On the existence of fixpoints

By P. BHATTACHARYYA (Madras)

1. Introduction.

Let S be the complex sphere and f a function defined in a domain D on
S. If S§—D, contains an isolated point, we assume without loss of generality that
it is an essential singularity of f.

If z€éD is such that f(2)€D, then fu(z)=f((f(2)) exists. If further fy(z)€D,
then f can be iterated once more. Define f,(z) by fi(z)=z, and f,.,(2)=/(/i(2)).
We say that a point z€D, is of order N if there exists a number N such that
fA(2)ED for 0<n=N, but fy.,(2)§D. If no such N exists then we say that the
point z is of infinite order. Let D, denote the subset of D of points of infinite
order. We now say of the function f that

i) f belongs to Class I if S—D,,. is empty,
ii) f belongs to Class Il if S—D,,, contains one point,
iii) f belongs to Class III if S—D,,, contains two points.

The case when S—D,;, contains more than two points is of no interest to us.
RADSTROM (5, p. 87) has proved:

a) If f belongs to class I, f has to be a rational function,
b) If f belongs to class II, f has to be an entire transcendental function,
¢) If f belongs to class ITI, the f can be expressed in one of the two following forms

IIT A. f(z)=z""exp F(z), n a positive integer, F nonconstant entire,
or

III B. f(z)=2z"exp [F(z)+G(—;-)], n a positive integer, F, G non-constant
entire.
If f belongs to one of the classes I, I or III, then its iterates f,, n=2,3, ...
belong to the same class, except that when f is of class III A, then f, (n>1) belon
to class III B. :

Definition 1. If w=f,(z), w is called a successor of z and Z is called a pre-
decessor of w, in each case of order n.

Definition 2. If f,(x)=a, then « is called fixpoint of order n. Further, if
fil@)#a for k<n, then a is called a fixpoint of exact order n. In this case the

n—1
derivative f(@)= JJ f'(fi(®)) is called the multiplier of . x.
k=1
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The successor of a fixpoint « of exact order » is again a fixpoint of exact
order n. The set {a, f(a), ..., fo-1(a)} is called a cycle of order n.

Definition 3. A fixpoint a (or a cycle) of order n is called artractive, indifferent,

q
or repulsive, according as |f/(a)]<I1, =1 or =>1 respectively. If f,{(at)=e“',
where p and ¢ are integers, then a (and with it the cycle) is called rationally
indifferent.

The main object of study in global iteration theory are the set F=%(f) of
points in whose neighbourhood the sequence {f,} is not normal in the sense of
Montel and the way the complement C(#) of & splits into components (domains
of normality).

Definition 4. The immediate domain of attraction D, of a first-order attractive
fixpoint a is the maximal domain of normality of {f,} that contains a. In
D,, lim f,(z)=a.

It is clear from the definition that D, is a domain whose boundary belongs
to #. ;

In [3, p. 81], Fatou proved that if f(z) belongs to class I and « is a first-order
attractive fixpoint of f(z), then there exists a firsi-order nonattractive fixpoint
on the frontier dD, of D,. In [1], we showed that this result cannot in general be
carried over to functions in class II. However, we proved that Fatou’s result still
holds for functions in class II, if D, is bounded.

In this paper we prove stronger statements about functions in classes II and III.

Theorem 1. Let f(z) belong to the class 11 or 111. Let « be a first-order attractive
JSixpoint of f(z) such that

(i) D, is bounded in case f(z) belongs to class 11,
(ii) D, is bounded away from 0 and < in case f(z) belongs to class III.

Then, for every n=1 (n#2, in case (ii)), there exist cycles of fixpoints of exact order
n on the frontier dD, of D,.

2. Preliminaries

Definition 5. A set A is said to be completely invariant with respect to the
iteration of f(z) if f(z) belongs to A if and only if z belongs zo A.
~If f(z) belongs to class I or 11, then # (f) and its complement are completely
invariant in this sense [3, pp. 33—4l]. The same is easily seen to be true for functions
in class III. It follows that if D, is the immediate domain of attraction of the first-
order attractive fixpoint « of an f(z) in class I, 1I, or lll then f(z) maps D, into
itself and f(z)-9D, as z—dD,.

We know the following thcorcm_ [6, p. 131].

