On the representation of integers by decomposable forms
in several variables

By K. GYORY (Debrecen)

1. Introduction

The purpose of the present paper is to generalize some results of [10], [11]and [12]
concerning diophantine equations and to emphasize the role of our graph method
in the investigation of certain diophantine equations.

Let L be an algebraic number field with ring of integers Z,. Let f, n,, ..., 7,
be distinct non-zero algebraic integers in L and assume that n,, ..., w, are not
units. Let F(x)=F(x,, ..., Xp)EZ[X,, ..., X,,] be a form of degree n=3 in m=2
variables and suppose that F(x) is decomposable (i.e. that it is a product of linear
forms with algebraic coefficients). Let d=1. In [10], [11], [12] we proved that under cer-
tain assumptions made on the linear factors of F (cf. Section 2) the diophantine
equation

) F(x) = prir...n:, Norm((x, ..., X)) = d

has only finitely many solutions in x€Z7, z,,...,z€Z with z;,...,z=0 and
these solutions can be effectively determined. Further, in [11] and [12] explicit upper
bounds have been established for the size of all the solutions of (1).

In this paper we give a common generalization of some results of [10], [11] and
[12]. We get as a special case of our main result that if K is an arbitrary but fixed
number field containing L, B, my, ..., m,€ Zx and F satisfies the same conditions as
in [10], [11] or in Corollary 1 of [12] then the number of solutions of (1) in x€Zf,
Zy, ey 2, =0 is finite!). More precisely, we give effectively computable upper
bounds for the size of all solutions x,, ..., x,,€ Zg, z;, ..., 2,=0 of (i). Apart from the
form of the bounds, our theorems generalize several earlier effective results on the
Thue—Mabhler equation and on norm form, discriminant form and index form equa-
tions. Further, we give a generalization of some effective theorems on the greatest
prime factors of decomposable forms at integer points.

In [4], [S] we introduced certain graphs composed of algebraic integers of
a given number field. In [4], [5] and in some recent papers of ours it turned out
(for references see e.g. [8]) that certain properties of these graphs play an important
role in the investigation of several number-theoretic problems. In the proofs of
[10] and [11] we had to combine the classical methods used in the case m=2 with
our graph method, but we did not employ graph terminology. In [8] we considerably

1) In this case Norm ((xy, ..., X)) denotes the absolute norm of the ideal (x, ..., x,) of K.
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improved and generalized our earlier results obtained on the graphs mentioned
above. To prove these improvements and generalizations we used, among other
things, Baker’s method. The main theorems of [8] have various applications (see
¢.g. [8]). In this paper we give an application of Theorem 1 of [8] to the equation (1).

2. Results

Let L and K bedefined asabove. Let F(x)€Z,[x,, ..., X,] be a decomposable
form of degree n=3 in m=2 variables. We may suppose without loss of generality
that the coefficient of xj in F is not zero (see e.g. [10]). Let F(x)=a,/(x) ... /,(x)
be the factorization of F where the /(X)=x;+ax.4... +%;,X, dencte linear
forms with algebraic coefficients and suppose?) |agya,;|=A4 (with a,=1 for
i=1,...,n). Assume that the equation system

(2) i(x)=0, i=1,..,n,
has no solution x#0 in L™ and that the system % of linear forms 1/, ...,/

can be divided into pairwise disjoint subsystems &£, .- % such that each %,
{1=h=k) is connected (i.e. for any distinct 7, j with /;, /;€.%, there exists a sequence
J,H.!_,l, o by, =l; in % such that 2} [, +A7  I; €%, for each u, 1=u=v—1,
with some 4, . le,E Q\ {0}; seee. g [13] or [lO])’j As we shall see in the proof
of Theorem 1, under these hypotheses m=n and (2) has no solution x>0 in C™.

Throughout this paper G denotes a number field containing K and the
splitting field of F(x) over L. Let g, R;, h; and r be the degree, regulator, class
number and number of fundamental units of G and write f=[G:K].

