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On curvatures of the Weyl—Otsuki spaces

By DJERDIJI F. NADJ (Novi Sad)

T. Otsuki starting out from an affine connection I' and from a tensor P; of
type (1.1), has developed a so-called regular general comnection. For covariant
derivation of contravariant resp. covariant vectors two different affine connections
‘T resp. "I are used in this theory. They are derived from I’ and P by taking certain
requirements. Then A. MoOR [2] linked Otsuki’s connection theory with the metric
of a Weyl space and thus constructed the Weyl—Otsuki spaces denoted by W—0,,.

In this paper we find some relations between curvature tensors of this W—O,
space. First we complete the most important results and formulae from the theory
of the Otsuki, resp. Weyl—Otsuki spaces. In § 1. we consider the second covariant
derivative of a vector field in an Otsuki space and we give the alternation formulae
and the Ricci formula. These formulae are necessary to investigate the skew-sym-
metry in the first two indices of the curvature tensor of “T.

In §2. we find the Ricci and Bianchi identities for the curvature tensors
of the covariant and contravariant part of the regular general connection I.

In § 3.—5. Weyl—Otsuki spaces are studied. For these spaces we find the
torsion of the curvature tensor, and different Ricci as well as Bianchi identities
(§3.). In §4. we find conditions for the symmetry and skew-symmetry of the
curvature tensor of the connection “I'. Also some more curvature tensors having
the above symmetry properties are constructed. Finally in § 5 W—O, space of
scalar curvature and the analogue of Schur’s theorem are investigated.

This thema was suggested by Prof. A. MOOR, to whom I express my gratitude
ror consultations during my stay at Sopron University.

Basic formulae of Weyl—Otsuki spaces®)

Let X be a differentiable manifold. A rcgular gcneral Otsuki connection on
it (called simply Otsuki connection in this paper) is given by an affine connection
I' and a tensor field P of type (1, 1), so that in local coordinate det |P‘I;-60 From
the above assumptions it follows the existence of the tensor @} of type (l 1) so that

(0.1) PjQi = PIQ} = 4.
I' and P determine two affine connections ‘'I" and “I' in the following way
Tihe=ThOn Th= (T \—P)Qj

1) Formulae of this paragraph one can find in [1] or [2].
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‘I and "I’ are classical affine connections. For ‘I'}}, and "I/, the following
relations hold

©02) 'Tjy=Qi(TAPj+8,P}); Tt = (PI'I{—, PO}
An often used relation is
0.3) Pj+ T HP;—"T/P:=0.

The operation of covariant and basic covariant differentiation in an Otsuki
space, and the Ricci formula with respect to this basic covariant derivation are:

(0.4) DV = Vi g edxt
0.5) Vi a=Pe...PeVa I Pp... Pfe

A :
(0.6) Viiiew =0Vl + 2T Vorpe-tloamty

ap | gr8...8
- j rr,er:...r,’_llr“,r.

=1
P
o) Wi =— 3 RV
q 'R F] Vil...( - V“"'-' #Tl
+ ‘g; T VL O SPTTRO Rd f So TREL Y
where Vj3"» are the components of a tensor field of type (p, ), and
Tfe="T/v="Tiy; "Tfy = "T)i—"Ty
are torsion tensors of ‘I' and “I" respectively (c.f. [1] — (2.14), (3.8), (3.7), (7.15)).
A consequence of the above definitions is
©8) : O ="T}s="T

For covariant derivatives formed with respect to the classical affine con-
nections ‘I’ and "I’ we use the notation V,”V respectively. The curvature
tensor "R/,, of the connection 'I" is given by

0.9 ‘Réu = 0,'TH—8,/Tl\+'T 5 /'TH—'T,'TH.

The curvature tensor “R/,, of the connection ”“I" is defined on the same way.