Theorem. [WoLFF and Denyoy). If the regular function g(z) maps the disk
U: |z|<1 into u.reb" and is not a bilinear transformation of U into itself, then the

sequence {g,} has in U a constant limit funmon (which belongs to U). (The bar
denotes closure.)
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By means of a conformal mapping, we get the following obvious corollary to
this theorem.

Corollary 1. If D is a simply connected domain and the regular function h(z)
maps D into itself and is not a univalent map of D into itself, then every limit function
of {h,(2)} in D is a constant.

We also need

Lemma 1. Under the conditions of Theorem 1, D, is simply connected in
both cases.

Proor. If Z is a simple closed curve lying in D, and if f(z) is regular in the
interior of A, then all f(z) are regular inside and on Z, and f,(z)—~2 on i, which
therefore belongs to D,. This shows that if f(z) is in class II, any immediate
domain of attraction D, is simply connected, while if f(z) belongs to class III,
the interior of any closed Zc D, also belongs to D, so long as 2 does not wind
around the origin.

It remains to show that if f(z) belongs to class I1I, then no simple closed curve
A in D, can wind around 0. Suppose there does exist such a simple closed curve
4 in D, which winds around 0. Consider those branches of z=f_,(w) which
may be obtained by local inversion of the power series w=f(z)=a+f"(2) (z—a)+...,
near a and continuation throughout D, in all possible ways. Since D, is bounded
away from 0 and e we see that (a) no transcendental singularities of f_,(w)
are encountered under this continuation, (b) at most a finite number of branches
of f_y(w) are obtained, all continuable into one another in D, and (c) all take
values in D, for weD,. Now we can suppose A (altered slightly, if necessary)
to contain none of the singularities of these branches of f_,(w). Continuing the
branches from a fixed wy€4, around A a finite number of times we see that there
is a branch f_,(wy)=2z, and an integer p such*) that continuation p times around
2 brings z, back to z, for the first time. Then the image A" of 4 by z=f_,(w)
under this continuation is a simple closed curve, since there are no singularities of
f-; on A and so A" cannot cross itself. Also by (¢) A’cD,.

Since f(2") is p-/ we see thatif A° does not wind around O, then f is regular
inside A and f has |p| zeros or poles inside A°, which is impossible. Thus 2’
winds around 0. Now if A, 2" are any two simple curves not passing through
0 but winding around it once in the positive direction then f(1") and f(1”) have

the same winding number with respect to 0, viz. Zlm f lf—(—(z—z)-)dz=p. Then f(4)=
=f(pl) has the same windipg number with respect to 0 as f(pA’)=p* and f, (1)
has winding number p"0. Butsince A’c D, and 1’ is compact we see that f,(z)—~
—a(#0,20) uniformly on A" and this is impossible, if f,(2) winds around 0.
This contradiction shows that in fact no curve such as A can exist, and the lemma is
established.

Lemma 2. Let f(2) satisfy the conditions of Theorem 1. Let z=¢(w) map U=
={w: |w|<1} one to one onto D,, such that @(0)=a. Then the compound

*) p will be positive if we continye around A in the positive direction and it will be negative
if we continue in the negative direction of .

1*
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map F(w)=@_,cfo@(w) of U-=U is rational and has repulsive fixpoints of every
order n (n=1) on K=0U.

Proor. By Lemma 1 we see that D, is simply connected in each case. Hence
a map z=¢@(w) such as that of the hypothesis exists by Riemann’s mapping theorem.

Also D, is bounded and is a domain of regularity of f(z) in class IIL

Now F(w)=¢_;ofc@(w) keeps the unit disc U invariant and the origin
fixed. Further, since F’(0)=f"(x), it is clear that w=0 is an attractive fixpoint
of F(w). Hence U belongs to the immediate domain of attraction of w=0.

We observe that

(1) [F(w)|-1 as |w|-1, and
(2) F(w) is meromorphic (indeed regular) in |w|<l.