Let B, =, ..., denote non-zero algebraic integers in K and suppose that
7y, ..., M, are not units. Let s denote the number of distinct prime ideals of K

dividing 7, ... 7, andlet P be the greatest rational prime for which (x, ... m,, P)#1.
Further, suppose |Ng,(f)|=b and max |=;|=2.
Our main result is then as follows:*)

Theorem 1. Suppose that under the above assumptions there is an | (1=1=m)
such that if I(x)=0 with x=(xy, ..., X)) EG™ for all €%, then x,=0 holds
Jor each fixed h (1=h=k)*). Then all solutions X€Z%,z,, ...,z€Z of (1) with
x#0, 2, ..., 2,=0 satisfy

0 max [x] < [fn(@ucmysiioss
and
@ ,.{i, | Ny (s = (dCmy

*) As usual, |a| denotes the maximurn absolute value of the conjugates of an algebraic integer
a (in other words the size of =).

%) Tt is easy to verify that if m=2 then every system 2 containing at least three pairwise
non-proportional linear forms satisfies these conditions with k=1.

9) It is clear that if k=1 then the other hvpotheses of Theorem 1 imply this condition for
each L

*) See the remark at the end of the paper.
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where
C = exp {(c; (s + 1))/ Br+10+200 442, Po(log PY/+7(1+nlog (4b))}

with an effectively computable positive number ¢, depending only on g, Rg and hg;.

Apart from the fact that [11] contains explicit estimates in terms of each para-
meter, the above quoted results of [10] and [11] correspond to the case K=L, k=1
of our Theorem 1 (when the assumption x; = 0 can be omitted). Here a straightforward
application of our graph method is emphasized in place of obtaining explicit bounds.
By using the bounds of [8] in explicit form we could easily derive an explicit value
for ¢,.

Keeping the above notations, we present now some consequences (Theorems
2,3,4,5,6,7) of our main result. The following classes of forms satisfy the conditions
of Theorem 1.

Let m=2, and let F(x)=F(xy, x9)€Z,[x;, x;] be a binary form of degree
n with F(1,0)70 such that F(x,, 1) has at least three distinct zeros and 2[F|=4
(where [F|- denotes the maximum absolute value of the conjugates of the co-
efficients of F). Then (1) is just the Thue—Mahler equation

(5) F(x;, x5) = Brjr ... .

Theorem 2. All solutions of (5)in xy, xs€ Zg, 2y, ..., Z,€ Z with Norm((x;,x,))=
=d, z,, ..., 2Z,=0 satisfy (3) and (4).

This result was in fact proved in [11] with slightly different estimates. Apart
from the form of the bounds, Theorem 2 is a generalization of theorems of COATES
[2], [3], SerinDZUK [17], [18], KoTtov [15] and KoTov and SPRINDZUK [16] on the
Thue—Mabhler equation.

By a solution x of (6), (7) and (8) we mean an x€Z7 satisfying /(x) ... /,(x)=
=pfnfr ... n¥, where the [; are linear factors of the corresponding decomposable
form.

Let M be an extension of degree n=3 of L, and let oy=1, &5, ..., %, €M
(m=2) with M=L (a,, ...,a,). Suppose that «;,, is of degree =3 over
L(®yy ..., @) for i=1,...,m—1. Let

F(x) = ag Ny (3 + e X+ ... + 2 Xp)€Zy [X1, ..oy Xpy)
and Jmax |agax;|=A. In this case (1) is 2 norm form equation
(6) Ao Ny ey Hoa X+ ...+ 0y X,) = Brfr... e,

Theorem 3. Under the above assumptions all solutions of (6) in Xy, ..., Xu€Zg,
Zy, ...y =0 with Norm ((xy, ..., x,))=d satisfy (3) and (4).*) ‘

If x,#0, the conditions of Theorem 3 can be weakened.
Theorem 4. Suppose that in (6) M=L (g, ...,0,), &;=1,0, ..., 0, are
linearly independent over L and «,, is of degree =3 over L(ay, ..., Om-1). Then all

*) Added in proof. In a recent work of S. V, Kotov (Inst. Math. Akad. Nauk BSSR, Preprint
No. 10 (90), Minsk, 1980), this theorem (in the case K =L and under slightly stronger conditions)
is proved in a different way.
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solutions x€Zg, z,,...,2,=0 of (6) with x,%0, Norm ((x,, ..., X)) =d satisfy
(3) and (4).*)

When m=2, (6) becomes the Thue—Mahler equation with an irreducible
binary form. Consequently, Theorems 3 and 4 can be regarded as another general-
ization of the above quoted theorems on the Thue—Mahler equation. Further,
Theorems 3 and 4 generalize some results of [11] and [12] concerning norm form
equations.

