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1. Let A={a,<a,=<...} be a sequence of positive integers. Put A(n)= > 1.

Denote by fi(n) the smallest integer so that every sequence A satisfying A'(n)=='
=f,(n) contains a subsequence of k terms which are pairwise relatively prime. It

is easy to see that

fa(n) = [%]"'l!

2
fo(m) = 1+§,(n)(=-§n+l for 6/n)
and it seems likely that

fi(n) = 1+&_,(n)

where &, _,(n) denotes the number of integers not exceeding » which are multiples

of at least one of the first k—1 primes 2,3, ..., pr_;.

In Part I of this paper (see [3]) we proved in a sharper and more general form
several related conjectures stated in [2]. In this paper, we continue this discussion.
First we introduce some notations. A, ,, denotes the integers a;€ 4, a;=u (mod m)
(and A, (n) denotes the number of those terms of the sequence 4, ,, which do

not exceed n). @(n) denotes Euler’s function. We put

paw)= 21
(a:‘l:: 1
and
Ya(u,v) = é’ 1

(a;, u) - (a,v) =1

For k=2,3, ..., #,(4) denotes the number of the k-tuples g, a,, ..., a; such

that @, <a;,<...<a,=n and (q;,q;)=1 for l=x<y=k. We put

Fy(n) = min AX s (ay)

and

Fy(n) = min _ max = Yalay, ay)

where the minimum is to be taken over all sequences A satisfying A(n)=

and A(n)= [;] +2, respectively.

[5)+
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€1, Cay ...y Mg,y Ny, ... Will denote suitable positive absolute constants.
In Part I of this paper, we proved the following theorems:

Theorem 1. For n=n,,
F,(n) > ¢;n/loglog n.
Theorem 2. There exists constants c,, ¢y, ¢4,y such that

Ag () =s, 1=s<cn
and
n

A(n) = 3

imply that for n=>n,,
n
max @4(a) > ¢sn/loglog —
and
D,(A) > qsn/loglog%.
Theorem 3. To every 0<é&(<1/2), there exist constants cz=cs(e) and ny,=
=ny(e) such that if n>n,,

Apn(n)=s=en
and

A>3,

then
D,(A) > cyn

(Note that Theorem 1 is a consequence of Theorems 2 and 3.)

2. Throughout this section, we will assume for simplicity that » is even; all
our results could be extended easily for odd n.
P. ERDOGs conjectured in [2] that if

A(n) = 5+2
then there exists a 4-tuple a,, a,, a,, a, such that
(ay,a,) = (ay,a,) = (a,,a,) = (a,,a,) = 1.
In this section, we are going to prove the following sharper form of this conjecture:

Theorem 4. For n>n,,
F4(n) = cgn/(loglog n)%.

We first prove two other theorems which will easily imply Theorem 4.
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Theorem 5. There exist constants c,, cg, ¢y and ny such that if n>n,,

(1) Apn(n)=s, 2=s=<cn
and
) A(n) > %

then there exist at least cgs® pairs a,, a, (a,€ A, a,€ A) satisfying 1=a,<a,=n and

3) Yala,, a) = cy n/(log log %]2

Proor. We need the following known lemma (see [1]).

Lemma 1. The number of integers 1=k=n satisfying @(k)/k<1/t is less
than nexp (—exp ¢;ot) (where exp z=e€*), uniformly in t=2.

Let us apply Lemma 1 with
1 2n
t= ;;; loglog -;- A

(=2 holds for small enough ¢;.) We obtain that the number of integers 1=k=n
which satisfy ¢@(k)/k<1/t (where ¢ is defined by (3)) is less than s/2(=1). Denote
now by b,<...<b,=n, r=>5/2(=1) the integers in A, . satisfying o(b)/b;>1/t.
We are going to show that for 1=x<y=r,

& (b, b)) > con/loglog =

provided that ¢, and ¢, are sufficiently small (and » is large).
Clearly, the number of integers 2u=n satisfying (2u, b,)=2u, b,)=1 is

n n
by —1)* [—-——]
[2 ] F(lpir-%‘kﬂb’mby] ( ) 2pl'1pl'3 ae pl'*

Here for n large, the number of terms is
2¥([b,,b,1) - 24logn/loglogn
(where v(m) denotes the number of the distinct prime factors of m) since it is well-

known (and follows from the prime number theorem or a more elementary theorem)
that for m<N,

(5) v(m) <= 2log N/loglog N,

hence
v([b,, b,]) < 2log n*/loglog n* < 4log n/loglog n.
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Thus
= i ”‘ E e dlogn/loglogn —
Z l= 2 x (1 p] 2 g 8 =

u=n2
(2w, b,)=(2u, b)) =1

= ] ” 1 _.._] [T (1 __I]_Z-uo;n;loglo;n e

2 pib, P7 piv, p

- (by) ‘P(br) dlogn/loglogn
=3 b, & S =

- _L_ 2llognfloglmu - _n_

218 3

for sufficiently large n (with respect to (3)). Hence, we obtain by a simple com-
putation (with respect to (1) and (2)) that for sufficiently small ¢, and ¢,