Hence we can continue f(w) across |w|=1, analytically using the reflexion
principle [see 4, pp. 89—90]. By reflexion in |w|=1, we see that

F(w), |w=1

1
()

w
define a complete analytic function, which is meromorphic in the closed plane.
The only singularities are the poles in |w|>1, which are the reflexions in |w|=1
of the zeros of F(w) in U. In particular there is a pole at infinity. Thus F(w)
is a regular function except for finitely many poles and hence a rational function.
Since F(0)=0, |F’(0)|<1, it is clear that F(w) is not a univalent map of
U onto itself. Hence F(w) is at least a p-valent function in D,, where p=2. Since
w=0 is an attractive fixpoint, we see that lim F,(w)=0 in U. Also lim F(w)=e

in |w/>1.

Thus, we see that on K: |z|=1, the sequence {F,(2)} is not normal. Because
if {F(w)} is normal at any point uEK then in any ne:ghbourhood N of u, there
must be a sequence of {F,} converging Iocally umformly to a unique limit in N,
But this is impossible since,

and,

Awl =1

- lm E,W) =0 -n NOU

and %
.h_rg F,(w) = in NN{w >1}.

Thus we see that K #(F). In fact it is easy to see that K=F(F).

.We now show that F(w) has repulsive fixpoints of every order n.

If there is a fixpoint & of F(w) on K(=#(F)), we know from the fact
that # is invariant under w- Fy(w) [since # is completely invariant] that the
multiplier F/(¢) must be real and non-zero. It is further true that F/(&) is different
from 1, for the local theory of iteration [2, pp. 191-—195] shows that if F/({)=
=11, then in a region D, of which ¢ is a boundary point, we have F,(w)—~
~+¢{ (n—+e=). But D, meets cither U or w- {jw|>1} where F(w)—0 and o
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[as n—+<=] respectively. Thus F;({) =+ 1 is impossible. Since attractive fixpoints
necessarily belongs to C(#) we know that F;(£) is real and |F/(¢)|>1. Since
F(w) maps U onto itself we have F/(§)>1.

We have already seen that the degree d of F(w) is =2 so that F(w) has
d+1=3 fixpoints of order 1 which are all different. This is because a multiple root
of F(w)—w=0 has F'(w)=1. We know that 0 and - are attractive, while all
other fixpoints belong to K, where F,(w) does not tend to any unique limit as
n-—co. Hence the d—1 first order fixpoints, other than 0 and < are all repulsive.
For any integer k>1 we see that F.(w) is order d* and has 4*+1 fixpoints,
all different by the same argument as for F(w). The number of fixpoints of exact
order j=2 of F,(w) is at most d/+1—(d+1) [since fixpoints of F(w) are also
fixpoints of F;(w)] and so the number of fixpoints of exact order less than &k is

at most
d+1+(@—d)+...+(d* 1 -d) < d*,

so that some of the fixpoints of F,(w) must be of exact order k. By a similar
argument as used before we see that these fixpoints must belong to X.
This completes the proof of the lemma.

3. Proof of Theorem 1.
Let z=¢(w) map U= {w: |w|<1} conformally one to one onto D, such that
@(0)=a. Then by Lemma 2, the function
F(w) = ¢_30fop(w)

is rational and has repulsive fixpoints of exact order n (n=1) on K=9U.
Let y be a repulsive fixpoint of F(w) of exact order p on K, where p=1.
This means that there is a cycle of fixpoints, say y, (i=0, 1, 2, ..., p—1), y=7,=7.
Then Fj(y)=¢>1 and F;(y,)#0 for each i=1,2, ..., p. Therefore we can
find branches G;(w) (i=1, 2, ..., p) of the inverse function of u=F(w), regular
at y; and with G;(y)=y;-,. Furthermore H(u), the inverse of u=F,(w) which
maps 7y, to y,, satisfies
' H(u) = Gyo 0 0G,_,(u).