Again let M denote an extension of degree n=3 of L, andlet 1, «,, ..., :z,,,_G_ZM

be linearly independent elements over L such that M=L(ay, ..., «,) and max |oii =
=A. If xp,x,...,x,€Z, are variables, the discriminant Dy (03X, + ...+, X))
of xo+a,x;+...+a,x, over L is a decomposable form of degree n(n—1) in
Xy, ..., X, With integer coefficients in L. It is called a discriminant form (seee.g.
[6] or [14]), and, if F(x)=Dyy (3% + ... +2,X,), (1) becomes a discriminant form
equation

) Dyi(@yx,+ ...+ X,) = Brfr...n%, Norm((xy, ..., X)) = d.

Theorem 5. All solutions of (7) in Xy, ..., Xpu€ZLg, Zy, ..., =0 satisfy (3)
and (4).

In the special case K=L Theorem 5 implies (with other estimates) theorems
of GyORryY [6], [7], [11] and Gy6rY and Papp [14] on discriminant form equations.

If @ is an order of the field extension M/L with the above M such that @
has a relative integral basis of the form 1,4, ...,a, over L, then

Dygyp (g Xo+ ... +a,x,) = [F(xg, ..., X)P Dy (1, 2. ..., )
where F(x,, ..., x,)€ Z[x,, ..., x,] is a decomposable form of degree n(n—1)/2.
This firm is called the index form of the basis 1, ay, ..., «, of @ over L. Suppose
max lo;|=4. If F(x)=F(x,, ..., x,), then (1) is an index form equation

(8) F(xy, ..., X,) = prir...n%, Norm((xy, ..., X,)) = d.

Theorem 6. All solutions x,, ..., x,€Zg, z;, ..., 2,=0 of (8) satisfy (3) and (4)
with Dy, (1, ay, ..., a,)p* in place of B.

In the case K=L=Q GyYOry [6], [7] and TrReLiNA [19], and in the case of
arbitrary K=L GyO6rY and Paprp [14] and GYORy [11] obtained general effective
results on index form equations. Theorem 6 generalizes these results with other
estimates.

We signify by w(a) the number of distinct prime ideal divisors of a non-zero
algebraic integer « in K, and by P(x) the greatest of the norms of these prime
ideals (with the convention that P(x)=1 if « is a unit).

Theorem 7. Let L, K, F(x),d, | and G be defined as in Theorem 1. If xX€Zf}
with F(x)#0, x,3#0, Norm ((x,, ..., X,))=d and N=max |Ng,o(x)|=N,, then

) slog(s+1)+log P > c,loglog N

*) Added in proof. Very recently Kotov (private communication) obtained a similar result in
the special case K=L, r=0.
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and
(10) P> cgloglog N

where s=w(F(x)), P=P(F(x)) and c¢;=cig), c;=cs5(g), No=No(F,G,K,d)
are effectively computable positive numbers.

In the special case K=L,. k=1 (when x, =0 can be omitted) we obtained [10](9)
and (10) with explicit constants c,, ¢;. From (3) we could easily derive explicit values
for ¢, ard c,.

Our Theorem in [l0] and Theorem 2 of [l12] generalize several earlier
effective results on the greatest prime factors of norm forms, discriminant forms
and index forms (see [10]). Theorem 7 is a further generalization of these results.
For the forms F(x) satisfying the conditions of Theorems 3, 4, 5 or 6 the conciusion
of Theorem 7 obviously holds.

We remark that in the first version our main result was proved in a special
case.

3. Proofs

We keep the notations of Section 2. Let py, ..., p,, denote distinct prime
ideals in G lying above rational primes =P. Let S be a finite set of valuations
of G containing all the archimedean valuations and suppose that the non-archi-
medean valuations of S belong to p,, ..., py. We denote the group of S-units
of G by Us. A will signify the set of those elements «€Z; for which 0<
<|Ng,o(¥)|<N where N=>1 is a given integer. Let #={f,,...,f,} be a set
of algebraic integers of G with m=3. Consider the graph ¥=%(4, S, A7) with
vertex set # so that the pair [B;, f;] is an edge of ¢ if and only i B, —p; 44"
«(UsNZg). We denote by ¥7 the triangle hypergraph of %, i.e. that hypergraph
whose vertices are the edges of ¥, and whose edges are the triples of edges of
% that form a triangle (for this concept see e.g. [1], p. 440). We say that 4 is
triangular connected if both 4 and %7 are connected.