On the other hand, a Weyl space W, is determined by a positive definite
metric tensor g;;(x) and a recurrence vector field y,(x).connected by the relation

(0.10) vtgi} = Y 8ij-

A. Modr could construct from the connection of an Otsuki 'spaoe O, and the metric
of a Weyl space a metric general connection W—O,,. The construction of this space
starts from a Weyl space given by g;; and y,; and a tensor field Pj of an Otsuki
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space. A symmetric “I" is then determined from Lijs Vu and P; by the requirement that
V. in (0.10) means the Otsuki covariant derivation defined by (0,5). “I';; can be
expressed in the following way

Y 1
(0.11) r}‘k —— S’“{(aj Lis+0x 8:1"3:811)'(?3 my,+ ?tmsj—?smjk)}’
where

(0.12) my; = g, 0{05.
Also the relation
(0.13) Py = Pg,;=Pjgy= Py

is required (cf. [2] — (1.7), (1.8)). ‘I" is then determined by “I" and P, in a
symple form.

§ 1. The alternation formulae

We find the alternation formulae of an Otsuki space. Since Dx'=dx' we get
from (0.4), (0.5) and (0.6) the relation

ADxi = Pi(8 dxt 4T}, dx* 5x%),

where 4 and D denote covariant differentiations. If § and 4 are commutable
differential symbols, we have

(1) (AD—Dd)x = %pg'r.*, dxtA S,
We denote
(1.2) g & %Pg'r.*, dx*\Sx.

From (0.4), (0.5) and (0.6) we also get
= P} (0 & +'T &) dx*

for the contravariant vector field &, and using (0.8) and (0.3) we obtain
(13)  @D-DNE = [ PPy Rt avhx| - sz DI 21

The first term of the right side contains the componcnts. of the curvature tensor of ’I‘
and we denote it by

(1.9) 'Q‘ 3 P{PY' R, dx*\ox'.

The second term contains the covariant differential of the vector field & and of
the Kronecker &. This term vanishes if & is a parallel vector field, or if Dé!,=0.
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Using the notation Afj=P}Pj(cf. [1] (2.20)) we get for the tensor field I"}ijjﬁ}:

i l ] g o g e
(1.5) (AD=DA)V; = jp = = Ml ... Mi? M};-..M}‘;[Z N v o I O e

2 a=1

q
= Z 'R.tkblr Vki‘,i::ﬁi’-’“b”"j'] dx'1éx" —
b=1

P . y
= 2 P BB PP B e e TN DR OF -

Ploems! a®1’
q
2 Pl PPl PeciPst  Pl(AViriwr a4 )NDST)OR,
similarly to ([.3). This is an analogon of the well known alternation formula

of Riemannian geomeiry (see [3] (105.16)). This proves the following

Theorem 1. The alternation formula in spaces with regular general connection
I’ has the form (1.5).

In case of vanishing of the covariant differential of the Kronécker é (1.5)
reduces to the known formula of the classical affine connection if Mj=4j.
We shall use the Pfaffian forms defined by

(1.6) ‘0l(d) = Ty dx*; "0l(d) <= T dx*
and also the exterior derivatives in the usual way. The exterior derivative of a 1-form
‘@, is defined by

J

(.7 *d'wi(d, 6) <= d'ws(8)—8'ws(d).
It is easy to prove that
(1.8) a) ‘Q = P{(dx*\'w}); b) ‘R = P{P(wj\wi—*d of).

Now we use covariant derivatives in order to get the Ricci formulae of a co-
variant tensor field ¥V , with respect to the covariant differentiation of a regular
general connection I.

Let us form the covariant derivative of the vector &, according to (0.5)

el.k = Pl‘(atcc"" l’kgr)‘
By repeated derivation and alternation we get

(1.9 éi.k — Pl'(akCQ— ”r.’z'f,)-
H ellBy repeated derivation and alternation we get
con(1.9) Stk — Stk = 2851c0% 0 P+ PP Py (P Eajap— PP Esjape)-

Here we applied (0.6). We want to know how this expression depends on the
Lc‘componcnts of the curvature tensor. For this aim we calculate

) Pg &sta— Pi Ssjape = (PEOT— PP %) spapr
Let us consider

Ssjape = Ssj(ajr) T Ssjtae) -
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Applying the Ricci formula (0.7) to ¢y, and using (1.9) we have

B £ > l s a sr) = rle” = Nepem =
(L10) & e,n = Ssja9i, 0 Pi']""f P! P; {2}’[':; 5;3} c:|(n[r)+P[[k.6I]l( R,f.s';— y b .-s'.|...)}-