If we take £>0 small enough then,
Q= UN{lw—y| <&},
Q-3 =G;0G41000G,(Qy); i=1,..,p

are all cﬁsjoint and do not meet 0, and G;_, is regilar and univalent in Q;_;.
Moreover for small &(=0)

G1 )Ql) = GIO Qo OG’(Qo) = H(Qu)
and is strictly contained in £, since H(y)=7,, H'(y.):i,—,{?—“)=%-= 1. Also
H,(u)—~y, in a neighborho d of 'y, which includes Q,. e .
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Define
Qn,n = ‘Hn(Qu)'
Then,
n(ﬁ .n) B ?o-
Q0,041 = H(Q,,,) which is a strict subset of Q, ,.
Define
Q;_1.n =G0 00G,(2,,) C 2;_,
5o that
»
‘Ul (Q 1,0 = Vi-1»
and

y Qi-1,m41 C Q=g 0
Now corresponding to
Qo,n41 = H(Qp,,) < 2o,

we have regions 4, ,=¢(2, ,)<D,, which do not contain a and are such that
4,,, there is a regular branch g of f_,(=@cHog_,) with

g(4o,s) = 40,041 < 4o,

The sequence of itereats g,,,(z) is then normal in 4,, for any fixed n, and
since 4, ,4, is strictly contained in 4, ,, we see by corollary 1, that any convergent
subsequence of {g.(2)} is a constant, say f,.

We show that this constant B, is a fixpoint of exact order p and lies on 9D,.

Let

(l) gﬂg(z) i BO (k _'m)! ZEAo.u-

Now, g maps 4, , univalently onto 4,,,, and its inverse f, maps 4 .,
univalently onto 4, ,. Hence, if z€4,,,,, then f(2)€4,, and so by (I)

gln.(j;(z)) p- Bll'
But g(f,(2))=z so that .

fp [gm‘(z)} =l gm,—l{g(fp(z))} shar gllg(-f,.p(z)) = ﬁo
Since z€4y ,4+1<4,,, we know by (1) that the left hand side has limit f,(f,). Thus

@ S, (Bo) = Bo

Further B,€D, since 4,,cD,. Also since D, is the immediate domain of attrac-
tion of «, D, contains no fixpoints of f(z) other than « and hence B,£0D,.

Similarly to each y; there corrc5ponds a B, each B; being a fixpoint of
f(z) of order n for some n.

We next show that B, is accessible from within 4,,cD,. We have 4, ,,,=
=g(dy,,)C4dy,, and g is regular in 4,,. Take any z,€4,, and z,=g(z,) in
do,.+1- Join zp, z; by a path /; in Ao,. Surround z,z; by a subdomain §,
Of ‘do.n Then form 6;—3(51), seny —g(‘sn l)) f-—g(fx): tod !‘—g(fn 1) Each
I, or 8, meets /,,, or 4,,, respecnvely



~d

On the existence of fixpoints

We now define the superior limit L of the sets 8, as follows [see e.g. 7., p. 10]
L = lim sup §, = {t| there exists a sequence of integers N,
and points z,€8y, such that z, -, as N, -}

Then LcaD,, because each 7 is a limit function of a sequence g, and we have
already shown that this must lie on dD,. Furthermore for the same reason by (2),
any t€L is a fixpoint of order p of f(z) by the argument above. It follows from
the definition that L is closed. Further it must be bounded, since D, (which
contains L) is bounded. Hence L is compact. We next show that L is connected.

Suppose L is not connected. Then there exist closed non-empty sets L, and
L, such that LcL,UL,, and L,NL;=P. The distance between L, and L,
(which must be positive) is

{(Ly Ly) =4n (say) where n > 0.

Now for some ng, J, lies in an n-neighborhood of L for all n=n,. Otherwise
there exist ny, ny, ..., tending to infinity, &,.€96,,, &,,€0,; {({.,, L)=n and &,
will have a point of accumulation (since they are inside the compact set D,) ¢ and
t¢ L. This is against the definition of L.

Take §,€L, and {,€L,. Then there exist a 4J,, n,>n,, which meets a
n-neighborhood of ¢, and similarly there exists a J,;, ny>n, which meets a
n-neighborhood of &,.

Consider the chain

C= l‘s..lua.l+1u sas Ua.‘,

where &, meets an n-neighborhood of ¢, and J,, meets an n-neighborhood
of &,. Now C must be connected since ,MNd,,,=90. Also C lies in an n-neigh-
borhood of L, i.e. of L, and L,.

Given p,€8, L,=n-neighborhood of L, and €8, cL,=n-neighborhood
of L,, there exists a polygon of sides less than n with vertices at

M = Ui, By s ] = g all lying in C.