With the above notations we have the following

Lemma. If the complementary graph of %(#.S,A") is triangular connected
then there exist o€ Us\Zg and PB;€Zg such that p,—B,=aP,; for all distinct
i,j and
(11) n}z}xm*z exp {(c‘(s'+])}’“"+’3’”‘"*“mP'(Iog Py +%log N}

where ¢, is an effectively computable positive number depending only on g, Rg
and hy.

This lemma is an immediate consequence of Theorem 1 of [§]. In fact, this
theorem provides (11) with a slightly larger bound, but in view of the remark
following Theorem 1 of [8] we get (11).

In [8] ¢, is given explicitly in terms of each parameter. Using the explicit form
of ¢, we could derive an explicit value for the number ¢; occurring in our Theorem 1.

By applying our above Lemma we can easily reduce the equation (1) to a linear
equation system and then (3) and (4) readily follows. Thanks to the application
of this lemma, our below proof is much shorter than those of [10] and [11] in the
case K=L, k=1.
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PrOOF OF THEOREM 1. Let x€Z%, z,,...,2€Z be an arbitrary but fixed
solution of (1) with z, ..., z,=0. Put ayl(x)=8;, j=1, ...,n. Evidently B,€Z;
for each j. 1t follows from (1) that the principal ideal (B;) generated by B; can be
written in the form

(B) = a;piv...pgrs, j=1,...,m,
where p,, ..., p,- are distinct prime ideals in G dividing (n,...n,) and q,...q,|(fa}™").
Clearly s'=sf. Writing w;;=v;;hg+ry; with vijs 1ij€Z, 0=ry<hg, aﬂh” PsI=
=(y;) and (pyV . pe e are principal ideals in G. We have

(12) INgio(1))l = b/ A=V Pseha, j=1,..,n
Further, there is an integer ¢; in G such that
(13) ﬁj - ?jajs j = l) ceey My

and o0,€Us(1Z; hold, where Ug denotes the group of S-units of G determined
by Py, ..oy Do
Let h be an arbitrary but fixed integer with 1=h=k, and let ¥, be the set
of indices j satisfying /;€%,. We may suppose without loss of generality that
hes,. Let jes\{h}. Since %, is connected, there exists a sequence /,=/;,, ..
1, =I; in &, such that for each u, 1=u=v-1,

(14) 'lju lJu _;l;u-tl IJII"! = J"Ju I+IIJ|| u+l

with /; €%, and with non-zero algebraic integers 4} ,47.,,,4; ..,€G of
size =341 (cf. [10], [11]). We define 4" as above with N=b/(44"+iPhc)s.
Consider thc set &, of integers of G consisting of 0 and 4] B;., 47,.,B/...

u=1, —1, when j runs through J\{h}. We can choose the elements of 2,
such that Card #,=2n. In view of (12) and (13) each non-zero element of Q,,
belongs to A (UsNZ;). Further, for fixed 4 and jeS£,\{h}, by (14), (13) and (12)
we have

j;nﬁ-’a_j.;nflﬁ.’u-lle'y(vinzﬁ)l u=1,..,v-1,

and, if 4j,,.#4},,,

}‘}-1-131:.41— '?u+:ﬁfu+1em(vsnzﬁ')

for each u, |=u=v-2. Define the graph ¥,=9%,(%,, S, 4") in the same way as
in the above Lemma. Then it is easy to see that the complementary graph of %, is
triangular connected and so, by our Lemma,
(15) 4jB;=0y-6; forall jeJ,
where 0%13€Z; with |A}|=242 o0}€UsNZ; and §,€Z; satisfies
(16) max W < exp{(cs(s+ 1))/ @r+1+20r 482, pa(log PY/+7(1+nlog (4b))} = C,.