This is the Ricci formula for the tensor field &; with respect to the covariant de-
rivatives for a regular general connection I With an analogous calculation for the
tensor field V;, , we get the following formula

P
(i‘ 1 V‘r"‘r["'” " Q:'hz; P‘? st P‘th-xl P‘?:Ll : P‘? V’l---5.-1"’“1---”-"6;:.-(’Pﬁ ¥

1 a
+*2'Mi':’--- i? (2PE SV, b, iain +

+Pl[.6]Z Rbh"Vh bp-1bbns1...bp P{k 'IMT-JVh b,lr}
Thus we have

Theorem 2. The Ricci formula with respect to covariant derivation defined by
(0.5) for a covariant tensor field V; ., has the form (1.11).

If we suppose that Pj=gd}, we have & ,=0, P{Edj)=0 and P{;d}] = df,di;-
Thus (1.11) gets the form

1
V iy [k 1] = ? 0”+1( Z 'Rly. kl Vl: Lin=10K 41 ... Tk lVl'l i,rlm)

For g=1 this is the Ricci formula (0.7). In this case the covariant derivatives
defined by (0.5) and (0.6) coincide.

§ 2. Ricci and Bianchi identities for Otsuki spaces

In view of (1.8a) and the definition (1.7) the exterior derivative of the 1-form
Qs
*d'Q = (9, P{)(dx"\'Q*Qb) — Pi(dx"A*d’ab).

Substituting 9,P; from (0.3), *d’w} from (1.8b), using relations (0.1), (1.8a) and
definitions (1.6) we get from the above identity

@.1) 4R+ N — (dxP N 2) Q) =
This relation gives the following 4
Theorem 3. (2.1) is the generalization of the Ricci identity for Otsuki spaces.

Using definitions (i.2), (1.4), (1.6), identity (2.1), and the skew-symmetry of
the torsion tensors we get the following identity

P'{ P "l" ’Tf’”Tk -+’R,’m}dx'f\dx’f\df =0.
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This identity is true for all values of dx™, dx?, dx*, and the skew-symmetry of the
term in the bracket yealds

2.2) Too'um = To't T’ m+ Rip'kmy = 0,
where [pkm] denote the usual alternation for p, k, m (see [5]). In the following
we shall use this symbolic of Schouten.

Corollary 1. (2.2) is the Ricci identity for the curvature tensor of ‘I’ for a regular
general connection I' expressed in components.

Let us now apply the Ricci formula (0.7) to the Kronecker 6. It follows that

2.3) "Ry’ im = "Ry’ xm— 205 1xim) — O

b Tk
From (0.8) we obviously obtain
T'x = 200+ Tk
Substituting the above relation and (2.3) into (2.2), we obtain the identity
(2.4) "Te'sm1 = "To'te" T m+ "Repimy — 3105 " Ti"my = 0.
Thus we have another consequence of (2.1):
Corollary 2. The identity (2.4) is the Ricci identity for the curvature tensor of "I .

If the affine connections ‘I’ and “I' are symmetric, from (2.2) and (2.4) we
have the known Ricci identities for symmetric affine connections.

Let us now start from the definition (1.8b). By virtue of a calculation analogous
to that of identity (2.1) we obtain the identity

(2.5) *d'QL— PiQb 6} (dx™N'Q8) — ", N+ "Wk A28 = 0
which proves the following

Theorem 4. (2.5) is the Bianchi identity for the curvature tensor of 'T.

Starting from (2.5), using definitions (1.4), (1.6), (O. 6), and taking into con-
sideration (0.1), (0.8) we get the relation

(2.6) PP o kijm — Opim Rs'ur+ "I R,% s} dX™ Ndx*Ndx' = 0.
Now it is possible to express the following

Corollary 3. The Bianchi identity for the curvature tensor of ‘I’ with respect
to the basic covariant derivation is

2.7) ; p'tﬂu_‘s;IH’Rc'kl'*'”Tl‘l ’Rp‘m_*-{klm} =0.