'pA(bx! by)— Z 1" 2 ] o
u=n/2 u=nf2
(2u,b,)=(2u,b,)=1 2ug A
n
= 312 [2 A(S 0)(")] J: +(A (n)— A(: 1)(")) -

2
n n w
- ?"‘A(z,n(") =35> c,u/[loglog?] ,

provided that » is large enough which proves (4).
To complete the proof of Theorem 5, observe that b, A and b,€A4 in (4),
furthermore, (4) holds for any pair x, y such that 1 =x<y=r, and here r=s/2(=1).

Theorem 6. To every O0<e(<1/2), there exist constants c¢;,=cy;(¢) and
ng=ng(e) such that if n>ng,

A 1(n) =s=>en

and
A(n) = n/2

then there exist at least c,on* pairs ay,a, (a,€A, a,€ A) satisfving 1=a,<a,=n
and
‘lbd(ax!ay)}clln'

(Note that for en<=s<cyn, Theorem 6 would follow from Theorem 5, but for
the large values of s, we need a separate proof.)

ProoOF. We are going to show that Theorem 3 implies Theorem 6.
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By Theorem 3 and Cauchy’s inequality,

(6) Z WA(ax! ay) = Z Z 1=
1=x<y=A(n) 1sx=<ysA(n) a;=n
(a;, a,)=(a;,a,)=1
a; 1
-3( = P40) - L 3 (a@) —5 3 oala) =
2 2
a;=n 1sx=<=y=A(n) a,sn a;=n a;=n
(ay,a,)=(aj,a,)=1
I (a%" ‘PA(“.'))S 1 1 3
=72 =52 2 W-grs
’ J {nj a‘)-l
1
- 2—(2':15’2(,4))2——n2 > --—--(Zc‘.,(t:)nf’-)“---—:r:2 > ¢pa(e)n’.
On the other hand, we have
(7) 2 IpA (a.t’ a;) —
lsx<y=A(n)
= Z 'J’A(ax’ ay)+ 2 !)bA(ax! ay) =
1=x<=y=A(n) 1=x<y=A(n)
Valag, ay)=cpyn Va(ax, ay)<cyn

C
= 3 eyn+ 3 n=—=nd+n b A
l=x<y=n 1=x=y=A(n) 2 1sx<y=sA(m)

&A(a,,a,)a-c“ n *4(";:-“,-)" ST

If ¢y, is sufficiently small (depending on &) then (6) and (7) yield the statement of

Theorem 6.
Theorem 4 follows easily from Theorems 5 and 6. Namely, if

2 =85 = A(z'l’(n) - f.'-_,n
then Theorem 35 yields that
Ya(ay, a,) > con/(log log n)?,

1§x-=ysfl(n)
while if
S = A(g’l)(n) = C,?‘l
then applying Theorem 6 with ¢, in place of g, we obtain the much sharper

lﬂerysA(n) 'I’A (ax’ ar) =(n (C'?)n

which completes the proof of Theorem 4.
Finally, we remark that using the same method, also the following theorem

could be proved:
Theorem 7. If n=>n,
Ae,1(n) = s(=0), A(n) ’121"
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and
8 1
(8) r = min {s, [—13 log log n”

then there exist integers by<b,<...<b, and d,<d,<...=d, such that b;, dic A for
j=1, 2 i F ang
(bi,d)=1 for 1=i,j=r.

(The statement of this theorem is, perhaps, true even with min {s, (1/4—e¢)n/log n}
on the right of (8) but this can not be proved by our method.)

3. Starting out from an other conjecture of P. Erdds, we will prove the follow-
ing analogue of Theorem 3 for triplets a,, a,, a, instead of pairs a,, a,:

Theorem 8. To every 0-<e(=<1/2), there exist constants c¢;s=Cy3(€) and
n,=n,(e) such that if n>n, and

) A(n) > (—§-+a]n

then
Dy(A) = cypn®.

PrOOF. Denote by P, the product of the primes not exceeding r. We need

Lemma 2. To every ¢=0 and =0 there is an ry=ry(0, 8) so that if r=r,,

n=ng(0,d,r) and u=1,2, ..., P, then for all but ¢ 7

l=k=n, k=u (modP,),

N o
integers k satisfying
F

we have

a (k) = H[l —l] ] g
pik 4
p>r

This lemma is identical with Lemma 2 in [3].