Jes,

Here, and below, c;, cq, ... will denote effectively computable positive numbers
which depend only on g, R; and hg.
From (15) we obtain

(3a)l,(x) = a5, forall jES,.
By assumption x; has the same value in any solution x€G™ of this equation
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system. Therefore, it is easily seen that x,=o}7,/u, for h=1, ..., k, where 1,,
u,€Zs; and

] = CmA®y™, |n] = CmAH"C,.
By putting u;=u,, 1;=1, for j€J, we get

(17) 8;a0)l;(x) = a7e;, j=1,...,n,

where 3;=p,1;4; and gj—uj‘r,éj By virtue of FEZ,[x,, ..., x,] & consists of
the conjugates of’ I; over L,j=1,...,n. Since (2) has no non-trivial solution in
L™, hence an argument of the proof of Lemma 2 in [13] shows that (2) has no
non-trivial solution in C™ and m=n. Thus x is the only solution of (17) in K™
and by Cramer’s rule we get

(18) x=0v, i=1,..,m,
where v;, vé Z; and for each i
max ([V], ) = (cs(mA)™)=C3™.
In view of (18) Ng,o(e7) divides Ngo(v) Norm (x4, ..., X,)) which implies
(19) [ Ngjg (o)l = d/ (cg(mA)™)™ Cim™ = C,.

So, by a well-known lemma (see e.g. [9]) there exists a unit ¢ in G such that
o3 =¢0’,0'€Z; and
[o] = e, Che.

From (18) we get now x;=éex; with x'=(xj,..., x,)EZZ and

maxm =0 (c. m'm A?m)ﬂCfWCs!fﬂ oE CS'
Further
(20) [a3 1, (x) ... 1,(x)] = (mACy).

On the other hand, by (1), (17), (19) and (16) we have

1 4
11-11 | Nxjo(m)I*s = | Ngjo(ag™'Bnsr...n50)| = ING.\'Q((slﬁl) ---(snﬁu))ll” -
= | Ng/g(63)I"f | Ngjg(ey--- e’ = C3/ CP™!f = C,
which yields (4). Now (1) gives

@1 [Bas s a5 = [fl a2 Ciise = G
Finally, from (1), (20) and (21) we obtain

[e]* =[] = Cs(mACy)y e
and so

max [x] = Ci"(mACyp-1+ Cs,
whence (3) follows.



96 K. Gyéry

PrOOF OF THEOREM 2. By hypothesis there are at least three pairwise non-
proportional linear factors in the factorization

F(xy, x3) = ag(x+ 21 X%5) ... (x; + %, %),

hence these factors @'m a_connflcd system and the condition (2) is also satisfied.
Since max lagx| <l|ao| + |F|=2|F|=A4, Theorem 2 immediately follows from
Theorem 1.

PrROOF OF THEOREM 3. Let x€ZpP, z;,...,z,=0 be an arbitrary but fixed
solution of (6) with Norm ((x,, ..., x,))=d, and let / be the greatest integer for
which x;%0. The case /=1 being trivial. we suppose /=2. x, z;, ..., z, satisfy
the equation

Fi(x) = ag(Ny o (xy + 29 Xe+ ...+, x))" = Brjr...nfe,

where M, =L(x,, ..., %) and n,=[M:M,]. Apply Theorem 1 to this equation. Since
Fi(x)#0 forall 0=x¢L! the condition (2) is fulfilled. Divide the linear factors
of F, into subsystems .7}, ..., % so that two linear forms belong to the same
subsystem if and only if in these forms the coefficients of x,, ..., x;_, coincide.
It is easily seen that %, ..., % satisfy all conditions of Theorem I and so, by
Theorem 1. X, 25 ... 2 satnsfy (3) and (4).

PrOOF OF THEOREM 4. Applying the above proof with /=m, the assertion easily
follows.