In (2.7) {kim} denotes the sum of expressions which we get by cyclic permuta-
tion of the indices in the foregoing expression. Substituting (2.3) into (2.7) we get
the Bianchi identity for the curvature tensor formed with respect to the part “I' of
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a regular connection I'. That is _
(2' 8) ”Rp‘hl]m — &Up|k|t]Im __(6;‘,"‘1‘.:,)‘“ _a;hl (,Rl.ll — <Usitkl) _5:|3”Tt'l) +
+T, ’l (”Rp‘lu o 2"‘5‘1"”[«!{.:1 == pit’T Il) + {kl M} =0.

If Pi=gd, o=const., then from (0.6) and (0.8) follows &%, ="~ 'T“-O
and the ldcntltlcs 2.7 and (2.8) coincide. If we suppose that thc affine connections
‘I’ and “I" are symmetric, then we have the well known Bianchi identities.

§ 3. Ricci and Bianchi identities in W—O0,

Now we shall investigate the W—O,, spaces. The basic formulae of the i‘ollowmg
investigations a.te (0.10—(0.13).
Since “TI'j, are components of a classical symmetric affine connection, we get

(3.1) ”T}‘l = ”PJ‘,‘-F,‘} =0
Using the notation

1 . »
(3.2) {i}= 5 85(0; 8is+0:8:;—0,8;) (Crhistoffel’s symbols)
and '

1

(3.3) Kjy = 5 g8 (7 ymys+yemg—y,mpy)
from (0.11) we get
(3-"” T jil - L‘fk}_Kjik-

K/ is symmetric in j and k. Thus symmetry follows from symmetry in covariant
indices of Christoffel symbols of second kind and from (3.1). From the identity
(2:4) and the relation (3.1) we obtain the classical Ricci identity

(35) ”RUiu] — 0
Applving the Ricci formula (1.10) on the recurrence vector y(x), we get
(3.6) ViVi—=ViV)y = 2!s|cPﬁV115‘ +2PhP:PE:6?])Ys|(a|r)_

—'Pbe P{[:O ( Rs’w?p apr?s]p)*

If y, is a parallel vector field independent from the direction of the displacement,
then we have from (0.5)

(3.7) owp=0; V=0
From this we obtain

Theorem 5. In a W—O,, space which admits a recurrence vector 7y, satisfying
(3.7), we have
”Rspt[l 3 i:] Yo = 0.

If Pj=pd}, p=const. =0, we get
"RFuy,=0.
Thisis the condition for y, to be a'parallel vector field of a space with affine connectlon

3 D
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The relation between the covariant derivation with respect to the connection
“I' and the basic covariant derivation with respect to the regular general connection
I is given by

N . P .
(3.8) : V;:}:", = ﬂvthl:-.‘.‘. |.+ 2;5:,“{ le:..l.'.}:_lxinl».. i’.
I=
Applying this relation and (3.1) to the identity (2.8), we get the identity-
"V "Ryt 05m" Ry — 205 migkity = Opim Ré"u+

+265m 85+ {kIm} = 0.
It is easy to prove that

(3.9) 285 iwinim+{kIm} = 267 i+ {kIm}.

From the Ricci formula given by (0.7) and from the equation which we get by
applying (0.7) on &%, and by using (3.1) we obtain

(3'10) 26;|m|[t|l] =-' S'Hé,ﬂﬂ-‘-” psﬂ‘s:lm"'”Ru,klé;Is'
Substituting (3.10) into (3.9), using (3.5), (2.3) and (3.1), we get
(3.11) "R, + {klm} = 0.

This is the Bianchi identity for the curvature tensor of "I’ with respect to thes ymmetric
affine connection "I’ itself.

