(x)€/ with ex=x+i(x).
Clearly, every ideal in a semiring with identity is modular.

Notation 2.3. The sum of all nilpotent ideals in S will be denoted N,(S). For
every ordinal 7, inductively define N,.,(S) to be the ideal in S such that
N, 1(S)/N.(S) is the sum of all the nilpotent ideals in S/N,(S). For 7 a limit ordinal,
define N.(S)=[J N(S).

<t
For a definition of S//, I an ideal in S, see [3, p. 164].

Definition 2.4. The upper nil radical of S, UN(S), is the sum of all the nil
ideals in S.

Definition 2.5. The Levitzki radical of S, L(S), is the sum of all the locally
nilpotent ideals in S [I, p. 262; &, p. 91].

Definition 2.6. The prime radical of S, P(S)={P|P is a prime ideal in S}.
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Definition 2.7. The Jacobson radical of §,J(S)={M|M is a modular max-
imal ideal in S}.

Lemma 2.8. Let S be a semiring with identity, and let K be the set of non-units
in S. S has a unique maximal ideal M iff K is an ideal, in which case M =K.

PROOF. As in ring theory [2, theorem 3-3].

iti. Let Ab be the class of abelian groups. For every A€ Ab, let [4] be the iso-
morphism class of 4. Write [A4b]={[4]| A€ Ab}). For A, B¢ Ab, define [A]+[B]=
[44B], and [A):[B]=[4A®B]. These two operations clearly make [4b] a com-
mutative semiring, with identity [Z], Z the group of integers.

Notation 3.1. Let A be a torsion free abelian groups. The rank of A will be
denoted by r(A). If r(4)=1, then T(A) will signify the type of 4 [4, vol. 2, p. 109].

Notation 3.2. For all A€ Ab, the torsion part of 4 will be denoted by A4,. For
every prime p, A, will signify the p-component of 4,.

Notation 3.3. T={[A]|A is a torsion group}.

Notation 3.4. DT={[A]|A is a divisible torsion group}.

Notation 3.5. For every prime p, write D,={[4]|A4, is a p-divisible group}.

Notation 3.6. M={[A]|A«Z}.

Lemma 3.7. Let P be a prime ideal in [Ab), and let A be a torsion group. If
[A] & P, then [DIEP for every divisible group D.

PrROOF. D® A=0 for every divisible group D.
Similarly we have:

Lemma 3.8. Let P be a prime ideal in [Ab], and let D be a divisible group. If
[D]1¢ P, then [T)eP for every torsion group A.

Corollary 3.9. DTC P for every prime ideal P in [Ab).
Lemma 3.10. T is a prime k-ideal in [Ab].

PrROOF. T is clearly a k-ideal in [A45)].

Let A, B€ Ab, and suppose that neither 4 nor B is a torsion group. Let A’
and B’ be nonzero, torsion free subgroups of 4 and B respectively. A°® B’ is a non-
zero torsion free group, and is isomorphic to a subgroup of 4A® B [5, theorem 2].
Hence [4]-[B]¢ T.

Lemma 3.11. For every prime number p, D, is a prime k-ideal in [Ab].

PROOF. D, is clearly a k-ideal in [4b). Let A, B€ Ab, and suppose that (A® B),
is p-divisible, 4,® B, is isomorphic to a direct summand of (4® B), [4, theorm
61.5], and hence must be p-divisible. 4,®B,, is a direct summand of 4,®B,, and
is therefore p-divisible. However, 4,® B, is a direct sum of cyclic p-groups, [4,
theorem 61.3]. Therefore A,®B,=0. Let P, and Py be p-basic subgroups of 4,
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and B, respectively. 0=4,8B,=P,® Py [4, theorem 61.1]. Since P, and Py are
both direct sums of cyclic p-groups, P,®Pz=0 implies that either P,=0, or
Pg=0. This in turn yields that either A4, or B, is p-divisible.

Theorem 3.12. P([Ab])=DT.
PROOF. DTS P(Ab) by corollary 3.9. Lemmas 3.10 and 3.11 yield that
P([4b)) S TN{ND,} = DT.

p a prime
Theorem 3.13. For every ordinal ,
N.([4b]) = L([4b]) = UN([4b]) = DT.

Proor. Clearly Ny([4b]) S L([4b]) S UN([Ab]), and N,([4b]) E N ([4b) S
C UN([Ab)) for every ordinal 7. It therefore suffices to show that UN([Ab])=DT,
and that DT N,([A4b])).

1) UN([4b])=DT: Let I be a nil ideal in [4b], and let [4]€[A4b]. There exists
a positive integer n such that A=4®...@A4=0.

n-times
Let A’ be a torsion free subgroup of 4. Put A/ =4'®..@A4".
n-times
The sequence 0+ A"~ A is exact. If A4’=0, then A4’ =0. Therefore A must
be a torsion group. If 4 is not divisible, then A4 possesses a cyclic, direct summand
B#0. Writt B=B®...®B. Clearly B0, and B is a direct summand of A.

n-limes

A contradiction. Hence A is divisible, and /€ DT. This yields that UN([4b]) < DT.
Since (DT)*=0, clearly DTS UN([Ab)).
2) DTS Ny([4b])): This follows immediately from the fact that (DT)*=0.

Theorem 3.14 M is the unique maximal ideal in [Ab].

Proor. By lemma 2.8 it suffices to show that every [4]¢ M is a non-unit in
[4b], or that for A, BEAb, A® B=Z implies that A=B=Z,

Suppose that AR B=Z.

1) If either 4 or B is a torsion group, then so is A®B.

2) If A and B are both torsion free, then r(A)-r(B)=r(A®B)=1. Therefore
r(A)=r(B)=1. However, (0, ...,0,...)=T(A®B)=T(A)+ T(B). Therefore T(A)=
=T(B)=(0, ...,0, and), and A=B=Z.

3) Suppose that A4 is a mixed group. Z=ARB=(ARB)/(A®B),=A/A,® B/B,
[4, theorem 61.5). By 2) we have that A4/A4,2=B/B,=Z. Therefore A,z A,® B/B,.
However, A,®B/B, is a direct summand of (A® B), [4, theorem 61.5]. A con-
tradiction.

Corollary 3.15. I([Ab)=M.

iv. Results concerning the structure of the tensor product of groups, which
may be found in [4, Section 61] were employed in section iii. Several of these results
were shown to remain true for the tensor product of modules over a Dedekind ring
in [5, and 6]. The generalization of a few more of the results in [4, section 61] to
modules over a Dedekind ring, would yield that all the results obtained here remain
true for the semiring of isomorphism classes of modules over a Dedekind ring.
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