Now we prove Theorem 8. Let r denote a positive integer for which

&

(10) rgru[—,-:-] and r=3

4
hold.
By (9),

Pl' 6
—  max A =
6 o=k=Pl6—1 ‘g; ok sy (1) =

;2'12:-1 L_Zsl A(,,,,m,,(n)] =;i A p(n) = A(n) > [-§-+ e] n.

This implies the existence of an integer k& such that 0=k=P,/6—1 and

1 > 4 {n):—-ﬁ—[3+] = (4+ 66) —
(11) & Apeored P, \3 eln= 4+ G)E-
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Clearly, for every u,

(12) Ap,.o() < —1’,'— ok
(11) and (12) imply that there exist integers iy, ..., 7; such that
(13) léiiﬁ...{i5§6
and
n R
(14) /’(p"“.'.ii)(n) = 28? fOI’ J= 1, sasy 5,

r

since otherwise

n n n n
‘g; Ap, () = 4(7,:’4‘1]’}'2(28?'] = (4+4g)?r+4 =

would hold, in contradiction with (11).

It follows from (13) that the sequence e ke :5} contains a subsequence
{/1s Ja, Js} of 3 terms which are pairwise relatlvely prime. Let us put 6k+j,=u,
for i=1, 2, 3; then we have

(15)  (uy, up) = (uy, ug) = (g, ug) = 1, |u,—u| =5 for 1=pv=3
and by (14),

(16) Aqpyup(®) > 265

Let b,<...<b, denote the sequence of those integers » for which

1 £

17 T PR 1——] js

(17) €Ap,,u) ,{! =y Sak i
p=r

Lemma 2 yields with respect to (10) and (14) that

En . n
18 - —_—— — = —_—— — — T P ——
( ) t A(Pﬂﬂl](‘") 4 Pr 28 Pr 4 Pr € Pr
We are going to estimate from below the number of solutions
(19) (bh ax) =1, ﬂxGA(r,,»,)
(for i fixed).

Assume that p/(b;, d), d=uy(mod P,). By (10), (15) and (17), these imply
p=>r. Denote by D;(P,, u,) the number of those integers d for which d=n, d=u,
(mod P,) and (b;,d)=1. We have by a simple argument

= 2v(b) L 23logn{lo:lolu

(20) D) -5 17 (1]
P, plb;
p=r
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(with respect to (5)). Thus in view of (17),

(21) D;(P,, uy) > : 1T ]__I_)_zﬂolﬂ!loslosn}
P, p/by P
p>=r
.._._8.. ._’.'__ 2logn/loglogn [ _i)i
> [] 4] P, 2 =11 3) P

(for n large).
Denoting the number of solutions of (19) by v,, we have by (16) and (21)

(22) v = Ap,,u(n)— dZ 1=
=n
—(‘:’] (dn;:dlf’,,)
= A(P...u,)(") —( ‘.2_? 1 —Dy(P,, u,)) e
d=u, (E::uip,)

n n e\ n 3 n n

Let d{’<...<d{ denote the sequence of those integers d for which

(23) (bi,d) — 1’ d€ A(p'.“) and H[ ——] 08 | ——s'.
pid P 4
p=>r

Lemma 2 yields by (10) and (22) that

e n n E n e n
(24) Wi:v‘_T?r }EE_IE}??’:'

Let us denote the number of solutions of
(25) (bi’ a)f) = (d}“! ay) = l$ ayQA(P,,ua)
(for i, j fixed) by z|".
By (15), (17) and (23), if d=uz(mod P,) and p/(b;, e) or p/(d}", e) then p=r.

Denote by E{”(P,,u;) the number of those integers e for which e=n,
e=uz(mod P,) and (b;, e)=(d{", e)=1. With respect to (5), we have

(26) E( )(Pr ’ “3) -

1 (-9

r Pr"b ‘(ﬂ
p>=r

- zﬂlosnlnoglognl - 2llognxloslo¢n'
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We obtain from (17), (23) and (26) for sufficiently large n that

(27) E{(P,, us) > 2o 1y { 1 _i]_zu.,s..n.,,m. <,
P, p/b d{? p
p=r
= i H [] —l] H [] —l]_.zilosu.-‘logto" ,
P, pib, P7 pia P

}_l ___B_ _i el I!ogn;loslogn}[ _i] n
7 (1-5)(-4)- -3) 7

(16) and (27) yield that
(28) 0= Ap,um—( 2 1-Ef)(P,,uy))>

e=n
e=nug(mod P,)

o v U Pt 5 Bl o
By (17), (23) and (25), the triplets b;, d}”, a, satisfy
(b;, d) = (b;, a,) = (d§?, a,) =1, b;,d?, a,€A,
and by (18), (24) and (28), their number is greater than

= 2¢

N & n e g
EP,. > P, ¢p = ca(e)n

r

which completes the proof of Theorem 8.
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