Let us now consider the definition (0.9) of the components of the curvature
tensor formed from “I'. Substituting the relation (3.8) into (0.9) we obtain

(3.12) "Ry = o/} + G HA) =0 K 1+ K K2 — W K2 — K P = k1

where k/! denotes the same expression on the right hand side but ¥ and / changed.
Let us take the notations

R.rlu = 0 {;ix} 5 {"t} {J':} —k/l
My = 0 K= K K1+ (A KP4+ {2 K — K]
Then (3.12) gets the form
(3013) ”R!‘ll — RJ‘U—MJ’:H"

‘Here R, denotes the curvature tensor of a Riemannian space, and M, is
called the torsion of the curvature tensor of “T.
[

and

Let V denote the covariant derivation with respect to the {;%,}. Then

. VK = 0K+ (i K2 — () K — {" 3K,
If we substitute this relation in the above definition of A/ .%.,, we have

M‘J - vt.KJi] _K"le’l—kf‘I'

J

From the properties of R/, and "R}, it follow. that M/}, is a skew-
symmetric tensor in k£ and /, and the following theorem Loids
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Theorem 6. In W-—O, spaces the torsion of the curvature tensor of "I' satisfies
the identity

{3.14) Muiu] = (),
We can say that (3.12) is the Ricci identity of the tensor M j\,.

Now we want to find the Bianchi identities for W—O, spaces. (3.8) and (3.11)
give '
. "uia-—a:]u" ”*l+ [khII} - 0-

From (3.13) and the above identity we get
(3 1 5) Rp'l”m — 4 p’lllm _5:[ll R”H X 5:I- Mp,tl + {kIM} =0.

We want to describe the relation between the covariant derivation with respect
to the regular general connection I' and the Riemannian connection. This is given by
(3° 16) Vji: -'-'-'Ji':m - em v j?:...‘j: + 2’: (6:1m T s!'lu) Vj‘:.l.’:j:-l““lm" + :

1=1

T
+ .Z; KV R Boinhesialy®

R/ satisfies the Bianchi identity with respect to the Riemannian connection. So,
if we apply (3.16) on (3.15), we get

(3.17) M x1im = O5im M =K' R+ K Ry + {kIm} = 0.

Theorem 7. The Bianchi identity of the tensor M/, with respect to the co-
variant derivation is (3.17).

From (3.8), resp. (3.16), and (3.17) it follows, that the following holds
(3.18)

or
(3.19)

”V,,, M,",,,-i—ZV[,‘V,] Kp‘m+ {klm} =0

Vi M2+ 27V Vi K o+ (ki) = 0.

If we denote the torsion of the curvature tensor of “I' with respect to the operation
"V by '
(3-20) ”Mjiu = "VtKj‘, +K"kKJpg e k/t
then we have £
”RJ‘H - leu— ”M;‘u-

It is obvious, that also the tensor "M /'y, satisfies the identities (3.14), (3.18) and (3.19).

5\'
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§ 4. Some properties of the curvature tensors of "I’

We determine conditions for the skew-symmetry in the first two indices of the
curvature tensor of “I'.
From (0.11) and (0.7) it follows that

4.1) (A4D—DA4)g;; = P{ P? gayOuyiy dx* 1 8x.
Applying (1.5) on the metric tensor g;;, we have

2

Let us substitute (4.1) in (4.2) and express the part which contains the components
of the curvature tensor of “I" with respect to (0.1) and (0.12). Using the relation

1 . i
(4'2) (AD_DA)gU = {2?Ilvtlébgﬁb+_ PFP:Png( Ra’ugsa"' Rb ugsa)} dx*)ox'.

s "R Bag = ”Rm.'
we obtain

(4.3) "Rapki+ " Roars = 402 Q7 My 7V 05+ 2map 7 -
This gives

Theorem 8. In order that the tensor "Ry, be skew-symmetric in its first two
indices, it is necessary and sufficient that

4.4 20, 00im;y s YuVnd; +m;;0uyn = 0.
If 65,=0, thatis 'I'="T, then from (4.4) we have
Ou7ia = 0.

This means that the recurrence vector y, is a gradient vector. In W—O, spaces

[4 c
we can express the above condition also in the form V;y,—V,y,=0.
We define the tensor

. def ,,
(4.5; Rijklz Rij—Tiju
where
def
(4.6) Tiju = 20:00 m});?{kvi]éf"‘mua[t}'u .

. T,y is symmetric in i, j and skew-symmetric in k and /. The just defined
tensor ém, is skew-symmetric in its first two indices, i.e.