Let pu{ be thelast g, in L,. Then j#n since py=p] liesin L,. Also p{*'€L,.
Now {(uf, p{**)=<n, so that

C(LyLy) < C(Ly, ) +C(ud, ¥ pp) <m+m+n =31

which is a contradiction. We have now proved that L is connected. We have
already shown it to be compact. Hence L is a continuum or else it must reduce
to a single point.

We now show that L is in fact a single point. If not suppose L is a continuum.
This means that we have a continuum of fixpoints of f(z) or order p, lying in
a finite part of the plane. This is impossible unless f,(z)=z. Hence L must reduce
to a single point and has f, as its unique element, accessible along the path
P=ll+’3+...+ln+..., in Ao... Sincc Igcdo.'+1, ’JCA.'.+1_j, we s&l that r cor-
responds under ¢_, toapath I lying ultimately inside £, ,,;-,, and so approach-
ing y,=7. ; - -

It is then clear that B,=/(B,) is a boundary point of 9D, accessible by the
path f(I') and corresponding under ¢ to y, approached by F(I").- Similarly



8 P. Bhattacharyya

for Bi=f(Py), i=0,1, ..., p—1 which forms a cycle of fixpoints of exact order
p on 9D,, provided we can show that,

B:#=pB; for i#j 0=i, j=p-—-L

Suppose there are i and j, i#j, such that ;=pf;=b. Then p; is accessible
from some 4, , alongapath I'; and f; accessible from some 4, , along a path I';.
These paths are disjoint except at b. Further they correspond to two disjoint end
cuts I';, I'; in U, ending in y;,7; respectively. We may join the ends of I, I
lying in U by an arc I'” to obtain a cross-cut A=I;+I"+I; of U and this
will correspond to Z=¢(A), a Jordan curve which lies in D, except for the end
point b. The interior of Z will contain ¢(U,), where U, is one of the regions
into which A divides U. Boundary points of ¢(U,) corresponding to points
of K belongto &, so X contains points of & in its interior.

For functions in class II, Z—(8,)c D, so that f,(z)¢D, for z€ Z—(pB;), while
f.(B) belongs to {B,, Ba, ..., B,}. Thus for z€ Z, {f,(z)} is bounded. Since f,(z)
is regular within Z, we see that {f,(z)} is uniformly bounded and hence normal
within Z. But this contradicts the conclusion of the previous paragraph and
completes the proof of the theorem for function in class II.

For function in class III, the above argument breaks down only if Z contains
0 in its interior. In this case observe that X—(f,) belongs to D,, while 0 and
o are in the (connected) complement of D,. Thus the complement of D, meets
every curve which winds around 0. We prove our theorem only for p=3. [The
following argument breaks down if p=2.] Then either there are two different pairs
Bi=p; or, there are three p’s equal say B;=p;=p,. In the former case we have
either (i) or (ii) of the following figure, according as (y;,y;) are separated by
(Yi+1, 7j+1) Or not.

K T 14
K . Tt

T

Tt

3‘% i
(i) 77 S

In (i) ¢ separates 7,,,,7;+1 and so Z. But this is impossible. f;., fj41
are in the boundaries of different components of D,—ZX. Since fB;,,=8;,, and
B,+1¢ Z we have a contradiction.

In (ii) we join 3,7, by ¥ as before and ;4,,7;4+1 by a cut §" of U disjoint
from . The images Z, Z’ if y, ¢’ in D, are then disjoint simple Jordan curves,
belonging to D, except for B, and B;,, respectively.
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The ring domain 4 between I, X’ then can be assumed not to contain 0 or
the argument for functions in class II would apply.

However, on the boundary of A, f,(z) is bounded [¢D,U{0, ..., p—1}] and
so {f.(z)} is regular and bounded, hence normal in A and so on a curve winding
round O drawn in A. This is impossible.

Finally, if there are three different f’s: f;=p;=p, we take g on ¥ and a cut
¥” in U joining q to y,. The image of ¥” in D, is an arc Z” joining ¢ on X to f;=
=f;=Px. Then one of the regions bounded by Z” and an arc of X will not contain
0 and we see that the sequence f,(z) are regular and bounded in this region and
hence normal. The region must however contain points of  corresponding to cer-
tain points of K. This gives a contradiction.

I wish to thank DR. I. N. BAkER of Imperial College, London, for his help in
preparing this paper.
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