PROOF OF THEOREM 5. Let x4, ..., x.€Z;, Z;, ..., 2,=0 be an arbitrary but
fixed solution of (7). If Dy, (x,)#0, the equation (7) satisfies all conditions of our
Theorem 1 with k=1 (cf. 110]) and (3) and (4) easily follow. Suppose now
Dy ()=0. As is known, there exist a,,..,a,€Z; with sizes =n' such
that M=L(2) for a=x+asa,+...+%,a,, that is Dy, (x)=0. Write x;=x7,
Xg=0g X3+ Xay +00y X =8, X1 +X%. Since the coeflicient of (x1)"™ " iIn F(x)=
Dy (2 X7 + 20 (@aXT +X3) + ... + %y (@ X7 + X)) = Dypgyp (ax] + 2, X3 + ..., X5) is not
zero, we may apply our Theorem | to (1) with the above F(x) and we get bounds

for max[x,| and ﬂ INkig(y)*s. Finally, since max [x|=(*+ 1) max [xi], we
obtain (3) and (4) \;\alth a suitable c¢;.
ProOF OF THEOREM 6. All solutions of (8) satisfy
Dygyp (de X+ ... +2,%,) = Dy (1, 2, ..., %,) B35 .. W5
By applying Theorem 5 we get (3) and (4) with Dy, (1, 25, ..., x,)8* in place of f.

PROOF OF THEOREM 7. Let x€ Z§ with F(x)#0, x; =0 and Norm ((x,, ..., X,,)) =4,
and let

(22) (F(x)) = pf1...p¥s

where p,, ..., p, are distinct prime ideals in K. In case m(F(x)) 0 write
(F(x)) pit with u,=0 and with a prime ideal p, lying above 2, and suppose
P=Norm (p,). Denote the degree and class number of K by k and Ay, respectively.
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Put olx=(m,) and w;=hgz;+r;, with z;, r,€Z, 0=sr,<hg. By (22) p3...pe=(f)
is a principal ideal in K and we have F(x)=¢fnj:...n{s with a svitable unit ecK.
By virtue of Lemma 2 of [9] we may suppose that }rr;|§P""c3. where cy=cy3(K)=0
is effectively computable. Further, gf=n""f; with a unit n€K and with f,€Z;
satisfying |f,|=P*"=ci. It follows from (22) thai

(23) F(nx) = pyr§r...nks.
By applving Theorem 1 to (23) we gat

(24) max m < 2Xp {..',(c,‘,(s + 1))ftir+18)+30r -84 Po(log PYI+Y)

with effectively computable c¢,=c,(F, G, K, d), ¢;=0(F, G, K).

It is clear that [Ng,,(x;)|=[nx;% Further, by a well-known theorem s=
=2gPjlog P. Thus, if N, 1s sufficiently large, then in view of (24) P is also suf-
ficientiy large and so w(F(x))=>0. Consequently, for sufficiently large N, (24)
implies (9). whence (10) easily follows.
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Corrections to [10] and [14]

[10] p. 341 line —7, p. 343 lines 7 and 14 and p. 346 line —35. “F(x)#0" should be supposed.
p. 343, line 18. For “in L" read “in L such that n,, ..., 7, are not units”.
p. 345, line 12. For “that™ read “that K= L(xy, ..., a,,),".
p. 346, line 3. For ““with™ read “with I (x)#0,".
p- 353, line —13. For “x,” read “x".
[14] In Corollary 3 “Dyg,q (a1 xy+ ... + &, x,)#0", and in Corollary 5 “Dy;, (@, x, + ... +a,, x,, )= 0"
should be supposed.
p. 50 line —2. For “|py, ..., |p," read “|. Aoy ...,|..|,"’.
p. 52 line 5. For “D}V/*" read “D¥/*",
line —15. For “well as™ read “well, as".
p. 56 line —11. For “indepenent” read “independent™.
p. 57 line 4. For ““cy¢"” read “cy”.
p. 58 line 1. For “@* (=1 reqq «@psthe =10

Remark added in proof. In our recent paper “On certain graphs associated with an integral
domain and their applications to diophantine problems” (to appear), some results of the present
article have been extended to the case when L and K are fields of finite type over Q, and Z, and
Z g are replaced by subrings of L and K of finite type over Z. We proved amond other things that
if L is such a field and FeL[x,, ..., x,] is a decomposable form having the properties specified in
Theorem 1, 2, 3, 4, 5 or 6 of the present paper, then the equation F(x)=p (0=f¢L) has only
finitely many solutions x=(x,, ..., x,,)(with x,;%0 (resp. x,,5<0) in the case of Theorem 1 (resp.
of Theorem 4)) in any given integral domain finitely generated over Z.
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