@.7 Rm: = Ak
This will be proved by (4.3).
We shall now determine the conditions for

(4-8) Ruu = Rm i
The Ricci identity holds for the tensor “R/,,, and since

"Rfu Ba} = ”Ruu
from (4.5) we have p A s
Riju+ R+ R+ (Tyu+ {ikl)) = 0.
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By adding to the above identity a similar one which we get from the former changing
the indices i—~j and k-/, we obtain
2RUH_RUH+Ru-‘t"ﬁﬁjx‘l'ﬂtm'i'(riju"' {ikI}) +(T i+ {jIk}) = 0.
If we now change in this identity the indices i,j to k,/, and substract the new
identity from the above, we have
(4.9) Rijil_'ﬁluj = 2Ty, — il J-
This means that (4.8) is true if and only if
(4.10) Ty —ilj = 0.

Let us construct the tensor

4.11) *Rijut e Rijld —(Tin;—ilJ)-

According to the relation
Ty —ilJ = Tyju—k/1
*Rij satisfies the equations

"Riju = *ij; “Riju = _‘Rjih"
We want to show some special cases in which (4.10) is satisfies.
Theorem 9. T, satisfies (4.10) if: .

a) =0, or b) Pj=0d} and y, is a gradient vector.

Indeed, in the case a) we have "I, = {;;}. and by the covariant part of the regular
general connection I’ a Riemanman space is determined, and W—O, reduces
to a Riemann—Otsuki space R—O,.

In the case b) we have &},,=0, and from (4.6) it follows that (4.10) is satisfied.
In this case W—O, reduces to a generalised Wey/ space. From (4.5) and (4.11)
we get

»Ru'u = {Rjr'kl = ”‘Rkh‘j'

From this relation, (3.13), and from the fact that M, g, ,=M;;, is the torsion
of the curvature tensor of "I, we obtain

My = =My = My,

From this and (3.14) it is obvious that the tensor M, satisfies the Ricci identity
for every three of the four indices ijk/.

§ 5. W—0O, spaces of scalar curvature

Let us consider a fixed point P of the space W—O, and two arbitrary linearly
independent vectors X, Y in the same space. These vectors span up a two-dimen-
sional linear vector manifold T,(P) at P. The scalar defined by

Ry X' X*YiY!

(5.1) R(x,X,Y)= . v
( ) (8wgji—Gug) X X*Y/Y!
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is called the sectional curvature of W—O
X ¥

We prove that R(x, X, Y) depends only on T,(P) and not on the vectors
which span it (cf. [4] chap. 7, § 3. resp. (3.41)). Let us introduce the notations:

at P and T,(P) determined by

(5.2) ' Z4=XUyn, ﬁu = Rmd Guas = 8u&ji— B &jx

A B=1,2, ...,%n(n—l): hj=12,...,n
Then we have
R(AB)ZAZS
(53) | R(x, Z) —W.

Definition 1. The W—O, space is a space of scalar curvature of first order if,
R(x, Z) is independent of Z“.

We shall calculate ﬂ(,.,,(x, Z) in W—O, spaces of scalar curvature of first
order. From the definition we have R(x, Z)=R(x) and from (5.3) it follows that

(5-4) (R(x) G‘B_R(AB))ZAZ' = 0
for all pairs of vectors of T,(P). Using (5.2) we get

(5.5) Ri}hl -ij = ZR(X) (8 Bit— 8ii 8,1)-

Let us replace in the above consideration the tensor R, with *R;;, which
has the same symmetry and skew-symmetry properties as the curvature tensor of
a Riemannian metric, i.e.

(5.6) *R(ij)kl =0; *Rum) =0; *Ruu = *Rm;-

Then in place of R(x, X, Y) we have the scalar

*Riu X' X*YIY!

5.7 *R(x, X,Y) =
s W ) (gugn—gug) X' X*YY!

and we give the following definition:

‘Definition 2. A W—O,, space is of second order scalar curvature if *R(x, X, Y)
given by (5.7) is independent of the vectors X and Y.
Using (5.6) and the above definition one can prove in the same way, as in the

Riemannian geometry, that if the W—O, is of scalar curvature of second order,
then (cf. [3] § 118)

(5.8) *Ruu = "R(x)(ga8j—8u&jx)
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or
(5.9 : *Riu = "R(x)(gud{ — gud))-
The scalar "R(x) is given by
1
5 } ® = = pkil d
(5.10) R(x) n@m—1) R%

From the relations (5.7) and (5.8) follows that

Theorem 10. (5.8) or (5.9) is a necessary and sufficient condition for a W—0,
7o be a space of scalar curvature of second order.

In the following we shall give the relation between the tensors *R;j;; and R;jy.
From (4.11), (4.5) and (3.13) it follows that

(5.11) *Riju = Riju—Mja+Tiju—(Tiganj—ilj)-
From (5.11) and (3.13) foilows

_ "Rijyy = -Rfjtl_'Ti!tl'"( i1 —117)
or in other form

(5.12) ”Riju = R.jn_VJ
where
Gy Viu = (T — T ils))-

Let us now derive (5.12) with respect to the regular general connection I,
and apply (3.8) in the obtained derivative. Using the fact that the tensor "R/,
satisfies the classical Bianchi identity, we get

(5.14) *Réxye =04 "R = Vi + {kir} = 0.
Substituting “R/,, from (5.12) into (5.14) we arrive to the relation :
(5.15) *Riape =0l Ria =84, Viiu+Viuy = 0.

(5.15) is the Bianchi identity of the curvature tensor with respect to the basic covariant
derivation.

As the well known Schur's theorem tells us, a Riemannian space is of constant
curvature ifl it is of scalar curvature. In the remaining part of this paper we in-
vestigate W—O,, spaces of second order scalar curvature. We show that the analogon
of Schur’s thcorem does not hold in general in these spaces, and we find those spaces
in which the analcgon of Schur’s theorem, holds. e

Sirce our space now is of second order scalar curvature, so we have (5.9).
Substituting (5.12) into (5.15) we obtain

‘R, (gn ol —gud{)+*R (8&1:5{ o 8a|r5£ .
6!‘]? Vl I:I+Viju|r+{k’r} =0.
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For j=I we have

"Ry, gu(n—2)+*Rgy), (n—2)+*R; g, (2—n)+*Rg;,u (2 —n) —
=84 Vi — Vi =0 i Vin+Vinyn = 0.
Multiplication with g* gives
(5.16) "R (n—1)(n—2)+*R(gu},— 8irpp)8™ (n—2) -
=& V¥ = V" =81,V i+ Vi = 0.

From the relation PiPjg, = Vigi;=78&; it follows that

(5-17) Bsrik = ?gquiQi = YMg.
Substituting (5.17) into (5.16) we obviously get
(5.18) (n=2)(n—1)*R;,+* R Qs — 1 Q: 05) (n—2) —

. — &) V¥ — V™ e — 8} V™ AV jyy = 0.
And from this

(5.19) (n=2)(n—1)*R;, = *R(3, Qi Qi —n Q3 O%) (2 —n)+ 8}, V¥, +
+ V¥ e+l V5=V 00
Thus "RI,=§§ does not vanish in general. This shows that the investigated W—O,

with second order scalar curvature may be of scalar but not of constant curvature,
and so Schur’s theorem does not hold in general. Thus we have

Theorem 11. The vanishing of the right hand side of (5.19) is the condition of the
validity of Schur’'s theorem.

It means, that Schur’s theorem holds in those W—O, with second order scalar
curvature in which the right side of (5.19) vanishes. We show that in Riemann—
Otsuki spaces with second order scalar curvature Schur’s theorem holds. These
R--0, spaces are those W—O, in which 7, =0 (see theorem 9). From (5.19) it follows

immediately _
Corollary 5. If y,=0 and n>2, then
*Ri" = 0,

i.e, "R(x)=const., and the R—O, space with second order scalar curvature is of
constant curvature.

Another consequence of (5.19) is .

Theorem 12. If Pj=¢d}, o=const=0, y, is a gradient vector and n=>2,
then the scalar *R(x) is the solution of the differential equation

*Ri, = —*R(x)7:(x)e~2
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ProOF. From case b) of Theorem 9 it follows that T;,,=0, and then (5.18)
with respect to (5.13) has the form

: *R,,+"Ry,07*=0.
It is easy to see the

Corollary 6. If in theorem 12. g9=1, then the space W—O, reduces to the
classical Weyl space and y,=0d,In "R™1,
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